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1. Introduction

Let K be an algebraic number field of finite degree n over the rationals,
and let J(K) be its ring of integers. If m is a positive integer greater than
unity, let J,n(K) be the additive group generated by the mh powers of the
elements of J(K). Clearly J,(K) is a subring of J(K). Needless to say,
Jm(K) is that subset of J(K) in which Waring’s problem for mh powers is
to be considered. The identity

x +
shows that

m! J(K) J.(g) J(g).

Hence J,n(K) consists of certain of the residue classes of J(K) modulo
m! J(K). Further J,,(K) can be determined in a particular case by an
examination of the quotient ring J(K)/{m! J(K)}. This determination can
be rather complicated, especially when m is composite.
When m is a prime q, the situation is somewhat simpler than in the general

case. In particular, it is easy to characterize those algebraic number fields
K for which J(K) J(K). We shall do this in this paper. Examples of
our main result are as follows: (A) J3(K) J(K) unless either 3 is rami-
fie in J(K) or 2 has in J(K) a prime ideal factor of second degree, (B)
Jll(K) J(K) unless 11 is ramified in J(K), (C) Jl(K) J(K) unless
either 31 is ramified in J(K) or 2 has in J(K) a prime ideal factor of
fifth degree or 5 has in J(K) a prime ideal factor of third degree. For most
primes q the situation is analogous to that for q 11, that is, we usually can
say that Jq(K) J(K) if and only if q is not ramified in J(K). This
generalizes the familiar result [10] that J.(K) J(K) if and only if 2 is not
ramified in J(K).
The primes for which complications occur, are those special primes q ex-
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The phrase "q is ramified in J(K)" means that q is divisible by the square of some

prime ideal in J (K). By the so-called ramification theorem (see [6]) the condition that
q is ramified in J(K) is equivalent to the condition that q divides the discriminant of
K. Accordingly our results could easily be modified by replacing the former condition
by the latter.
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pressible in the form

(,) q (pr_ 1)/(p 1),

where p is also a prime number and r and d are positive integers. Here d
must be a divisor of r, since otherwise (pr 1)/(p 1) would not be an
integer, in view of the idertity

where [u] denotes the greatest integer not exceeding the real number u.
Further r must actually be a prime-power, and d must be the largest divisor
of r other than r itself, since otherwise (p 1)/(p 1) would be com-
posite, in view of the identity

(p-- 1)/(p-- 1) IX’(P),
where j runs over the divisors of r which are not divisors of d, and .(x) is
the jh cyclotomic polynomial. Thus in specifying an expression for a prime
q in the form (,), it is enough to give the value of r.
Our precise result is the following, which is a restatement of Theorem 3

below. If q is a prime number not expressible in the form (,), then
Jq(K) J(K) if and only if q is unramified in J(K). If q is a prime num-
ber expressible in the form (,), let

q- (plrl- 1)/(pldl- 1), .--, q-- (p(’- 1)/(pv’- 1)

be all the ways it can be so expressed. Then Jq(K) J(K) if and only if q
is unramified in J(K) and p does not have in J(K) a prime ideal factor of de-
gree r for i 1, 2, v.
The prime numbers of the form (,) are comparatively rare. For example,

the table at the end of the paper shows that there are only 28 of them less
than (10) 5. Within the range of the table, 31 is the only prime with more
than one expression in the form (,). We shall show by the sieve method
that * q-12 converges, where the sum runs over the primes of the form (,),
each taken in the multiplicity of its occurrence in the form (,). More spe-
cifically, we shall show that if x is large, there are at most 50 x/2(log x)-primes of the form (,) not exceeding x, repetitions counting.

Special cases of our main result such as (A), (B), and (C) above can easily
be read off by use of the table.

