
ON A THEOREM OF RADEMACHER-TUR,,N

Dedicated to Hans Rademacher
on the occasion of his seventieth birthday

BY

A set of points some of which are connected by an edge will be called a
graph G. Two vertices are connected by at most one edge, and loops (i.e.,
edges whose endpoints coincide) will be excluded. Vertices will be denoted
by a, , edges will be denoted by el, e2, or by (a, ) where the edge
(, ) connects the vertices and .
G el e will denote the graph from which the edges el, ek

have been omitted, and G a ak denotes the graph from which the
vertices a, ak and all the edges emanating from them have been omitted;
similarly G - e - e will denote the graph to which the edges e, e
have been added (without generating a new vertex).
The valency v() of a vertex will denote the number of edges emanating

from it. G( will denote a graph having v vertices and u edges. The graph
() (i.e., the graph of vertices any two of which are connected by an edge)

will be called the complete/-gon.
A graph is called even if every circuit of it has an even number of edges.
Turn proved that every

k- 2
n+, V

2( )
r) + (;)

for n (] 1)t - r, 0 -<_ r < k 1, contains a complete k-gon, and he
determined the structure of the G()’s which do not contain a complete k-gon.
Thusif weput f(2m) m, f(2m - 1) m(m 1), a special case of Turn’s

(n)theorem states that every s()+l contains a triangle.
(n)In 1941 Rademacher proved that for even n every s(,)+ contains at least

[n/2] triangles and that [n/2] is best possible. Rademacher’s proof was not
published. Later on I simplified Rademacher’s proof and proved more

(n)generally that for =< 3, n > 2t, every ()+ contains at least tin/2] triangles.
f(n)Further I conjectured that for < [n/2] every (.)+ contains at least t[n/2]

triangles. It is easy to see that for n 2m, 2m > 4, the conjecture is false
() whose vertices arefor n/2. To see this, consider a graph +
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al, "-, a2m and whose edges are

(ai,as), 1 =< i =< m- 1 <j _-< 2m,

and the m - 1 further edges

(O/i, O/i-t-I), 1 _-< i -<_ m, and (O/1, am+l).

It is easy to see that this graph contains m 1 triangles (for 2m 4 an
unwanted triangle (al, a2, a) enters and ruins the counting, and in fact it is
easy to see that for 2m 4 the conjecture holds for m 2). For odd

G(2m+1)n 2m -- 1 perhaps every ](+)+t, -<_ 2m 2, contains at least tm
triangles. But here is ](+)+_., 2m -- 1 >_- 9, which contains fewer
thn m(2m 1) triangles. The vertices of our graph are a, a+,
the edges are

(ai,as), 1 <_- i <- m--2 <j_-< 2m-- 1,

and the following 2m -- 1 edges:

(, ), (, ), (, ), (, ), (, ),

3<_k<_m-2.

It is easy to see that this graph contains 2m m 1 < m(2m 1) triangles.
For 2m -t- 1 5 we must hve _<- 4, nd it is esy to see that the conjecture
holds for 11 these t. For 2m -- 1 7, -< 9, nd by little longer rgument
one cn easily convince oneself that the conjecture holds for 11 these t.

In the present pper we re going to prove the following
(n)THEOREM. There exists a constant cl > 0 so that for < c n/2 every

contains at least t[n/2] triangles.

First we need three lemms.

LEMMA 1. Every ,(("_)_) which is not even contains a triangle.

Lemm 1 ws found jointly by Glli and myself. (The lemm was lso
found by Mr. Andrsfi independently.)

