ON A THEOREM OF RADEMACHER-TURÁN

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY

P. Erdös

A set of points some of which are connected by an edge will be called a graph G. Two vertices are connected by at most one edge, and loops (i.e., edges whose endpoints coincide) will be excluded. Vertices will be denoted by α, β, \cdots , edges will be denoted by e_1, e_2, \cdots or by (α, β) where the edge (α, β) connects the vertices α and β .

 $G - e_1 - \cdots - e_k$ will denote the graph from which the edges e_1, \cdots, e_k have been omitted, and $G - \alpha_1 - \cdots - \alpha_k$ denotes the graph from which the vertices $\alpha_1, \cdots, \alpha_k$ and all the edges emanating from them have been omitted; similarly $G + e_1 + \cdots + e_k$ will denote the graph to which the edges e_1, \cdots, e_k have been added (without generating a new vertex).

The valency $v(\alpha)$ of a vertex will denote the number of edges emanating from it. $G_u^{(v)}$ will denote a graph having v vertices and u edges. The graph $G_{\binom{k}{2}}^{(k)}$ (i.e., the graph of k vertices any two of which are connected by an edge) will be called the complete k-gon.

A graph is called *even* if every circuit of it has an even number of edges.

Turán¹ proved that every

$$G_{V+1}^{(n)}, \quad V = \frac{k-2}{2(k-1)} \left(n^2 - r^2\right) + {r \choose 2}$$

for n = (k - 1)t + r, $0 \leq r < k - 1$, contains a complete k-gon, and he determined the structure of the $G_r^{(n)}$'s which do not contain a complete k-gon. Thus if we put $f(2m) = m^2$, f(2m + 1) = m(m + 1), a special case of Turán's theorem states that every $G_{f(n)+1}^{(n)}$ contains a triangle.

In 1941 Rademacher proved that for even n every $G_{f(n)+1}^{(n)}$ contains at least [n/2] triangles and that [n/2] is best possible. Rademacher's proof was not published. Later on² I simplified Rademacher's proof and proved more generally that for $t \leq 3$, n > 2t, every $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles. Further I conjectured that for t < [n/2] every $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles. It is easy to see that for n = 2m, 2m > 4, the conjecture is false for t = n/2. To see this, consider a graph $G_{m^2+m}^{(2m)}$ whose vertices are

Received March 20, 1961.

¹ P. TURÁN, Matematikai és Fizikai Lapok, vol. 48 (1941), pp. 436–452 (in Hungarian); see also On the theory of graphs, Colloq. Math., vol. 3 (1954), pp. 19–30.

² P. Endös, Some theorems on graphs, Riveon Lematematika, vol. 9 (1955), pp. 13-17 (in Hebrew with English summary).

 $\alpha_1, \dots, \alpha_{2m}$ and whose edges are

$$(\alpha_i, \alpha_j), \quad 1 \leq i \leq m+1 < j \leq 2m,$$

and the m + 1 further edges

$$(\alpha_i, \alpha_{i+1}), 1 \leq i \leq m, \text{ and } (\alpha_1, \alpha_{m+1}).$$

It is easy to see that this graph contains $m^2 - 1$ triangles (for 2m = 4 an unwanted triangle $(\alpha_1, \alpha_2, \alpha_3)$ enters and ruins the counting, and in fact it is easy to see that for 2m = 4 the conjecture holds for t = m = 2). For odd n = 2m + 1 perhaps every $G_{f(2m+1)+t}^{(2m+1)}$, $t \leq 2m - 2$, contains at least tm triangles. But here is a $G_{f(2m+1)+2m-1}^{(2m+1)}$, $2m + 1 \geq 9$, which contains fewer than m(2m - 1) triangles. The vertices of our graph are $\alpha_1, \dots, \alpha_{2m+1}$, the edges are

$$(\alpha_i, \alpha_j), \quad 1 \leq i \leq m+2 < j \leq 2m+1,$$

and the following 2m + 1 edges:

$$(lpha_1\,,\,lpha_k), \ \ (lpha_2\,,\,lpha_k), \ \ (lpha_3\,,\,lpha_4), \ \ (lpha_3\,,\,lpha_5), \ \ \ (lpha_3\,,\,lpha_6), \ 3 \ \leq \ k \ \leq \ m + 2$$

It is easy to see that this graph contains $2m^2 - m - 1 < m(2m - 1)$ triangles. For 2m + 1 = 5 we must have $t \le 4$, and it is easy to see that the conjecture holds for all these t. For 2m + 1 = 7, $t \le 9$, and by a little longer argument one can easily convince oneself that the conjecture holds for all these t.

