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Introduction

If (X, S, #) is a finite measure space and G the group of all one-to-one
measure-preserving transformations, then two interesting topologies can be
assigned to G which make it a topological group. In certain dynamical
problems it is of interest to know whether a particular transformation is
ergodie or not. Even though this problem has not been solved till now, the
existence of a large class of ergodie transformations has been shown by the
determination of their category in G. In particular, when the measure space
is nonatomie, Halmos [1] proved that the set of weakly mixing transformations
is a dense G in G under the weak topology. Similar results were proved by
Oxtoby and Ulam [2]. Rokhlin [3] proved that under the same weak topology
in G, the set of strongly mixing transformations is a set of the first category.

In problems of information-theoretic interest, we have a measurable space
(X, 8) and a one-to-one both ways measurable map T of X onto itself. Here,
it is of interest to know whether there are a lot of ergodie measures in the
space of invariant measures. In order to study this problem, we take X to
be a topological space, 8 the Borel z-field, and T a homeomorphism of X onto
itself. Then several topologies can be assigned to the space of invariant
probability measures. Taking X to be a complete and separable metric
space and assigning the weak topology to the space of invariant probability
measures, we show that the set of ergodie measures is a G. When X is a
countable product of complete and separable metric spaces and T is the shift
transformation, we show that the ergodie measures form a dense Ge under
the same topology. Examples are given to show that the ergodie measures
need not be dense in the general ease. In the ease of the shift transformation
we have proved that the set of strongly mixing measures is a set of the first
category.

1. Preliminaries

Let (X, $) be any measurable space, and T a one-to-one both ways meas-
urable map of X onto itself. Whenever the space X is a topological space,
we take g to be the Borel z-field, and T a homeomorphism of X onto itself.
By a measure, we always mean a probability measure. We denote by
e and 9318 the space of all invariant, ergodie, and strongly mixing measures,
respectively. For these definitions we refer to [1].
A point x e X will be called periodic if for some integer /c, Tkx x. A

measure 9J is periodic if for some integer/c, t(A n TkA) #(A) for all
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sets A g. We shall denote by and ( the class of all invariant periodic
measures and the class of all ergodic periodic measures, respectively.
When X is a topological space, we assign the weak topology to j by means

of the following convergence: A net {t,} in converges to if and only if
f f d, -, f f dt for every bounded continuous function defined on X. When
X is a separable metric space, the weak topology of becomes separable
and metric. If further X is complete, then J is also complete [4]. Sets
of the type

[t:t(G) > t0(G) a, i 1, 2,... ,/],

[t:t(C) < t0(C) q- a, i 1, 2, k], a__> 0,

where G1, G, G are open sets in X, C, C, C are closed sets in
X, t0 is any fixed measure in OFt, and denotes any general invariant measure,
form u neighbburhood system in 9Yt at 0.
Another important fact which we shall make use of is the following result

due to Varadarajan [5]"

TEOIEM 1.1. If X is a separable metric space, then there exists an equiva.
lent netric d such that the space U(X) of functions uniformly continuous with
respect to d is separable in the uniform topology.

2. Topological nature of ergodic measures in a separable
metric space

In this section we shall prove the following theorem.

THEOREM 2.1. If X is a separable metric space and T is a homeomorphism oj
X onto itself, then 92it is a Ge in gJt under the wealc topology.

Proof. It is clear that the class of all Borel sets S with the property
S TS form a a-field 5. Let C(X) be the space of all real-valued bounded
continuous functions defined on X. For any fixed measure and any
f C(X), we denote by E,(fl ) the conditional expectation of f(x) given
the r-field 3. It is easy to see that t is ergodic if and only if, for every
f C(X), the following equation holds:

f(2.1) V(f, ) [E(f )] d f d 0.

It is enough if condition (2.1) is satisfied for every bounded uniformly con-
tinuous function. This is because of the fact that any bounded continuous
f is a pointwise limit of a uniformly bounded sequence of uniformly con-
tinuous functions and the conditional dominated convergence theorem is
applicable (cf. Doob [6], p. 23). By making use of Theorem 1.1, we can take
the space U(X) of bounded uniformly continuous functions to be separable
in the uniform topology. We take a dense sequence fl (x), f (x), in U(X).
Thus in order that an invariant measure t be ergodic, it is necessary and suf-
ficient that
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(2.2) V(f t) O, 1, 2,....

