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Both theorems deal with additive arithmetic functions, and new proofs
will be given in these pages.

1. The theorem of Erd6s
In his paper [1], P. ErdSs derives a number of results on additive functions

from among which we single out two theorems [1, Theorem XI, page 17,
and Theorem XIII, page 18] which may be stated as follows:

Let the real-valued f(n (n 1, 2, be such that

f(mn) f(m) + f(n) whenever (m, n) 1.

If
f(n + 1)

_
f(n) (n- 1, 2,... ),

(1)

I.

()

then

()

II.

(4)

f(n) C log n (C constant).

if

limn (f(n - 1) --f(n)) O,

then again f n is of the form (3).

Each of these two theorems gives a remarkable characterization of the log-
arithmic function f(n) log n (up to a multiplicative constant corresponding
to the arbitrary choice of the base) in terms of the weak additive property (1)
and an additional condition, (2) or (4). In a recent note [6] A. Rt!nyi gave
a simple direct proof of the second theorem. We wish to do here the same
for the first theorem. As a matter of fact the first theorem was rediscovered
by Lambek and Moser in [4] with a short and ingenious proof. Our proof is
somewhat longer and may be described as analytic in the sense that it re-
duces the problem to Cauchy’s functional equation for continuous variables.

It suffices to establish the proposition, that (1) and (2) imply (3), for the
case when the inequality (2) is replaced by the stronger condition

(5) f(n -1) > f(n) (n 1, 2,... ).

For if this is already settled, and if now only (2) is assumed, then
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f(n) W log n ( > 0) satisfies (5) hence f(n) log n C log n, and the
general theorem is established.
We begin by extending our function to all positive rationals by the definition

(6) f(m/n) f(m) f(n) if (m, n) 1.

We shall say that the two reduced fractions x m/n and x’ m’/n’ are
relatively prime provided that

(7) (m, m’) (m, n’) (n, m’) (n, n’) 1,

and will describe this symbolically by writing

(x, x’) 1.

1. If (x, x’) 1, then f(xx’) f(x) + f(x’).

Indeed, by definition (6) and our assumptions (7) and (1) we have

f(x) - f(x’) f(m) f(n) + f(m’) f(n’)

f(mm’) f(nn’) f(mm’/nn’) f(xx’).

2. If (x, x’) l and x < x, then f(x) < f(x’).

Indeed, mn’ < nm,f(mn’) < f(nm’),f(m) + f(n’) < f(n) + f(m), and
finally f(m) f(n) < J(m) f(n’),.which proves the assertion in view of
(6).

Our obiective is to remove the assumption (x, x’) 1 from the statements
1 and 2. We begin by proving

3. If x < x’, then f(x) < f(x’).

It suffices to select a rational X having the properties

(8) (x, X) 1, (x’, X) 1, x < X < x’,
since now 2 gives f(x) < f(X), f(X) < f(x’); hence f(x) < f(x’). Let us
now exhibit rational X M/N having the properties (8);M’ and N’ being
natural integers, we choose

X M’mm’nn’ -t- 1 M
where (M, N) 1Nmmnn’ 1 N

This rational is relatively prime to x m/n and lso to x’ m/n and will
moreover satisfy the inequulities in (8) for appropriate large values of M’
and N’.
Thus f(x) is defined for all positive rationals nd is un increasing function

of x. For any positive rational x we may therefore define

(9) p lim,_0f(x’), a lim,_+of(x’),

and certainly
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4. =(x)+, =](x)+.

Let us first observe that in any left (or right) neighborhood of the rational
x m/n there are rationals x’ m’/n’ relatively prime to x. For instance

x’ Mmn --}- 1 m’
Nmn -}- 1 n’ (m’, n’) 1,

will do for appropriate M and N. It is also clear that the limits defined by
(9) are not changed if we restrict the variable rational x’ to be relatively
prime to x. For such x’ satisfying (x, x’) 1 we have

10) f(x’) + f(1/x) f(x’/x).

From f(x) f(m) f(n) and f(1/x) f(n) f(m) we conclude that
0 f(x) f(1/x), and adding this to (10) we obtain

(11) f(x’) f(x) --t- f(x’/x).

If we assume moreover that x’ < x and let x’ -- x, then x’/x - 1 0, and (11)
gives the first relation p f(x) -t-- pl to be established. Assuming x’ > x
we likewise obtain the second.