In the present paper we are going to prove the following

THEOREM. There exists a constant $c_1 > 0$ so that for $t < c_1 n/2$ every $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles.

First we need three lemmas.

LEMMA 1. Every $G_{f(n-1)+2}^{(n)}$ which is not even contains a triangle.

Lemma 1 was found jointly by Gallai and myself. (The lemma was also found by Mr. Andrásfai independently.)

Let G be a graph with n vertices which is not even and contains no triangle. Let $\alpha_1, \dots, \alpha_{2k+1}$ be the vertices of the odd circuit of our graph having the least number of vertices. We can assume $3 < 2k + 1 \leq n$. The subgraph of G spanned by $\alpha_1, \dots, \alpha_{2k+1}$ can have no other edges; otherwise our graph would contain an odd circuit having fewer than 2k + 1 edges. Let $\beta_1, \dots, \beta_{n-2k-1}$ be the other vertices of G. Any of the β 's can be connected with at most two of the α 's, for otherwise G contains an odd circuit of fewer than 2k + 1 edges. Finally by Turán's theorem the subgraph of G spanned by $\beta_1, \dots, \beta_{n-2k-1}$ can have at most f(n - 2k - 1) edges. Thus the number of edges of G is at most

$$2k + 1 + 2(n - 2k - 1) + f(n - 2k - 1) \leq f(n - 1) + 1$$

by a simple calculation (equality only for 2k + 1 = 5). This completes the proof of our lemma.

Our proof in fact gives that a graph G of n vertices whose smallest odd circuit has 2k + 1 vertices, k > 1, has at most 2n - 2k - 1 + f(n - 2k - 1) edges, and the following simple example shows that this result is best possible. Let the vertices of G be

$$\alpha_1, \cdots, \alpha_v, \quad \beta_1, \cdots, \beta_u, \quad \gamma_1, \cdots, \gamma_{2k+1},$$
 $v = \left[\frac{n-2k-1}{2}\right], \quad u = n - \left[\frac{n-2k-1}{2}\right].$

The edges of G are $(\alpha_i, \beta_j), (\gamma_1, \alpha_i), (\gamma_3, \alpha_i), 1 \leq i \leq v, (\gamma_2, \beta_i), (\gamma_4, \beta_i), 1 \leq i \leq u$, further the edges $(\gamma_i, \gamma_{i+1}), 1 \leq i \leq 2k, (\gamma_1, \gamma_{2k+1}).$

LEMMA 2. There exists a constant $c_2 > 0$ so that every $G_{f(n)+1}^{(n)}$ contains at least $[c_2 \ n]$ triangles having a common edge (α_1, α_2) (i.e., all the edges (α_1, β_i) , $(\alpha_2, \beta_i), (\alpha_1, \alpha_2), 1 \leq i \leq [c_2 \ n]$, are in $G_{f(n)+1}^{(n)}$).

Let $(\alpha_i, \beta_i, \gamma_i), 1 \leq i \leq r$, be a maximal system of disjoint triangles of our graph $G_{f(n)+1}^{(n)}$. In other words if we omit the vertices $\alpha_i, \beta_i, \gamma_i, 1 \leq i \leq r$, the subgraph of $G_{f(n)+1}^{(n)}$ spanned by the remaining n - 3r vertices contains no triangle and has therefore at most f(n - 3r) edges (by Turán's theorem).

Denote by G(n, i) the graph $G_{f(n)+1}^{(n)} - \sum_{j=1}^{i-1} (\alpha_j + \beta_j + \gamma_j)$, and let $v^{(i)}(a_i), v^{(i)}(\beta_i), v^{(i)}(\gamma_i)$ be the valencies of $\alpha_i, \beta_i, \gamma_i$ in G(n, i). Now we show that for some $i, 1 \leq i \leq r$, we must have

(1)
$$v^{(i)}(\alpha_i) + v^{(i)}(\beta_i) + v^{(i)}(\gamma_i) > n(1+9c_2) - 3i$$

For if (1) would not hold for any $i, 1 \leq i \leq r$, then the number of edges of $G_{f(n)+1}^{(n)}$ would be not greater than

(2)
$$\sum_{i=1}^{r} (n(1+9c_2) - 3i) + f(n-3r) < f(n)$$

by a simple calculation for sufficiently small c_2 . But (2) is an evident contradiction since $G_{f(n)+1}^{(n)}$ has by definition f(n) + 1 edges.

