ON THE NUMBER OF INTEGERS $\leq x$ WHOSE PRIME FACTORS DIVIDE n

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY

N. G. DE BRUIJN

If n and x are positive integers, then we let f(n, x) denote the number mentioned in the title, i.e., the number of integers m with $1 \leq m \leq x, m \mid n^{\infty}$. (The notation $m \mid n^{\infty}$ means that m divides some power of n, or in other words, that all prime factors of m divide n.)

P. Erdös conjectured (in a letter to the author, December 2, 1960) that the average $M(x) = x^{-1} \sum_{n=1}^{x} f(n, x)$ can be written as

$$M(x) = x^{-1}F(x) = \exp((\log x)^{1/2 + \varepsilon(x)}), \quad \text{where } \varepsilon(x) \to 0 \text{ for } x \to \infty.$$

We shall show in this paper (Theorem 2) that this is true. In fact we can get a much more precise result, viz. that $\log M(x)$ is asymptotically equivalent to $(8 \log x)^{1/2} (\log \log x)^{-1/2}$. Needless to say, this is still very far from an asymptotic formula for M(x) itself.

The asymptotic formula for the logarithm of the average does not change if we replace $\sum_{n=1}^{x} f(n, x)$ by $\sum_{n=1}^{x} f(n, n)$, which is also considered in Theorem 2. This may give an idea of how rough our result still is.

We shall derive Theorem 2 from Theorem 1, which has some interest in itself. It deals with the partial sums of the series that results from the harmonic series if every denominator n is replaced by the product of the primes that divide it. This result will be obtained in a classical way: We build the corresponding Dirichlet series $f(\sigma)$ (see Lemma 2), we derive asymptotic information about $f(\sigma)$ if $\sigma \to 0$ (provided by Lemma 1), and we translate this information into information concerning the partial sums. This translation is achieved by a Tauberian theorem of Hardy and Ramanujan (see Lemma 3).

LEMMA 1. Let h be a positive constant. If $\sigma > 0$, we define

$$A_{h}(\sigma) = \int_{3/2}^{\infty} \{ \log \left(1 + x^{-1} (x^{\sigma} - 1)^{-1} \right) \} (\log x)^{-h} \, dx.$$

Then we have, if $\sigma \to 0$, $\sigma > 0$, and if h is fixed,

$$A_{h}(\sigma) = h^{-1} \sigma^{-1} (\log \sigma^{-1})^{-h} + O\{\sigma^{-1} (\log \sigma^{-1})^{-h-1} \log \log \sigma^{-1}\}.$$

Proof. Throughout this proof we abbreviate

$$(\log \sigma^{-1})^{-1} = \eta.$$

Received April 24, 1961.

We first integrate from $\frac{3}{2}$ to x_1 , where

$$x_1 = \sigma^{-1} \eta^2,$$

which is $> \frac{3}{2}$ if σ is small enough. We have $0 < x_1^{\sigma} - 1 \leq 2\sigma \log x_1$ provided that σ is small enough (notice that $\sigma \log x_1$ tends to zero if σ tends to zero). It follows that, if $\frac{3}{2} \leq x \leq x_1$,

$$0 \leq x^{1+\sigma} - x \leq x_1(x_1^{\sigma} - 1) \leq 2 \sigma x_1 \log x_1,$$

whence $0 \leq x^{1+\sigma} - x \leq \frac{1}{2}$ in that interval, provided that σ is small enough. We can now apply the inequality

$$1 + w^{-1} < w^{-2} \qquad (0 < w < \frac{1}{2}),$$

with $w = x(x^{\sigma} - 1)$. Remarking that $x^{\sigma} - 1 > \sigma \log x$ (since $\sigma \log x > 0$) and $x \log x > \frac{1}{2}$ ($x \ge \frac{3}{2}$), we obtain $x(x^{\sigma} - 1) > \frac{1}{2} \sigma > \sigma^2$, whence

$$\int_{3/2}^{x_1} \{ \log (1 + x^{-1} (x^{\sigma} - 1)^{-1}) \} (\log x)^{-h} \, dx < \int_{3/2}^{x_1} \log \sigma^{-4} (\log x)^{-h} \, dx.$$

It follows that the contribution of the interval $2 \leq x \leq x_1$ to our integral is $O\{(\log \sigma^{-2})(\log x_1)^{-h}x_1\} = O(\sigma^{-1}\eta^{h+1}).$

