ON LINDELÖF'S CONJECTURE CONCERNING THE RIEMANN ZETA-FUNCTION

Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
P. Turán

1. The conjecture of Lindelöf asserts that (with $s=\sigma+i t$) for $\sigma \geqq \frac{1}{2}$, $|s-1| \geqq 1 / 10$, with an arbitrary small $\varepsilon>0$, the inequality

$$
\begin{equation*}
|\zeta(s)| \leqq d_{1}(2+|t|)^{\varepsilon} \tag{1.1}
\end{equation*}
$$

holds, where $\zeta(s)$ stands for the Riemann zeta-function and d_{1} (and later d_{2}, \cdots) depends only upon ε. As is well known this is unproved, just as is Riemann's conjecture. As to the latter I found in 1943 the following theorem. ${ }^{1}$

For the existence of a ϑ with $\frac{1}{2} \leqq \vartheta<1$ such that for an arbitrarily small $\eta>0$ the half-plane $\sigma \geqq \vartheta+\eta$ contains only a finite number of zeros of $\zeta(s)$, the existence of positive numerical α and β with the following property is necessary and sufficient: For ($t>0$ and)

$$
\begin{equation*}
c_{1} \leqq t^{\alpha} \leqq N \leqq N_{1}<N_{2} \leqq 2 N \tag{1.2}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
\left|\sum_{N_{1} \leqq p \leqq N_{2}} e^{i t \log p}\right|<c_{2} \frac{N \log ^{3} N}{t^{\beta}} \tag{1.3}
\end{equation*}
$$

holds. Here (and also later) c_{1}, c_{2}, \cdots stand for positive numerical constants, p for primes.

Having this theorem I was interested by a communication of U. V. Linnik (without exact formulation and proof) in 1947 or 1948 that an equivalence theorem concerning Lindelöf's conjecture can be established in terms of the sums

$$
\begin{equation*}
\sum_{N_{1} \leqq n \leqq N_{2}} d(n) e^{i t \log n} \tag{1.4}
\end{equation*}
$$

When I discussed this communication with A. Selberg in Princeton in 1948, he remarked, again without exact formulation and proof, that such an equivalence theorem can be given in terms of sums

$$
\begin{equation*}
\sum_{N_{1} \leqq n \leqq N_{2}} e^{i t \log n} \tag{1.5}
\end{equation*}
$$

[^0]too. Having once this idea it was not difficult to reconstruct the theorem (at least with the factor $(-1)^{n}$ in the summand) and its rather straightforward proof. I was convinced that this theorem is a commonplace among the " ζ-lists"; the study of the excellent book of Titchmarsh on the Riemann zeta-function and the subsequent pertinent literature makes me now, after more than ten years, wonder whether I was right. Thus it seems worthwhile to publish this theorem, which runs as follows.

For the truth of Lindelöf's conjecture the truth of the inequality

$$
\begin{equation*}
\left|\sum_{n \leqq N}(-1)^{n} e^{-i t \log n}\right|<d_{2} N^{1 / 2+\varepsilon}(2+|t|)^{\varepsilon} \tag{1.6}
\end{equation*}
$$

with an arbitrarily small $\varepsilon>0$ is necessary and sufficient.
2. The sufficiency of (1.6) follows at once, since, if we put

$$
S_{N}=\sum_{n \leqq N}(-1)^{n} e^{-i t \log n}
$$

for $\frac{1}{2}+2 \varepsilon \leqq \sigma \leqq 2$ we have

$$
\begin{aligned}
&\left|\left(1-\frac{2}{2^{s}}\right) \zeta(s)\right|=\left|\sum_{N=1}^{\infty} S_{N}\left(\frac{1}{N^{\sigma}}-\frac{1}{(N+1)^{\sigma}}\right)\right| \\
&<6 d_{2}(2+|t|)^{\varepsilon} \sum_{N=1}^{\infty} N^{\varepsilon-\sigma-1 / 2}<d_{3}(2+|t|)^{\varepsilon}
\end{aligned}
$$

From this one gets (1.1) quite easily.
3. As to the necessity we suppose the truth of (1.1). Putting

$$
f(s)=\left(1-\frac{2}{2^{s}}\right) \zeta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}
$$

we get for $\sigma \geqq \frac{1}{2}$ by (1.1)

$$
\begin{equation*}
|f(s)| \leqq d_{4}(2+|t|)^{s / 2} \tag{3.1}
\end{equation*}
$$