Thus (1) holds for say $i = i_0$. Then a simple computation shows that there are at least $3[c_2 n]$ vertices of $G(n, i_0)$ which are connected with more than one of the vertices α_{i_0} , β_{i_0} , γ_{i_0} . Therefore there are at least $[c_2 n]$ of them which are connected with the same pair, i.e., $G(n, i_0)$, and therefore $G_{f(n)+1}^{(n)}$, contains the configuration required by Lemma 2, which completes the proof of the lemma.

By more careful considerations we can prove that every $G_{f(n)+1}^{(n)}$ contains n/6 + O(1) triangles $(\alpha_1, \alpha_2, \beta_i), 1 \leq i \leq n/6 + O(1)$, and that this result is best possible.

LEMMA 3. Let
$$\delta > 0$$
 be a fixed number. Consider any graph
 $G_u^{(n)}$, $u > f(n) - (n/2)(1 - \delta)$, $n > n_0(\delta)$,

which contains a triangle. Then $G_u^{(n)}$ contains an edge (α_1, α_2) and $[c_3 n] + 1, c_3 = c_3(\delta)$, vertices β_1, \dots, β_r , $r = [c_3 n] + 1$, so that all the triangles $(\alpha_1, \alpha_2, \beta_i)$, $1 \leq i \leq r$, are in $G_u^{(n)}$.

By assumption $G_u^{(n)}$ contains a triangle $(\alpha_1, \alpha_2, \alpha_3)$. Assume first that

(3)
$$v(\alpha_1) + v(\alpha_2) + v(\alpha_3) > n(1 + 9c_3) + 9.$$

Then as in the proof of Lemma 2 we can show that $G_u^{(n)}$ contains the required configuration.

If (3) is not satisfied, then $G_u^{(n)} - \alpha_1 - \alpha_2 - \alpha_3$ has n - 3 vertices and at least $u - n(1 + 9c_3) - 9$ edges. But if $c_3 < \delta/18$, then for $n > n_0$

$$u - n(1 + 9c_3) - 9$$

> $f(n) - (n/2)(1 - \alpha) - n(1 + 9c_3) - 9 > f(n - 3)$

Thus by Lemma 2, $G_u^{(n)} - \alpha_1 - \alpha_2 - \alpha_3$, and therefore $G_u^{(n)}$, contains the configuration required by Lemma 3, which completes the proof of Lemma 3.

Now we can prove our Theorem. Let there be given a $G_{f(n)+t}^{(n)}$, $t < c_1 n/2$. Assume first that after the omission of any $r = [c_1 n/2c_3]$, $c_3 = c_3(\frac{1}{4})$ ($\delta = \frac{1}{4}$ in Lemma 3), edges the graph will still contain a triangle. For sufficiently small c_1 , $c_1/2c_3 < \frac{1}{4}$; thus it will be permissible to apply Lemma 3 during the omission of these edges.

By Lemma 3 (or Lemma 2) there exists an edge e_1 which is contained in at least $[c_3 n] + 1$ triangles of $G_{f(n)+t}^{(n)}$; again by Lemma 3 in $G_{f(n)+t}^{(n)} - e_1$ there exists an edge e_2 which is contained in $[c_3 n] + 1$ triangles of $G_{f(n)+t}^{(n)} - e_1$. Suppose we have already chosen the edges e_1, \dots, e_r each of which is contained in at least $[c_3 n] + 1$ triangles. By our assumption $G_{f(n)+t}^{(n)} - e_1 - \dots - e_r$ contains at least one triangle; thus by Lemma 3 there is an edge e_{r+1} in $G_{f(n)+t}^{(n)} - e_1 - \dots - e_r$ which is contained in at least $[c_3 n] + 1$ triangles in this graph. These triangles incident on the edges e_1, \dots, e_{r+1} are evidently distinct; thus $G_{f(n)+t}^{(n)}$ contains at least $(r+1)([c_3 n] + 1) > c_1 n^2/2 > tn/2$ triangles, which proves our Theorem in this case.

Therefore we can assume that there are $l \leq r < n/4$ edges e_1, \dots, e_l so that $G = G_{f(n)+l}^{(n)} - e_1 - \dots - e_l$ contains no triangle, and we can assume that l is the smallest integer with this property. By $l \leq r < n/4$, G has

$$f(n) + t - l > f(n) - n/4 > f(n - 1) + 1$$

edges. Thus by Lemma 1, G is even.