Let

(2.3)
n d- d

From the mean ergodic theorem it follows that

(2.4) V(f ) limn-, Vn(f p) lim infn-, Vn(fk !).

For each fixed and n, V(f, ) is a continuous functional in under the
weak topology. From (2.2), (2.3), and (2.4), it follows that

(2.5) n’=, NT= N:= U=., [: Vn(S], I) < l/r].

The continuity of Vn(f, ) implies that the set [: V(f, ) < l/r] is
open in the weak topology. This together with (2.5) implies that is a G.

3. Measures invariant under the shift transformation in a
product space

Let (M, S) be a separable metric space, and let (X, ) be the bilateral
product of a countable number of copies of (M, S). X can be written as

X II+: M, M i (i -1, 0, 1, ...),
and

$ II+: s, s s (i -1, 0, 1,...).

Any point x e X can be represented by

x (...,x_,x0,x,-..), xeM.
We introduce the shift operator T by means of the following definition:

Tx y (... y_ yo, y ...), y x_ (i -1,0,1,...).

T is obviously a one-to-one both ways measurable map of X into itself. In
the space ) of measures invariant under T we introduce a topology 5 by
means of the following convergence" A sequence of measures , con-
verges to if and only if ,(A) -- (A as n -- for each finite-dimensional
measurable subset A.

THEOREM 3.1. Under the topology 5 in i the set j, is everywhere dense in ).

Proof. Let be any measure in !J, and , the restriction of to the
a-field

lli=r(2n+l)--n t
and n, the product measure given by

Pn H"F

which is defined on Ir=-- $" Then is defined on $ and is invarian
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under the transformation T2n+1 which is also one-to-one and both ways meas-
urable. It is easy to verify that n is ergodic under T2n+1. Now we write
for any set A e $,

(3.1) t,(A) "(T-’A) + "(T-’+A) + nt- ,,(A) -t-- --[- ,(TnA)
2n -t- 1

From the invariance of under T2+, the invariance of n under T follows
immediately. Let now A be any set in $ which is invariant under T, i.e.,
A TA. Then n(A) n(A). Since A T+IA and n is ergodic
under T:n+, it follows that n(A) 0 or 1, i.e., n(A) is ergodic under T
and hence belongs to ffte. We shall now prove that n converges to under
the topology 5. Let

]c 1,2,ek Ii=-k S

be the a-field which is the (2k - 1)-fold product of S. e can be considered
as a sub-a-field of S. From the construction of n, it is clear that n agrees
with on e,. Let now A
belong to e. Thus

(3.2) ,,( TrA t(A

We have from (3.1) and (3.2)

,n(T-A) --[- --t-- ,n(TnA)tt,(A t(A
2n + l

Then T-+A, T-n++A, Tn-kA

for -n-l- k =< r =< n- k.

(A) 4k
2n-t- 1

Thus (A) --+ (A) as n -+ for every A e. Since this is true for each
fixed it, n--+ in the topology 5. This completes the proof.
The following theorem is an immediate corollary of Theorems 2.1 and 3.1.

+ -1, 0, 1,..-)THEOREM 3.2. If X I=_ M M M (i ..,
where M is a complete and separable metric space and T is the shift transforma-
tion in X, then Je is a dense G in ) under the weat topology, andhenceJ 9j
is of the first category.

Proof. This is an immediate corollary of Theorems 2.1, 3.1, and the facts
that is a complete and separable metric space under the weak topology
and convergence under 5 implies weak convergence.

Remarks. A disposition towards the method adopted in proving Theorem
3.1 may already be found in the works of I. P. Tsaregradsky [7] and A. Fein-
stein [8] in a different context. A result less general than Theorem 3.1 has
been proved recently by M. Nisio [9].