Let G be graph with n vertices which is not even nd contains no triangle.
Let a, a+ be the vertices of the odd circuit of our graph hving the
least number of vertices. We cn ssume 3 < 2k + 1 n. The subgmph
of G spanned by a, a+ cn hve no other edges; otherwise our graph
would contMn n odd circuit hving fewer thn 2k + 1 edges. Let fl, ...,
n---- be the other vertices of G. Any of the ’s cn be connected with t
most two of the a’s, for otherwise G contains n odd circuit of fewer thn
2 + 1 edges. Finally by Turn’s theorem the subgmph of G spanned by, __

cn hve t most f(n 2k 1) edges. Thus the number
of edges of G is t most

2k + 1+2(n- 2lc- 1) +f(n- 2k- 1) f(n-- 1) + 1
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by a simple calculation (equality only for 2] + 1 5). This completes the
proof of our lemma.
Our proof in fact gives that a graph G of n vertices whose smallest odd

circuit has 2] W i vertices, k > 1, has at most 2n 2/c 1 + f(n 2 1)
edges, and the following simple example shows that this result is best possible.

(zi, ,ov, i, ,flu, ’i, ,72+I,

v=[n--2k--11 In--2-- 112
u=n--

2

The edges of G are (ai, B;), (, ai), (a, a), 1 i v, (, B), (,
1 i u, further the edges (, +), 1 i 2, (, +).

(n)LEMMi 2. There exists a constant c > 0 so that every G)()+ contains at
least [c n] triangles having a common edge (ai, a) (i.e., all the edges
(a, fl), (ai, a), 1 =< i <= [c n], are in ]()+i).()
Let (a, , ), 1 i r, be a maximal system of disjoint triangles of our

graph ((.)+. In other words if we omit the vertices a, ,, 1 i r,
the subgraph of (’)()+ spanned by the remaining n 3r vertices contains no
triangle and has therefore at most f(n 3r) edges (by Turn’s theorem).
Denote by G(n, i) the graph "](n)+l ’2 (a] + fl + ), and let

v()(a), v(i)(i), v()() be the valencies of ai, , i in G(n, i). Now we
show that for some i, 1 i r, we must have

(1) v() (ai) + v() () + v() () > n(1 + 9c) 3i.

For if (1) would not hold for any i, 1 i r, then the number of edges of
$()+ would be not greater than

(2) = (n(1 + 9c) 3i) + f(n 3r) < f(n)

by a simple calculation for sufficiently small c. But (2) is an evident con-
tradiction since ()+

() has by definition f(n) 1 edges.
Thus (1) holds for say i i0. Then a simple computation shows that

there are at least 3[c: n] vertices of G(n, io) which are connected with more
than one of the vertices a0, 0, 0. Therefore there are at least [cn] of
them which are connected with the same pair, i.e., G(n, io), and therefore

()+1, contains the configuration required by Lemma 2, which completes
the proof of the lemma.

(n)By more careful considerations we can prove that every $(n)+ contains
n/6 + 0(1) triangles ( , ), 1 i n/6 + 0(1), and that this result
is best possible.

LEMM 3. Let 0 be a fixed number. Consider any graph

u >f(n) (n/2)(1 -), n > n0(),

Let the vertices of G be
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whichcontainsa triangle. Then G( contains an edge (al a2) and [c n] -- 1,ca
c(), vertices r r [cn] -- 1, so that all the triangles (a a. ),
1 i r, are in G).

By assumption G) contains a triangle (a, a, a). Assume first that

(3) V(al) + v(a) + v(a) > n(1 + 9ca) + 9.

Then as in the proof of Lemma 2 we can show that G) contains the required
configuration.

If (3) is not satisfied, then G)
a a a has n 3 vertices and at

least u n(1 + 9ca) 9 edges. But if c < /18, then for n > n0

u- n(1 + 9c) 9

> f(n) (n/2)(1 a) n(1 + 9c) 9 > f(n 3).

Thus by Lemma 2, G() a a a, and therefore G), contains the
configuration required by Lemma 3, which completes the proof of Lemma 3.