By Turán's theorem, $l \ge t$. Assume first l = t (it is not necessary to treat the cases l = t and l > t separately, but perhaps it will be easier for the reader to do so). Then G has f(n) edges, and by Turán's theorem G is of the following form: The vertices of G are $\alpha_1, \dots, \alpha_{\lfloor n/2 \rfloor}, \beta_1, \dots, \beta_{n-\lfloor n/2 \rfloor}$, and the edges are $(\alpha_i, \beta_j), 1 \le i \le \lfloor n/2 \rfloor, 1 \le j \le n - \lfloor n/2 \rfloor$. A simple argument shows that the addition of every further edge introduces at least

).

P. ERDÖS

[n/2] triangles and that these triangles are distinct. Thus $G_{f(n)+t}^{(n)}$ contains at least t[n/2] triangles, and our Theorem is proved in this case too.

Assume finally l = t + w, 0 < w < n/4 (since l < n/4). It will be more convenient to assume first that n is even. Put n = 2m. Since G is even, it is contained in a graph G(E, u) whose vertices are $\alpha_1, \dots, \alpha_{m-u}, \beta_1, \dots, \beta_{m+u}$ and whose edges are $(\alpha_i, \beta_j), 1 \leq i \leq m - u, 1 \leq j \leq m + u$ (since G has more than $f(2m) - m/2 = m^2 - m/2$ edges, we have $0 \leq u < (m/2)^{1/2}$).

Clearly every one of the edges e_1, \dots, e_l connect two α 's or two β 's. For if say e_i would connect an α with a β , then

$$G_{f(n)+t}^{(n)} - e_1 - \cdots - e_{1-1} - e_{i+1} - \cdots - e_l$$

would be even, and hence would contain no triangle, which contradicts the minimum property of l.

By our assumption G is a subgraph of G(E, u). Assume that G is obtained from G(E, u) by the omission of x edges. Then we evidently have

$$l = x + u^2 + t$$
 (or $w = x + u^2$),

and $G_{f(n)+t}^{(n)}$ is obtained from G by adding l edges e_1, \dots, e_l which are all of the form $(\alpha_{i_1}, \alpha_{i_2})$ or $(\beta_{i_1}, \beta_{i_2})$. Put $e_i = (\beta_{i_1}, \beta_{i_2})$, and let us estimate the number of triangles $(\beta_{i_1}, \beta_{i_2}, \alpha_j)$ in $G(E, u) + e_i$. Clearly at most x of the edges $(\beta_{i_1}, \alpha_j), (\beta_{i_2}, \alpha_j)$ are not in G(E, u); thus $G(E, u) + e_i$ contains at least

$$m - u - x$$

triangles (if e_i connects two α 's, then $G(E, u) + e_i$ contains at least m + u - x triangles). For different e_i 's these triangles are clearly different; thus

$$G_{f(n)+t}^{(n)} = G + e_1 + \cdots + e_l$$

contains at least

(4)
$$(m - u - x)l = (m - u - x)(x + u^2 + t) \ge tm = t(n/2)$$

triangles. (4) follows by simple computation from $l = u^2 + x + t < m/2$. (4) completes the proof of our Theorem for n = 2m. For n = 2m + 1 the proof is almost identical and can be omitted. Thus the proof of our Theorem is complete.

It seems possible that a slight improvement of this proof will give the conjecture that every $G_{f(n)+t}^{(n)}$, t < [n/2] contains at least t[n/2] triangles, but I have not been successful in doing this.

I have not succeeded in formulating a reasonable conjecture about the minimum number of triangles $G_{f(n)+t}^{(n)}$ must contain if $[n/2] \leq t \leq {n \choose 2} - f(n)$. It is easy to see that if t is close to ${n \choose 2} - f(n)$, then $G_{f(n)+t}^{(n)}$ contains more than t[n/2] triangles, and it would be easy to obtain a best possible result in this case. But I have not investigated the range of t for which this is possible. I just remark that $G_{(2)-t}^{(n)}$, $l \leq 2$, contains at least ${n \choose 3} - l(n-2)$ triangles

and that $G_{\binom{n}{2}-3}^{\binom{n}{2}-3}$ contains at least $\binom{n}{3} - 3(n-2) + 1$ triangles, and that these results are best possible. The simple proofs are left to the reader. Turán's theorem implies that every $G_{3n^2+1}^{\binom{n}{3n^2+1}}$ contains a complete 4-gon. As

Turán's theorem implies that every $G_{3n^2+1}^{(3n)}$ contains a complete 4-gon. As an analogue of the theorem of Rademacher I can prove by very much more complicated arguments that it contains at least n^2 complete 4-gons; this result is easily seen to be best possible.

BUDAPEST, HUNGARY