5. pl

Indeed, from 4 we obtain

(12) f(x + O) --f(x- O) fix,- Px 0"1- Pl,

for every positive rational x. If we pick n rationals x such that 1 x
< x 2, then the monotonicity of f(x) and (12) show that

(f(x - O) f(x 0)) n(a p) < f(2) f(1) f(2).

Thus 0 <- o1 Pl < f(2)In, and letting n -, we obtain our result.

6. For a given O, f(x) is uniformly continuous over the rationals x >- .
Indeed, by (11) and the continuity of f(x) at x 1 we know that to v > 0

corresponds a ti > 0 such that

(13) f(r) < if 0 <r- 1 < il.

Choose ti such that 0 ti/v < , and let us assume that

(14) <__x <x’ <x-t--.
Choose a rational x" such that x’ < x" < x and (x, x") 1. But then
1 < x’/x < 1 /x <__ 1 W ti/v < 1 W ti hence 0 < x’/x 1 <
Now (11), (13), and the monotonicity of f(x) show that f(x’) f(x) <
f(x") f(x) f(x"/x) < , so that

(15) f(x’) f(x) < .
Thus (14) implies (15), which establishes our statement.
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A proof of ErdSs’s theorem now follows readily. Indeed, by 5 and (12)
we see that f(x) is continuous over the positive rationals. On the other hand
we know from 1 that

(16) f(yy’) f(y) +f(y’) if (y,y’) 1.

If x and x’ is any given pair of positive rationals, we can find a pair y, y’ with
(y, y’) 1 such that y is as close to x, and also y’ as close to x’, as we wish.
Indeed, the rational y may be chosen close to x at will, and then we can find
y’, prime to y and close to x’. For these rationals (16) holds. If we now
let y -- x and y’ x’, then (16) goes over by continuity into

f(xx’) f() + f(z’).

The function f(x) is therefore unrestrictedly additive over the positive
rationals. Because of the uniform continuity asserted by 6 we can now extend
the definition of f(x) to all positive reals preserving the continuity and the
additive property. Setting f(e) g(t) we see that the continuous g(t)
satisfies Cauchy’s functional equation

g(t -- t’) g(t) - g(t’).

We conclude that g(t) Ct (C > 0). Thus f(e) Ct, f(x) C log x, and
in particular f(n) C log n.

2. The theorem of Rnyi
For every natural integer n having the standard representation

n Pl P2 p8

we define an additive function f(n) by setting

(17) f(n) (al -- a2 - - as) 8.

Rnyi’s theorem is as follows:

The densities

(18) D{f(n) k} dk (t O, 1, 2,...)

exist. Moreover the power series

(19) F(z) dk z

converges in the circle zl < 2 and defines a meromorphic function F(z) which
admits in the finite plane the representation

Proofs re due to Rnyi [5] nd Kc [2] (see ls.o [3, Chp. 4, 3]). We
give here third proof of this interesting result.
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As early as 1936 the writer established in [7] the following theorem"

Let f(n) be an additive function, i.e., satisfying (1), such that the infinite
series

(21) (l/p) min (1, if(P)i)

converges. Then f(n) has an asymptotic distribution function
(22) ((x) D{f(n) <= x} (- < x < ),

having the characteristic function

(23) ed(x) 1 1 + +
where the infinite product converges absoluly and uniformly in eery finite
t-interval.

In [7] can be found number of applications of this theorem, in prticular
to functions having discrete distributions. However, Rnyi’s additive func-
tion f(n), defined by (17), provides its most interesting application of this
kind and the one which comes out most naturally. Indeed, since (17) im-
plies f(p) 0, the condition (21) is satisfied. Therefore the densities (18)
exist, and d 1, the distribution function a(x), defined by (22), being a
step-function having a jump of d t the point x k. Since f(p) n 1
if n 1, (23) becomes

(24) eda(x) 1
1

1 + 1 + 1 e 1 e +....

If we set z e, the integral on the left reduces to the power series (19),
while the right side becomes the right side of (20). The representation (20)
is easily shown to be valid in the finite plane and to define a meromorphic
function F(z) having the simple poles z p (p 3) and the simple zeros
z p + 1 (p 2). The power series (19) converges uniformly on [z 1
and agrees on this circumference with F(z), because of (24). Since F(z) is
regular in zl < 2, the theorem of Rnyi follows as stated.
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