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1. Historical remarks
L. E. J. Brouwer [1] proved the well-known Brouwer fixed-point theorem.

Let K be an n-cell, that is, a homeomorphic image of an n-dimensional cube.
Let f be continuous function from K into itself. Then there is a point P
of K such that f(P) P.

Schauder [9] extended the domain of validity of this theorem by demon-
strating the Schauder fixed-point theorem. If K is a compact convex subset
of 8 normed linear space X, and if f is a continuous transformation which
carries K into itself, then there is at least one point P of K left fixed by f;
that is, f(P) P.

This was generalized next by Tyhonov [10] when he showedthat Schauder’s
proof could be adapted to prove the existence of a fixed point even if X is a
locally convex linear topological space instead of a normed space.

It is clear that if P is fixed under f, then it is also a fixed point of every
power of f, f2 f f, f3 f o f2, and so on; that is, P is fixed under the smallest
semigroup of operators on K which includes f. In the same way, P is 8 fixed
point of every one of the functions f of family F of functions from K into K,
if and only if P is also a fixed point of every finite product, ()i<_n fi, of func-
tions from F.

It is not known, even for the one-dimensional case, whether every two com-
muting continuous functions from K into K share a common fixed point (see
the research problem of Isbell [6]). This adds to the interest and value of the
generalization of a special case of Tyhonov’s theorem due to Kakutani [7] and
A. A. Markov [8].

KUTANI-MARKOV THEOREM. Let K be a compact convex set in a locally
convex linear topological space, and let F be a commuting family of continuous,
ane transformations, f, of K into itself. Then there is a common fixed point
of the functions in F; that is, there is an x in K such that f(x) x for every
finF.
As in the Tyhonov theorem we observe that it costs nothing in this theorem

to replace F by 2;(F), the smallest semigroup of continuous, affine transforma-
tions of K into itself which contains F. In this case the commutativity of the
family F is carried to the semigroup 2(F), so the theorem above is equivalent
to that obtained by replacing the word "family" by "semigroup".
The property of commutativity is not shared by all semigroups. We discuss

here another property which all commutative semigroups have and some other
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semigroups have, and we give a new proof of the Kakutani-Markov Theorem
which extends to this wider class of semigroups.

THEOREM 1. Let K be a compact convex subset of a locally convex linear
topological space X, and let be a semigroup (under functional composition)
of continuous ajne transformations of K into itself. If , when regarded as an
abstract semigroup, is amenable, or even if it has a left-invariant mean, then
there is in K a common fixed point of the family .
Some generalizations of Theorem 1 are indicated in 4; in particular, see

Theorem 3. 4 also contains an example to show that left-amenable cannot
be replaced by right-amenable and a converse of Theorem 3.

2. Semigroups and invariant means
An abstract semigroup is a set of elements with an associative binary law of

multiplication; a semigroup of operators or semigroup of transformations is a
semigroup of transformations of some set K into itself in which the binary
operation used is functional composition--that is, [f o g](x) f(g(x)) for
each x in K. m(2) is the Banach space of all bounded, real-valued functions
on 2, with the least upper bound norm. Let e be that element of m(2;) for
whiche(g) l for every g in Z. Ameanon is an element ofm(Z)*
such that

(For general information and bibliography on means see my paper [3];
in particular, if is a mean andf e m(2), then glbf(2) <-_ (f) _-< lubf(2;).)
The right [or left] regular representation of 2; over m() is the homomorphism

p [or antihomomorphism hi defined from 2; into the multiplicative semigroup
of the algebra of bounded linear operators from m(2) into itself by: For each
h in 2, ph [or ),h] is that linear operator defined by: For each f in m(2) and
each g in 2;

[pf](g) f(gh) [or [Xf](g) f(hg)].

A mean on Z is called right [or left] invariant if for each f in m(2;) and each
hin2;

(p f) /(f) [or/(X f) /z(f)].
is invariant if it is both right and left invariant. 2; is called amenable if there

exists an invariant mean on Z. If we express this in terms of adjoint operators
of the linear operators ph or ,, a mean is a right, or left, or two-sided, in-
variant mean if and only if is a fixed point of every po*, or every ho*, or
both, respectively.
Note that the amenable groups are the groups called "messbar" in von

Neumann’s paper [11] on the theory of measure. Some recent Scandinavian
writers (FOlner [5]) call them "groups with full Banach mean value".

It is well known that the Kakutani-Markov theorem implies a general
theorem about means on abelian semigroups; Banach proved it for some special
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abelian groups by an application of the Hahn-Banach theorem; yon Neumann’s
paper referred to above has it for abelian and solvable groups; my 1942 paper
[2] on ergodicity of abelian semigroups has a proof for the general case by means
of the Hahn-Banach theorem, essentially using Banach’s proof.

THEOREM 2. Every Abelian semigroup is amenable.

The proof from the Kakutani-Markov theorem is very brief.