Siegel [9, 10] has shown that if , is a totally positive element of J,(K),
then is expressible as a sum of (2m-1 -- n)mn - 1 or fewer mh powers of
totally positive elements of J(K), provided that, if K is totally real, the
norm of is sufficiently large. Tatuzawa [12] has improved this result by
showing that 8mn(m - n) or fewer summands will suffice. It would nat-
urally be desirable to eliminate the strong dependence of these results on the

A further improvement was obtained recently by O. KOnE, ber das Waringsche
Problem in algebraischen ZahlkOrper, Math. Ann., vol. 144 (1961), pp. 224-238.
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field degree n. While this would probably be a rather ambitious task, on the
other hand one of us has shown that a result of this kind is readily obtainable
for the so-called easier Waring problem. Specifically, it is shown in [11]
that for any prime q every element of Jq(K) is expressible as a sum of at
most 2q-1 q/3 1 integers of the form =t=kq, where k e J(K). The results
obtained in this paper tell us for which fields K we can make such an asser-
tion for every element of J(K).

2. A theorem of Tornheim

We shall require the following result of Tornheim [13] and so we include a
brief proof for convenience. As is customary we denote the finite field of pr
elements, where p is a prime, by GF(pr).

THEOREM 1. Suppose q is a prime. Then every element of GF(pr)
is expressible as a sum of q,h powers of elements of GF(p) unless
q (pr 1)/(pa 1) for some divisor d of r, in which special case the qth
powers form a subfield of pa elements.

Proof. If q (p 1), then the operation of taking the qta power gives
an automorphism of the multiplicative group of GF(p), and hence every
element of GF(p) is a qt power. If q (Pr 1), regardless of whether or
not q has the special form mentioned in the statement of the theorem, the
nonzero q powers form a subgroup H of index q in the multiplicative group
of GF(p). If q (p 1)/(p 1) for some divisor d of r, then H must
coincide with the multiplicative group of that subfield of GF(p) which has
p elements, so that in this case we have the result indicated. Now suppose
q (P 1) but q does not have the previous special form. Then H does
not coincide with the multiplicative group of any subfield of GF(pr). How-
ever, the set L consisting of those elements of GF(pr) which are expressible
as the sum of q* powers is closed under addition and multiplication, and
therefore L is a subfield of GF(pr). Thus the multiplicative group of L
properly contains H. Since H has prime index q in the multiplicative group
of GF(p), we must have L GF(pr). This completes the proof.

3. How to determine Jq(K)
The Chinese Remainder Theorem enables us to prove the following result

on the determination of J(K), which is implicit in [11].

THEOREM 2. Suppose q is a prime number. Suppose P1, P2, P8 are
the distinct prime ideals of J(K) dividing (q 1)!. Then an element , of
J(K) is in J(K) if and only if it satisfies the following conditions:

(a) For each i (i 1, 2,..., s)there are elements pil, "", pi,(i) of
J(K) such that
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(b) There is an element of J(K) such that--- q (modqJ(K)).

Remark. In order to obtain the result on the easier Waring problem men-
tioned at the end of 1, all we need do, in view of the identity of the first
paragraph of 1, is to show that we can always take re(i) <= q/3. This is
rather simple to do by easy group-theoretic arguments.

Proof. First suppose e Jq(K). Then by definition is the sum of a
finite number of elements of the form =i=},q, where e J(K). Since

-}, (-),) (mod q! J(K)),

this implies that is congruent to a sum of qth powers modulo q! J(K).
Hence (a) holds. Since

tl
q - 2

q - - tn
q (1 "- t2 "- "- n) q (mod qJ(K) ),

for any ul, u., u in J(K), it follows that (b) holds also.
Now suppose (a) and (b) hold. By inserting zero terms if necessary we

may assume that ml, m2, ..., m8 all have the same value m- 1. For
j 1, m 1 we choose ,. e J(K) by the Chinese Remainder Theorem
so that

’-- pi (modP) (i- 1, ,s).
Put,- -1. Then

Define a sequence , , of elements of J(K) as follows.
and

+ / h(-- J),

Put t 1

where h is a fixed rational integer such that hq 1 (mod (q 1)!).
it is easy to see by induction that 1 (mod P1 P P,) and

Y kq + ")/’1
q + -Jr-")/mq (mod (PI P2"" P))

Then

for any positive integral value of k. Choose lc so large that

(q- 1) J(K) (PP: P).
Choose a0 in J(K) so that for this value of k we have

a0------ B (mod (q- 1)!J(K)), a0---- (modqJ(K)),

and forj 1, 2, ,mchoosea inJ(K) so that

a---- , (mod(q-- 1)!J(K)), a------ 0 (modqJ(K)).