If in Theorem 3.2, M is a compact metric space, then the space of all totally
finite invariant signed measures becomes a locally convex topological vector
space under the weak topology, and ff becomes a compact convex set with

as the set of extreme points. From Theorem 3.2, it follows that is a
dense G in r. This is one of the mny examples which show that in the
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infinite-dimensional ease the structure of extreme points is peculiar when com-
pared to the finite-dimensional case.
Theorem 3.2 states that in the space X with the shift operator, in some

sense, the ergodie measures represent the general case. But Theorem 3.2
is not true in the general case when X is any complete separable metric space,
and T any homeomorphism of X onto itself. Examples are given at the end
of the paper.
By making use of the same methods as in the proof of Theorem 3.1 we shall

now prove the following"

+ --1, 0, 1,...), Mi- M,THEOnEM 3.3. If X IIi=- Mi (i
where M is a complete separable metric space and T is the shift transformation,
then the set of periodic measures is dense in the set of all ergodic measures under
the weak topology.

Proof. Under the conditions of the theorem, (X, T) is a Borel system
[10]. Thus by a result of Krylov-Bogolioubov and Oxtoby [10] it follows that,
for any ergodic measure z, there exists a point p e X such that the sequence of
measures

2n -t- 1

converges weakly to z, up being the degenerate measure with mass one at the
point p. We shall now approximate z, by means of peri6dic measures. The
point p can be represented by

p (’" X_l, Xo, Xl, ), xi Mi, (i --1, O, 1, ).

We write
p-- ("" ,y-,Yo,y,’"),

Y(2n+i)+r Xr for k ,--1, 0, 1,.-. --n _-< r -<_ n.

Then p is a periodic point of period 2n - 1. We consider

= 2n1
Since T2n+lp pn, n is a periodic measure. Proceeding exactly as in the
proof of Theorem 3.1, it is not difficult to show that for every finite-dimen-
sional Borel set A, ttn(A) n(A) O. This completes the proof of Theo-
rem 3.3.

THEOREM 3.4. When X and T are the same as in Theorem 3.3, the set 8
of strongly mixing measures is of the first category in ) under the weak topology.

2Let 0 < e < 1/2, v < e, 8 any rational number 0 < ti < v/2, r any ra-
tional number in 0 <_- r _<_ 1, F and F2 two disjoint closed sets, and G any
open set such that G D F1. We write
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;(F, F G, , r, , n)

(3.3) Nk=n
r g2(F) + ],

where g denotes any general invariant probability measure. Since F and
F2 are closed and G is open, by the remarks made in Section 1, the set (3.3) is
closed under the weak topology. Let

(3.4) g(F1, F2, G, e) Uo,, Uo<<,/2 U:= 8(F, F2, G, , r, , n).

It is not difficult to verify that

(3.5)
lim sup #(G

Let G be a sequence of open sets descending to F. Since, for a strongly
mixing measure, lim (G n TG) :(G), it is clear that all strongly
mixing measures with the property (F1) 8, (F2) C belong to the set

(3.6) Ua &(F F Gn t).

We shall now show that the set (3.6) is of the first category. From (3.3),
(3.4), and (3.6), it is clear that the set (3.6) is a countable union of the
closed sets &(F, F, G, , r, , n). It is enough to show that these closed
sets are nowhere dense or their complements are everywhere dense.

Let P be the set of all periodic measures of period k and P U>n P.
Since by Theorem 3.3 periodic ergodic measures are dense in , it follows
that the set of periodic invariant measures is dense in . Thus P is
everywhere dense in . We shall complete the proof by showing that

(3.7) P
The inclusion relation (3.7) is satisfied if

P
(3.8)

Let now 0 be any periodic measure of period k. If either one of the inequali-
ties (F1) $, (F2) is violated, then we are through. Otherwise,
since F and F are disjoint, we have

o(F) 1 , o(G n TG) po(G).

Since 0 < < /2, it is enough to prove that

(3.9) 0(G) (F) + 3v/2.

Since 0 < < , o(F) 1 , G El, and the function

x-x e(1
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in =< x <- 1-- ,0 < < 1/2, wehave

0(G) (F) >- 0(F) (F) __> e(1 v) > e= 3/2.
Thus we have proved (3.9).