Now we consider, with the integer $N \geqq 2$ and $w=u+i v$, the integral

$$
\begin{equation*}
J_{N}(t)=\frac{1}{2 \pi i} \int_{1+1 / \log N-i N}^{1+1 / \log N+i N} \frac{\left(N+\frac{1}{2}\right)^{w}}{w} f(w+i t) d w \tag{3.2}
\end{equation*}
$$

Replacing $f(w+i t)$ by its Dirichlet-series we get

$$
\begin{align*}
J_{N}(t)= & \sum_{n=1}^{\infty}(-1)^{n+1} n^{-i t} \frac{1}{2 \pi i} \int_{1+1 / \log N-i N}^{1+1 / \log N+i N} \frac{\left(\left(N+\frac{1}{2}\right) / n\right)^{w}}{w} d w \\
= & \sum_{n=1}^{N}(-1)^{n+1} e^{-i t \log n} \tag{3.3}\\
& \quad-\sum_{n=1}^{\infty}(-1)^{n+1} n^{-i t} \frac{1}{2 \pi i}\left\{\int_{1+1 / \log N-i \infty}^{1+1 / \log N-i N}+\int_{1+1 / \log N+i N}^{1+1 / \log N+i \infty}\right\}
\end{align*}
$$

owing to the well-known formula

$$
\frac{1}{2 \pi i} \int_{(1+1 / \log N)} \frac{x^{w}}{w} d w= \begin{cases}1 & \text { for } x>1 \\ 0 & \text { for } 0<x<1\end{cases}
$$

Hence partial integration gives from (3.3)

$$
\begin{align*}
\mid \sum_{n=1}^{N}(-1)^{n+1} e^{-i t \log n}- & J_{N}(t) \mid \\
& <c_{3} \sum_{n=1}^{\infty}\left(n^{1+1 / \log N}\left|\log \frac{N+\frac{1}{2}}{n}\right|\right)^{-1}<c_{4} \log N \tag{3.4}
\end{align*}
$$

(The inequality (3.4) could also be deduced from Lemma 3.12 of Titchmarsh's book.) Applying Cauchy's theorem to the rectangle with vertices

$$
1+1 / \log N \pm i N, \quad \frac{1}{2} \pm i N
$$

we get

$$
J_{N}(t)=(1 / 2 \pi i)\left(J_{N}^{(1)}+J_{N}^{(2)}+J_{N}^{(3)}\right)
$$

where (with the same integrand as in (3.2))

$$
J_{N}^{(1)}=\int_{1+1 / \log N-i N}^{1 / 2-i N}, \quad J_{N}^{(2)}=\int_{1 / 2-i N}^{1 / 2+i N}, \quad J_{N}^{(3)}=\int_{1 / 2+i N}^{1+1 / \log N+i N}
$$

Using (3.1) we get easily

$$
\begin{align*}
\left|J_{N}^{(3)}\right|<\frac{d_{5}}{N} \int_{1 / 2}^{1+1 / \log N}(N & \left.+\frac{1}{2}\right)^{u}(2+|t|+N)^{\varepsilon / 2} d u \tag{3.5}\\
& <d_{6}(2+|t|+N)^{\varepsilon / 2}<d_{6}(2+|t|)^{\varepsilon} N^{\varepsilon}
\end{align*}
$$

and the same for $J_{N}^{(1)}$. Finally from (3.1)

$$
\begin{aligned}
\left|J_{N}^{(2)}\right|<\left(N+\frac{1}{2}\right)^{1 / 2} & \int_{-N}^{N} \frac{1}{\sqrt{\frac{1}{4}+\vartheta^{2}}} d_{4}(2+|\vartheta+t|)^{\varepsilon / 2} d \vartheta \\
& <d_{7} N^{1 / 2+\varepsilon / 2}(2+|t|)^{\varepsilon / 2} \log N<d_{8} N^{1 / 2+\varepsilon}(2+|t|)^{\varepsilon}
\end{aligned}
$$

In view of this, (3.4), and (3.5), the necessity of (1.6) is also proved.

[^0]: Received February 15, 1961.
 ${ }^{1}$ On Riemann's hypothesis, Izv. Akad. Nauk SSSR, vol. 11 (1947), pp. 197-262. A shorter proof is contained in my book, Eine neue Methode in der Analysis und deren Anwendungen; a completely rewritten new English edition will appear among the Interscience Tracts.