Then clearly -- Olo
q + 0ll

q + + Olm
q (mod q! J(K) ),

since this congruence holds both modulo (q 1)! J(K) and modulo qJ(K).
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Since q! J(K) c J(K), we conclude that e J(K).
imply that e J(K).

Hence (a) and (b)

4. Main result on the characterization of J(K)
The previous two theorems enable us to prove the following main result.

THEOREM 3. Suppose q is a prime number. Then Jq(K) J(K) if and
only if at least one of the following holds:

(i) q is ramified in J K
(ii) q is expressible in the form (pr 1)/(p 1), where p is a prime

and r and d are positive integers, and p has in J(K) a prime ideal factor of
degree r.

Proof. Suppose (i) holds. Then qJ(K) is divisible by the square of some
prime ideal Q in J(K). Thus the coprime-residue-class group modulo qJ(K)
has order divisible by q. Hence not all coprime-residue-classes contain qth
powers, since in an Abelian group of order divisible by q the mapping X -- Xq

is a homomorphism of the group strictly into itself. Therefore, by Theorem
2, Jq(K) is properly contained in J(K) when (i) holds.

Suppose (ii) holds. Suppose P is a prime ideal in J(K) of degree r which
divides p. Then GF(NP) falls under the exceptional case of Theorem 1.
Thus by Theorem 1 not all residue-classes modulo P contain sums of qth
powers. Therefore by Theorem 2, Jq(K) is properly contained in J(K) when
(ii) holds.
Now suppose neither (i) nor (ii) holds. Suppose P1, P2, P8 are the

distinct prime ideals dividing (q 1) J(K). Since (ii) does not hold, for
i 1, 2, s we know that GF(NP) does not come under the exceptional
case of Theorem 1. It follows that for i 1, 2, s every residue-class
modulo P contains a sum of qth powers. Thus condition (a) of Theorem 2
holds for any in J(K). On the other hand, since (i) does not hold,

qJ(K) QIQ... Q,

where Q, Q,--., Q are distinct prime ideals.
choose e J(K) so that

q (mod Q.)
we will have

and thus

If eJ(K) and if we

(j- 1, ,t),

(j- 1, ,t),

q------ (modqJ(K)).

Thus condition (b) of Theorem 2 holds for any in J(K). Since condi-
tions (a) and (b) of Theorem 2 hold for any in J(K), it follows that
Jq(K) J(K) when neither (i) nor (ii) holds. Thus Theorem 3 is proved.
As mentioned in the Introduction, the exceptional case of Theorem 1 and

the case (ii) of Theorem 3 cannot occur unless r is prime-power and d is
the largest divisor of r other than r itself.
Our arguments enable us to give the following description of Jq(K) when
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Jq(K) J(K). If (i) holds but (ii) does not, then Jq(K) is equal to the ring
Rq(K) consisting of those integers of K which are congruent to qh powers
modulo qJ(K). If (ii) holds but (i) does not, then Jq(K) is equal to the ring
Sq(K) consisting of those integers of K which are congruent to qth powers
modulo each of the prime ideals of the type referred to in the statement of
(ii). If both (i) and (ii) hold, then Jq(K) Rq(K) n Sq(K).

5. Frequency of occurrence of primes of the form (,)
Let H(x) denote the number of primes q not exceeding x and expressible

in the form (,) for some prime p and some positive integers r and d, each
q being counted according to the multiplicity of its occurrence in the form
(,). (Thus 31 is counted twice.) In this section we use Atle Selberg’s sieve
method to show that H(x) <= 50 xl/2(log x)- for large x. The crude form
of Brun’s sieve method given in [5] would show that

H(x) O(xl/2(log log x) (log x)-)
for large x, which would be sufficient to show that * q-/ converges. Our
proof will be accomplished by means of several lemmas. In what follows, sums
or products on the letter p are to be extended over the primes, and sums on
the letter m are to be extended over the positive integers.

LEMMA 1 (Atle Selberg). Suppose F is a polynomial in one variable with
integral coecients. Suppose N is a positive integer greater than 1 and
1 < z < N. Let S be the number of positive integers j between 1 and N in-
clusive such that F(j) is relatively prime to 1-I_z p. Let oo(m) denote the
number of solutions of the congruence

F(X) =-- 0 (modm).