For the remaining integral from x_1 to ∞ we shall derive an upper estimate and a lower estimate. For the upper estimate, we remark that

$$\{\log(1 + x^{-1}(x^{\sigma} - 1)^{-1})\} < x^{-1}(x^{\sigma} - 1)^{-1} < (x\sigma \log x)^{-1}$$

for all x > 1, whence

$$\int_{x_1}^{\infty} \{ \log (1 + x^{-1}(x^{\sigma} - 1)^{-1}) \} (\log x)^{-h} dx < \int_{x_1}^{\infty} x^{-1} \sigma^{-1} (\log x)^{-h-1} dx$$
$$= (h\sigma)^{-1} (\log x_1)^{-h} = (h\sigma)^{-1} \eta^h + O(\sigma^{-1} \eta^{h+1} \log \log \sigma^{-1}).$$

It follows that

$$A_h(\sigma) < (h\sigma)^{-1}\eta^h + O(\sigma^{-1}\eta^{h+1}\log\log\sigma^{-1}).$$

For our lower estimate we shall use

$$\int_{x_1}^{\infty} > \int_{x_2}^{x_3}, \quad \text{where } x_2 = \sigma^{-1}, \ x_3 = \exp\{(\log \sigma^{-1})^{(h+1)/h}\}.$$

If $x_2 \leq x \leq x_3$, we have

$$x(x^{\sigma}-1) > x\sigma \log x \ge x_2 \sigma \log x_2 = \eta^{-1}.$$

Applying the inequality

$$v^{-1}\log(1+v) \ge 1 - \frac{1}{2}v$$
 (0 < v < 1),

with $v = (x(x^{\sigma} - 1))^{-1}$, we deduce that

$$\log\{1 + (x(x^{\sigma} - 1))^{-1}\} \ge \{x(x^{\sigma} - 1)\}^{-1}(1 - \frac{1}{2}\eta) \qquad (x_2 \le x \le x_3),$$

138

provided that σ is small enough. Furthermore we have, if $x_2 \leq x \leq x_3$, that

$$\sigma \log x \leq \sigma \log x_{\mathfrak{d}} = O(\sigma \eta^{-(h+1)/h}) = o(\eta),$$

whence, if σ is small enough,

$$x^{\sigma} - 1 < (1 + \eta)\sigma \log x \qquad (x_2 \leq x \leq x_3).$$

It follows that

$$\int_{x_2}^{x_3} > \sigma^{-1} (1 - \frac{1}{2}\eta) (1 + \eta)^{-1} \int_{x_2}^{x_3} x^{-1} (\log x)^{-h-1} dx.$$

The integral on the right equals

$$h^{-1}(\log x_2)^{-h} - h^{-1}(\log x_3)^{-h} = h^{-1}(\eta^h - \eta^{h+1}).$$

It follows that $A_h(\sigma) > (h\sigma)^{-1}\eta^h - O(\sigma^{-1}\eta^{h+1})$, and this completes the proof of the lemma.

LEMMA 2. Let $\alpha(n)$ denote the product of the different primes dividing n $(n = 1, 2, 3, \dots)$, and let $f(\sigma)$ denote the sum of the Dirichlet series

$$f(\sigma) = \sum_{n=1}^{\infty} (\alpha(n))^{-1} n^{-\sigma}.$$

This series converges if $\sigma > 0$, and we have the asymptotic equivalence

$$\log f(\sigma) \sim \sigma^{-1} (\log \sigma^{-1})^{-1} \qquad (\sigma \to 0).$$

Proof. The Dirichlet series has the product expansion

$$f(\sigma) = \prod_{p} \{1 + p^{-1-\sigma} + p^{-1-2\sigma} + p^{-1-3\sigma} + \cdots\} = \prod_{p} \{1 + p^{-1}(p^{\sigma} - 1)^{-1}\},$$

where p runs through the primes. If σ is a fixed positive number, the factors of this product are, with at most a finite number of exceptions, less than the corresponding factors of the Euler product expansion for $\{\zeta(1 + \sigma)\}^2$ (where ζ is the Riemann zeta function). In fact we have

$$1 + p^{-1}(p^{\sigma} - 1)^{-1} < 1 + 2p^{-1-\sigma} < (1 - p^{-1-\sigma})^{-2}$$

as soon as $p^{\sigma} > 2$. This settles the matter of convergence.