() < c n/2Now we can prove our Theorem. Let there be given a ()+t,
Assume first thut after the omission of any r [c n/2ca], c ca() in
Lemma 3), edges the graph will still contain a triangle. For sufficiently small
c, o/2c < ; thus it will be permissible to apply Lemma 3 during the omis-
sion of these edges.
By mma 3 (or Lemma 2) there exists an edge e which is contained in at

least [c n] + 1 triangles of ()](n)+t again by Lemma 3 in ()f(n)Tt el there
exists an edge e which is contained in [ca n] + 1 triangles of ()f(n)Tt el.
Suppose we have already chosen the edges e, er each of which is con-

(n).tainedinatleast [ca n] + 1 triangles. By our assumption ](+t e e,
contains at leust one triungle; thus by Lemma 3 there is n edge e+ in

(n)Tt e e which is contained in at least [c n] + 1 triangles in
this graph. These triangles incident on the edges e, er+l are evidently
distinct; thus G})()+t contains at least (r + 1) ([c n] + 1) > c n/2 > tn/2
triangles, which proves our Theorem in this case.

Therefore we can assume that there are r n/4 edges e, e so
that G ()

]()+t e e contains no triangle, and we can assume that
is the smMlest integer with this property. By r n/4, G has

f(n) + > f(n) n/4 > f(n 1) + 1

edges. Thus by Lemma 1, G is even.
By Turn’s theorem, t. Assume first (it is not necessary to treat

the cases and > separately, but perhaps it will be easier for the
reader to do so). Then G has f(n) edges, and by Turn’s theorem G is
of the following form" The vertices of G are a a/ ..., n--[n/2]
and the edges are (ai,), 1 i [n/2], 1 j n- In/2]. Asimple
argument shows that the addition of every further edge introduces at least
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(n)In/2] triangles and that these triangles are distinct. Thus G)()+t contains
at least t[n/2] triangles, and our Theorem is proved in this case too.
Assume finally -{- w, 0 < w < n/4 (since < n/4). It will be more

convenient to assume first that n is even. Put n 2m. Since G is even, it
is contained in a graph G(E, u) whose vertices are al, am-, I, m+
and whose edges are (, i), I i m u, I j m + u (since G has
more than f(2m) m/2 m m/2 edges, we have 0 u < (m/2)’/).

Clearly every one of the edges e, e, connect two a’s or two ’s. For
if say e would connect an a with a , then

(n)G}(n)Tt el el-1 ei+l

would be even, and hence would contain no triangle, which contradicts the
minimum property of 1.
By our assumption G is a subgraph of G(E, u). Assume that G is obtained

from G(E, u) by the omission of x edges. Then we evidently have

x +u +t (orw x +u2),
(n).and (+t is obtained from G by adding edges e,, e which are all of

the form (a, a) or (, ). Put e (,, ), and let us estimate
the number of triangles (,, a) in G(E, u) + e. Clearly at most x of
the edges (, a), (, a) are not in G(E, u); thus G(E, u) + ei contains
at least

triangles (if e connects two a’s, then G(E, u) + e contains at least m + u x
triangles). For different e’s these triangles are clearly different; thus

G)()+t G+e+ +e
contains at least

(4) (m u- x)l (m u- x)(x + u + t) tm= t(n/2)

triangles. (4) follows by simple computation from u + x + < m/2.
(4) completes the proof of our Theorem for n 2m. For n 2m + 1 the
proof is almost identical and can be omitted. Thus the proof of our Theorem
is complete.

It seems possible that a slight improvement of this proof will give the con-
(n)jecture that every ()+t, < In/2] contains at least t[n/2] triangles, but I

have not been successful in doing this.
I have not succeeded in formulating a reasonable conjecture about the

(n)minimum numberof trianglesa G}()+t must containif In/2] () f(n).
(n)It is esy to see that if is close to () f(n), then G}()+t contains more

than tin/2] triangles, and it would be easy o obtain a best possible result in
this case. But I have not investigated the range of for which this is possible.
I just remark that ()()_, 2, contains at least () l(n 2) triangles
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and that "(n) contains at least () 3 (n 2) -- 1 triangles, and that() -3

these results are best possible. The simple proofs are left to the reader.
Turn’s theorem implies thut every 3n+ contains a complete 4-gon. As

an analogue of the theorem of Rademacher I can prove by very much more
complicated arguments that it contains at least n complete 4-gons; this
result is easily seen to be best possible.

BUDAPEST, HUNGARY