If oo(p) p for some prime p not exceeding z, then S O.
all primes p not exceeding z, then

If (p) < p for

s <- N/Z + R,
where

Z ,_ a, m-1, a, t(m)co(m) II,l, (1 o(p)/p)-,
R z I’I_ (1 oo(p)/p)-.

Proof. See [8].
LEMMA 2. Suppose F is the product of ] distinct polynomials with integral

coeiicients each irreducible over the field of rational numbers. Suppose o(m)
and a, are defined as in Lemma 1. If co(p) < p for all primes p, then for x
large

m_<_ a m- {k! C(F)}-(log x) + A_(log x)- +
+ A log x + A0 + 0(xO-),

In view of the remarks made in the introduction, r must actually be a prime-
power, and d must be the largest divisor of r other than r itself.
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where A0, Ak-1 are certain constants depending on F,

C(F) II {(1 1/p)-k(1
and O is a number between 1/2 and 1 depending only on the degrees of the factors
ofF.

Proof. Suppose the/ irreducible factors of F are fl, f., fk, and let
co(m) be the number of solutions of the congruence f(X) =- 0 (mod m).
Then for all but finitely many primes p we know that o(p) is the number of
distinct prime ideals of first degree in the algebraic number field generated
by a zero of f (see [16]). It is also known that

(o(p) 1)/p

converges. Clearly co(p) o(p) + - o(p) for all but finitely many
primes p, so that

(co(p) k)/p

converges. Then for Re s > 1 we have

ammm -II {l(P)(1-co(P))-1}psp

i---- .II 1
m p

=.n {(1 (P),)...(lp w(P))}-
m

where (s) is the Dedekind zeta-function of the field generated by a zero of
f, and ’ i m-8, E e m-8, E w m-, and E 0m m converge absolutely
for Res > 1/2. Now put (for Res > 1)

Then by an elementary argument of the type discussed in [14] we readily
deduce from Weber’s theorem [15, 16] that
_

b B_ x(log X) k-i + B_ x(log x)- + -t- Box -- O(xO),
where 0 is as announced. (Complex-variable methods using the functional
equation of the Dedekind zeta-function would give a better value of 0.) A
further elementary argument gives as an immediate consequence of the above

-’m<__ a, D_ x(log X) k-1 .2f_ D_ x(log x)- -t- + Do x + O(x),
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where Do, D1, D_I are certain constants. But

(/- 1)! D_I lim (s- 1) k "amm

where the limit step follows from the fact that

co(p) ] 5-" co(P)
lira

p8lq- p p p

The result of the lemma now follows from the formula

am m X am - -2 am du.
m<=x m<_x \m<_u

LEMMA 3. Suppose fl f2, f are distinct irreducible polynomials with
integral coecients and positive leading coecients, and suppose F is their prod-
uct. Let QF(N) be the number of positive integers j between 1 and N inclusive
such that fl(j), f(j) are all primes. Then for large N we have

QF(N) <= 2kit! C(F)N(log N)- + o(N(log N)-).
Remark. Heuristically we would expect to have

Q(N) hl-lh2-1 h-IC(F) (log u)- du q- o(N(log N)-),

where hi, h.,..., h are the degrees of fl,f,’",f respectively. Thus
Selberg’s method gives an upper bound for Q(N) which is 2k/c! hi h2... he
times the conjectured asymptotic value.

Proof. The result is trivial if co(p) p for some prime p. Otherwise we
apply Lemma 1 to F with z N1/(log N)-(3+1)/. In view of Lemma 2
the quantity Z of Lemma 1 satisfies

Z llc! C(F)l-lllog z} -- O(/log
Also

where

R z exp 2 --p<= log (1 co(p)p-1)

z exp {2 p<_z (/p-1 + % d)},

co(p)
Cp

P
d, -co(p) q- log (1 co(P)).P P
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Since c and d converge and since
_

p-1 log log z + 0(1),
we have

R =< z exp (2/ log log z log B) Bz2(log z)

where B is a positive constant. Thus

Q(N) <= O(z) - S

<- O(z) + N/Z + R

O(z) + k! C(F)N(log z)- + 0(N(log z)-k-l) + 0(z(log z)k).
In view of our choice of z we have

Q(N) <= 2ktc! C(F)N(log N)- + 0(Y(log log N)(log N)--I),
which gives the result of Lemma 3.