It is a direct consequence of well-known facts in prime number theory that there exists a positive constant C such that

$$\int_{3/2}^{x} \{ (\log t)^{-1} - C(\log t)^{-2} \} dt < \pi(x) < \int_{3/2}^{x} \{ (\log t)^{-1} + C(\log t)^{-2} \} dt,$$

for all $x \ge \frac{3}{2}$, where $\pi(x)$ stands for the number of primes $\le x$. Consequently, if g(x) is a monotonically decreasing positive function with

$$\int_{3/2}^{\infty} g(x) \, (\log x)^{-1} \, dx < \infty,$$

we have

$$\left|\sum_{p} g(p) - \int_{3/2}^{\infty} g(x) \ (\log x)^{-1} \ dx\right| < C \int_{3/2}^{\infty} g(x) \ (\log x)^{-2} \ dx.$$

Applying this with

$$g(x) = \log\{1 + x^{-1}(x^{\sigma} - 1)^{-1}\},\$$

we infer that, with the notation of Lemma 1,

$$|\log f(\sigma) - A_1(\sigma)| < CA_2(\sigma).$$

The asymptotic formula for log $f(\sigma)$ now follows at once from that lemma.

LEMMA 3. Let $a_n \ge 0$ $(n = 1, 2, \dots)$, assume that

$$f(\sigma) = \sum_{n=1}^{\infty} a_n n^{-1}$$

converges for all $\sigma > 0$, and that

$$\log f(\sigma) \sim \sigma^{-1} (\log \sigma^{-1})^{-1} \qquad (\sigma > 0, \ \sigma \to 0).$$

Then we have

$$\log \sum_{n \leq x} a_n \sim (8 \log x / \log \log x)^{1/2} \qquad (x \to \infty).$$

This is a special case of a Tauberian theorem given (for general Dirichlet series) by Hardy and Ramanujan [2]. (For further generalizations of that Tauberian theorem we refer to [1] and [3].)

Combining Lemmas 2 and 3, we obtain

THEOREM 1. If $\alpha(n)$ represents the product of the different primes dividing $n \ (n = 1, 2, 3, \cdots)$, then we have

$$\log \left\{ \sum_{n \leq x} (\alpha(n))^{-1} \right\} \sim (8 \log x)^{1/2} (\log \log x)^{-1/2} \qquad (x \to \infty).$$

THEOREM 2. Let f(n, x) be the number of positive integers $\leq x$ which are products of powers of prime factors of n. We put

$$F(x) = \sum_{n \leq x} f(n, x), \qquad G(x) = \sum_{n \leq x} f(n, n).$$

Then we have, as $x \to \infty$,

$$\log(x^{-1}F(x)) \sim \log(x^{-1}G(x)) \sim (8 \log x)^{1/2} (\log \log x)^{-1/2}$$

Proof. Noticing that $k \mid n^{\infty}$ is equivalent to $n \equiv 0 \pmod{\alpha(k)}$, we obtain $F(x) = \sum_{n \leq x} \sum_{k \leq x, k \mid n^{\infty}} 1 = \sum_{k \leq x} \sum_{n \leq x, n \equiv 0 \pmod{\alpha(k)}} 1 = \sum_{k \leq x} [x/\alpha(k)],$

where [z] denotes the largest integer $\leq z$. And

$$G(x) = \sum_{n \le x} \sum_{k \le n, k \mid n^{\infty}} 1$$

= $\sum_{k \le x} \sum_{n \le x, n \ge k, n \equiv 0 \pmod{\alpha(k)}} 1$
= $\sum_{k \le x} \{ [x/\alpha(k)] - [k/\alpha(k)] + 1 \}$

140

From these formulas we deduce

$$F(x) = x \sum_{k \le x} (\alpha(k))^{-1} + O(x),$$

$$G(x) = \sum_{k \le x} (x - k) (\alpha(k))^{-1} + O(x),$$

and for the latter sum we have

$$\frac{1}{2}x \sum_{k \le x/2} (\alpha(k))^{-1} \le \sum_{k \le x} (x - k) (\alpha(k))^{-1} \le x \sum_{k \le x} (\alpha(k))^{-1}$$

The theorem now follows at once from the previous one.

The author is indebted to P. T. Bateman and E. E. Kohlbecker for several corrections.

References

- N. G. DE BRUIJN, Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform, Nieuw Arch. Wisk. (3), vol. 7 (1959), pp. 20-26.
- 2. G. H. HARDY AND S. RAMANUJAN, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc. (2), vol. 16 (1917), pp. 112–132.
- 3. E. E. KOHLBECKER, Weak asymptotic properties of partitions, Trans. Amer. Math. Soc., vol. 88 (1958), pp. 346-365.

TECHNOLOGICAL UNIVERSITY EINDHOVEN, NETHERLANDS