Let now S(F, F., s) denote the class of all strongly mixing measures
with the property

,(F) => , (F) _>_ .
We have proved that S(F, F., ) is of the first category. Now we take a
dense sequence of points and consider all closed spheres of rational radii
with centers at these points. We denote this class of sets by a. Then ( is
a countable class. It is clear that the set of all nondegenerate strongly
mixing measures is the same as

U U S(F, F, ).
F1,F2( 0<<1/2
FlF2dp rational

Since the set of degenerate strongly mixing measures is of the first category
and any other strongly mixing measure is nonatomic, we have completed the
proof.

4. Remarks and examples
We shall now give some examples to show that Theorem 3.2 need not be

true in general.
(1) Let X0 be u compact group with at least one periodic element, and

let the transformation To be the translation of X by a periodic element.
Then the ergodic probability measures form a closed set under the weak
topology.

(2) Let (X0, T0) be as above, and let (X, T) be the product space
with the shift transformation. Let X X0 X and T To X T be de-
fined in the obvious manner. If X is a complete separable metric space,
then the set of ergodic measures is neither closed nor dense.
But in the above examples it is easily seen that there does not exist a dense

orbit. However, in the example discussed by Oxtoby, there exists a dense
orbit, and nevertheless the ergodic measures form a closed set. Thus it
would be very interesting to get a characterisation of ll those homeomor-
phisms of a complete separable metric space for which the density theorem
is true.
Now we shall make some remarks concerning Theorem 3.4. The first

category theorem holds good as soon as X is a complete separable metric
space and the class ( of periodic ergodic measures is dense in 9)l. Thus
arises the problem of obtaining necessary and sufficient conditions on the
homeomorphism T so that the periodic measures may be dense. This is
true, for example, in the case when the system (X, T) is L-stable [10]. We
shall now get a necessary condition in the following:

J. C. OXTOBY, Stepanoff flows on the torus, Proc. Amer. Math. Soc., vol. 4 (1953),
pp. 982-987.
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THEOREM 4.1. If X is a complete separable metric space and the periodic
ergodic measures are dense in the set of ergodic measures under the weat topology,
then the complement of the closure of periodic points has measure zero for every
invariant measure.

In order to prove this theorem we require the following"

LEMMA 4.1. If X is a complete separable metric space and t is an ergodic
measure with period tc, then there exists a point Xo e X such that Tkxo Xo and
(xo) ( Txo) t(Tk-lx0)

Proof. It is clear from the results of Krylov-Bogolioubov and Oxtoby
[10] that an ergodic measure is either purely atomic or purely nonatomic.
If it is purely atomic, we are through. In the nonatomic case the measure
space becomes a Lebesgue space, and from two lemmas proved in [1] (cf.
pages 70 and 71) we arrive at a contradiction without any difficulty. This
completes the proof of the lemma.

Turning to the proof of Theorem 4.1, we suppose that P is the set of all
periodic points, 15 its closure, and G X /. Then G is an open subset
of X. We shall now show that, for every ergodic measure t, t(G) 0.
Then an application of the results of Krylov-Bogolioubov and Oxtoby will
complete the proof.

Let, if possible, (G) > 0 for some ergodic measure t. Since by hypothesis
(e is dense in Je, there exists a sequence n e e such that n converges
weakly to t. Since G is open, lim infn_. ttn(() tt(G) > 0. Thus there
exists an n such that #n(G) > 0. By Lemma 4.1 there exists a point x0

such that Tanxo Xo (an being the period of tn) and n(X0) 1/an. From
the fact that #n(G) > 0, it immediately follows that

((x0) + (Tx0) +... + x(Ta’-lXo))/an > O,

where x is the characteristic function of G. Thus for some r, Trxo e G.
Since Trxo is a periodic point, we arrive at a contradiction. This completes
the proof.
The cbnverse of Theorem 4.1 is still an open problem. It is true, for ex-

ample, in the case when the system (X, T) is L-stable.

The author wishes to thank R. Rangarao, S. Varadhan, and the referee for
their valuable suggestions and criticisms.
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