LEMMA 4. Suppose r is a prime-power and d is the largest divisor of r other
than r itself. Let Pr(N) denote the number of primes p such that p <= N and
(pr 1 /(p 1 is prime. If r is a power of 2, then Pr(N) <= 1. If r is a
power of an odd prime, then for large N we have

Pr(N) <= 8C N(log N)- + o(N(log N)-).
Here

C II {(1 1/p)-(1 o(p)/p)},

where co(p) 2 if p r, co(p) (r) + 1 /f p 1 (mod r), and co(p) 1

Heuristically we would expect to have

f )-P(N) r-C (log d

as N -- + . Also note that

(p) 2 + x(P) + + x()-(P),

where x, x()- are the nonprincipal residue-characters modulo r.

Proof. If r is a power of 2, then

(pr__ 1)/(p 1) p+ 1,

which is divisible by 2 when p is odd. Thus P(N) 1, with equality only
if2+ 1is a Fermat prime andN 2. Now supposeris apower of an
odd prime. Then, in view of Lemma 3, all we need to do is find the number
(p) of solutions of the congruence

(1) X(X- + X- + + X + 1) 0 (modp),

otherwise.

Remart.
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which is one more than the number of solutions of the congruence

(2) Xr-d + Xr-2 + + Xa - 1 0 (mod p).

Any solution of (2) is relatively prime to p and satisfies X ---- 1 (mod p), so
that its multiplicative order modulo p must be a divisor of r. But if the
multiplicative order of X0 is a divisor of r other than r itself, then
X0 1 (modp),andso

r/d- X0-+X0-2+ + 1 0 (modp).

Thus if p does not divide r, the number of solutions of (2) is equal to the
number of elements of exact order r in the coprime-residue-class group modulo
p, namely,(r) if p--- 1 (rood r) and zero ifp 1 (modr). Ifp is the
unique prime dividing r, then X 1 (mod p) is a solution of (2) and is the
only one, since no other element of the coprime-residue-class group modulo
p has order dividing r. Thus the number of solutions of (1) is as given in the
statement of the lemma.

LEMMA 5. Let Pa(N) denote the number of primes p such that p <-_ N and
pS p 1 is prime. Then for large N we have

Pa(N) <= 8Ca N(log N)- + o(N(log N)-),
where

Ca-- ]-[ 1 1 1.52...-- P

and x(P) --1, 0, or 1 according as p is congruent to -1, O, or 1 modulo 3.
In particular

Pa(N) <= 12.3 N(log N)-for all suciently large N.

Remark. The heuristic result here is

Pa(N) 1/2 Ca (log u)- du 0.76... (log u du

as N -- -t-. We notice that

t()-(li x(P))-I(i 2 x(p))}C. L(1, x)- %_-[ P P

3// yl P X(P) 2
r xxp P- X(P)

1.6539... ,H 1 =j.
Proof. Lemma 5 is a special case of Lemma .
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LEMMA 6. Suppose H(x) is defined as at the beginning of this section and
P(x) is as defined in Lemma 5. Then

H(x) P(x) - 0(x(log x)-).
Proof. If r is fixed prime-power nd d is the lrgest divisor of r other

thn r itself, let G(x) denote the number of primes q such that q =< x nd
q (p- 1)/(p- 1) for some primep. Since

(pr-- 1)/(p-- 1) -> p- _>_ 2- -> 2r/2 e,
we have

H(x)

Since p - p 1 _-< x if and only if p _-< (x )/ 1/2, we have

Ga(x Pa( x )1/2 1/2 1/2Pa(x -t- 0(1).

By Lemmu 4

G(x) - P(xTM) O(x/(log x)-).
If r is n odd prime-power greater than 6, we have trivially

Gr(x) - x1/(r-d) x1/d(r) - xl/6o

Finally if r is a power of 2, then

Gr(x) <= 1 <= x1.

Combining these results, we have

H(x) 1/2 0(x1/4 -2) xl/6-x +0(1) + (logx) +0( logx)

pa(x/) - O(xl/(log x)-).
THEOREM 4. If H(x) denotes the number of primes of the form (,) not

exceeding x, then
x112

H(x) <- 50 x/(log x)- -< 12.5 f (log u)- du

for all suj?iciently large x.

Remark. Heuristically we would expect to have (as x --
C (log u)- du 0.76... (log u)-2 du.

Proof. The theorem follows from Lemmas 5 and 6.

COnOLLnY. The series * q-l/ converges, the sum being taken over all
primes of the form (,), each taken in the multiplicity of its occurrence in the
form (,).

Proof. Cf. the proof of Theorem 120 of [5].
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6. Numerical data
Table II lists the first 240 primes q of the form

(,) q (pr_ 1)/(pa 1),

where p is a prime and r and d are positive integers. It is part of a more
extensive unpublished table giving the 814 such primes less than 1.275 X 10l.
Most primes of the form (,) have r 3, that is, are of the form

p2 if_ P q_ 1, where p is a prime. In fact up to 1.275 X 10l there are only
38 primes of the form (,) with r 3; these are already known and can be
found among the data in [1], [2], and [3]. However, Table II apparently
does go beyond previously published tables of primes of the form p q- p q- 1.
This was made possible by the efforts of Mr. Roger A. Horn, a student in
the 1961 Undergraduate Summer Program of the University of Illinois Dig-
ital Computer Laboratory, who used the Illiac to prepare a list of the
776 primes of the form p q- p q- 1 less than 1.275 X 101. Up to 1.21 X 10
Mr. Horn’s list agrees perfectly with a similar but shorter list made earlier
by us from inspection of Poletti’s table [7] of the primes of the form
N q- N q- 1 less than 1.21 X l0s, except that we had missed 86927653 be-
cause of a typographical error in Poletti’s paper. (Poletti’s list gives 86927653
as (9333) q- 9333 if- 1 instead of as (9323) q- 9323 -ff 1.)
The 38 primes of the form (,) which do not exceed 1.275 X 101 and

which have r 3 are distributed as follows: sixteen are of the form
(p5 1)/(p 1), six are of the form (p7 1)/(p 1), three are of the
form (p9 1 / (p3 1 ), three are of the form (p13 1 / (p 1 ), and there
are ten primes which are one of a kind, namely 21q 1, 2q 1, 24+ 1,
2 if- 1, 216 if- 1, 217 1, 2is q- 29 q- 1, 2l- 1, (511- 1)/(5- 1), and
231- 1.

Table I shows gha he numerical daga agree remarkably well wigh ghe

heuristic formulas mentioned in ghe remarks alger Lemma 5 and Theorem 4.

TABLE I

101
102
103
104
105
106
10
10
109
1010

1.275 X 101

H(x)

3
8
12
19
28
44
76
146
318
744
814

G(x)

1
3
4
8
13
23
52
117
286
706
776

(log u)- du

1
3
5
8
14
26
55
123
292
720
793
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TABLE II
Table of primes q of the form q (p 1)/(p 1), where p is a prime and r and d

are positive integers.

q p

3
5
7
13
17
31
31
73
127
257

2
24

2
25

2
2
2

1
1
2
3
5
8
8
10

307
757
093
723
801
541
113
011
191
303

173

413

593
713
893
213

1013

17
19
28
30
30
65
86
88
131
147

293
531
057
103
941
537
143
741
071
073

131
57

1673
1733
135
232

2933
175
217

3833

262
292
459
492
524
552
579
598
684
704

657
561
007
103
287
793
883
303
757
761

227
235

6773
701

219
7433
7613
7733
8273
8393

q pr

732 541 295
735 307 8573
797 161 313
830 833 9113
191 373 10913
204 507 10973
353 733 11633
395 943 11813
424 443 11933
482 307 1217

1 772 893 119
1 886 503 1373
2 037 757 14273
2 212 657 14873
2 432 041 15593
2 507 473 15833
2 922 391 17093
3 281 533 18113
3 413 257 18473
3 500201 435

3 730 693 19313
3 894 703 19733
4 534 771 21293
5 168 803 22733
5 229 043 137
5 333 791 23093
5 473 261 23393
5 815 333 24113
7 094 233 26633
7 450 171 27293

7
8
8
9
9
9
10
10
11
11

781 311 27893
746 807 29573
817 931 29693
069 133 30113
250 723 30413
843 907 31373
378 063 32213
572 253 32513
611 057 34073
899 051 34493

q pr

12 190 573 34913
12 207 031 511
12 655 807 35573
13 479 913 3671
15 066 043 38813
15 916 111 39893
17 284 807 41573
17 787 307 42173
18 143 341 42593
19 443 691 4409

22292 563 47213
22 406 023 4733
22 576 753 47513
23 790 007 48773
23 907 211 4889
24 735 703 49733
25 035 013 50033
25 396 561 50393
25 646 167 177
25 882 657 5087

28 638 553 5351
28 792 661 73
30 266 503 55013
34 427 557 58673
36 572 257 60473
38 112 103 61733
39 449 441 795
40 825 711 63893
42 922 153 65513
43 158 331 65693

43 553 401 65993
44 269 063 66533
45 151 681 67193
45 717 883 67613
46 124 473 67913
46 696 723 68333
47 851 807 69173
48 037 081 835
49 189 183 7013
52 265 671 7229
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TABLE II (Continued)
Table of primes q of the form q (pr 1)/(p 1), where p is a prime and r and d

are positive integers.

q pr

52 613 263 72538
56 964 757 75478
62 149 573 78838
62 433 703 79018
65 504 743 80938
67 757 593 82313
67 856 407 82373
70 350 157 83873
72 275 503 85013
72 991 393 85433

74 433 757 86278
75 160 231 86693
75 368 443 86818
76 413 823 87418
76 623 763 87533
77 572 057 88078
80 344 333 89633
82 074 541 90598
86 927 653 93233
90 658 963 95213

90 887 623 95333
93 886 411 96893
94 468 681 97193
94 935 793 97433
95 052 751 97493
96 108 613 98033
103 052 953 101513
104 519 953 102233
105 873 811 102893
112 137 511 105893

113 028 793 106318
116 240 743 107813
124 802 413 111713
125 742 583 112138
126 416 293 112433
133 390 951 115493
135 059 263 116218
137 299 807 117173
138 709 507 117773
138 992 311 117893

q pr

142 265 257 119273
142 408 423 119333
143 700 157 119873
146 736 883 121138
147 464 593 121438
149 511 757 122273
150 099 253 122513
150 540 631 122693
155 588 203 124733
159 807 523 126413

159 959 257 126478
171 858 991 131093
173 277 733 131633
175 019 671 132293
177 728 893 133313
181 427 431 134693
181 912 657 134873
182 236 501 134993
183 697 363 135538
185 327 383 136133

194 086 693 139318
198 457 657 140873
206 482 531 143693
210 815 881 145198
211 687 951 145493
221 042 557 148673
223 188 661 149398
223 547 353 149513
227 331 007 150778
228 236 557 151078

229 143 907 151373
229 507 351 151498
237 575 983 154138
241 103 257 155273
242 409 331 155698
244 656 523 156413
247 668 907 157373
249 561 007 157973
252 222 043 158818
253 557 853 159233

q pr

256 240 057 160073
258 357 403 160738
262 209 281 1275
263 396 671 162293
265 738 903 163013
269 665 663 164213
271 639 843 164813
274 018 363 165533
275 809 057 166078
277 605 583 166613

278 606 173 166913
285 660 703 169013
293 214 253 171233
300 450 223 173333
302 533 843 173933
305 175 781 513
305 463 007 174778
308 827 903 175738
309 672 007 175978
310 728 757 176273

318 176 407 178378
327 230 011 180893
329 404 351 181493
333 336 307 182578
333 774 631 182693
338 615 203 184013
350 869 093 187313
352 444 303 187733
357 191 101 188993
359 007 757 189473

361 513 183 190133
369 081 733 192113
373 243 081 193193
376 495 813 194033
386 574 583 196613
399 180 421 199793
399 660 073 199913
404 955 253 201233
408 828 181 202193
414 916 531 203693
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As in the previous section H(x) is the total number of primes of the form (,)
not exceeding x, and G3(x) P3((x )1/2 1/2) is the number of primes
of the form p p -t- 1 not exceeding x. (For the values of x listed in Table
I, we actually have G(x) P(x1/2) except for the value x 10.) The
values in the last column of Table I are given to the nearest integer.
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