3. Proof of the general fixed-point theorem, Theorem 1
Let y be any element of K, and define a linear mapping T from X* into

m(2;) by attaching to each in X* the function T on 2; such that [T](g)
(g(y)) for each g in 2:. Because o is continuous, it is bounded on the com-
pact set K, so T is in m(2;) for each in X*. It is clear that T is linear
from X* into m(2;) hence the function T dual to T can be constructed to
carry each element of m(2;)* to an element of X* [T](o) (To) for
each in X*.

Let K’ be the image of K under the canonical mapping Q of X into
X* [Qx]() (x) for all o in X*. Let M be the set of means on 2:, that
is, the positive face of the unit ball in m(2;)*.

LEMMA 1. If e M, then T e K’.

Proof. If o e X*, then

[T](o) (To) =< sup T(g) g e 2;}

sup{(gy) "ge2;} -<_ sup{o(x) "xeg} sup{Qx(o) "zeK}

sup {(o) e g’}.

This says that T is in every half space of X* which is determined by a
in X* and which is closed. By M:azur’s theorem applied to X* in its weak*

topology, K’ is itself that intersection of half spaces; hence T e Kp.
From this lemma we know that if is in M, then T is in QK, so Q-IT

is in K. Let j be the mapping Q-T of M into K.

LEMMA 2. /f is in M and h is in 2;, then j(*() h(j() ).

Proof. If g e Z, let be the element of M defined by (f) f(g) for each
f in m(2;). Then for each h in 2;

[)*0](f) O()f) [)/](g) f(hg) [hg](f);
that is,

*- hg.
Also for each in X*

(j(O)) (Q-XT) [T](o) 7(To) =-[T](g) (gy).

See my book [4] for notation and for basic results on linear spaces.
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Hence
j gy if g is in 2.

Because j is affine, for each finite mean _’g a(g)--that is to say, all
a(g) are nonnegative, all but finitely many are zero, and g a(g) 1--it
follows that

jS j( a(g)() a(g)j() a(g)g(y).
But

j(X*Sz) J(E a(g)X*) J(E a(g)-) E, a(g)j(-)
ga(g)h(g(y)) a(g)h(j())
h ( a (g)j() ) (because h is affine)

h(jS).

But each of the functions Xh*, h, and j is continuous in an appropriate sense;
also the finite means are w*-dense in M. Hence for each inM

j(Xh*()) j(X*(w*-lim eL)) j(w*-lim (X*&))

limj(X*(&)) limh(j(S))

h(j(w*-lim &)) h(j(,)).

From the lemma we see at once that if is a left-invariant mean on 2, then
j is a common fixed point of all h in 2:. This is the desired conclusion for our
theorem.

4. Generalizations: An example

(a) The proofs of the preceding section can be carried through in some
cases when there is not a left-invariant mean on the whole of re(Z), because
there are many situations in which a small subspace of m(2:) has appropriate
properties and contains all of the functions T e X*. Call a closed, linear
subspace Y of m(2:) left-invariant if for each h in 2: and each y in Y, X y e Y;
call a left-invariant Y left-amenable if e e Y and there is a left-invariant mean
on Y: that is, there is an element of Y* such that for each y in Y,

glb y(2) =< t(Y) _-< lub y(2) and t(Xh y) tt(y) for each h in 2:.
With these assumptions on Y the proofs of Lemmas 1 and 2 go through

unchanged. (The fact that finite means are w*-dense in the means in Y* de-
pends on the fact that each mean in Y* has an extension which is a mean in
m(Z)*; this is a consequence of the Krein monotone extension theorem; see
[4, Chap. I, Sec. 6].)

(b) Suppose, for example, that 2:, which is set of functions from K into K,
is given the topology of pointwise convergence. Then composition, the multi-
plication in 2:, is continuous in each variable (but not both at once), and
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each T is continuous on 2;. Clearly C(2;), the space of bounded, continuous
real-valued functions on 2;, is left-invariant. If C(2;) is also left-amenable,
then there is in K a common fixed point of the elements of 2;.

(c) With this in mind let A (K) be the semigroup (under composition)
of all affine, continuous mappings of K into K, and topologize A (K) with the
topology of pointwise convergence. Let S be any semigroup with a topology
in which multiplication is continuous in each variable, and let r be a continuous
homomorphism of S into A(K). Applying the remarks above to 2 r(S)
we obtain the following generalization of Theorem 1.

THEOREM 3. If there is a left-invariant mean on C(S), then for each compact
convex set K in each locally convex space X andfor each continuous homomorphism
r of S into A (K), there is in K a common fixed point p of all the transformations
in the set r(S).

It should be recalled that Haar measure defines a left-invariant mean on
any compact group, so this theorem includes the cases where K is a discrete
abelian semigroup or a compact group.
The condition of the theorem is sufficient as well as necessary. The adjoint

representation hh* of the left regular representation over C(S) has a fixed
point if and only if C(S) is left-amenable. For S a discrete group this was
first observed by Granirer.

(d) An example shows that left-amenable can not be replaced here by
right-amenable. This is a consequence of the order in which composition is
carried out. Let Kbe the unit interval0 =< _-< 1, and let h(s) for
0 _-< s _-< 1, 0 or 1. Setting {ht 0 or 1}, we get a semigroup
in which the product of each ordered pair of elements is the first element of the
pair. Every ph is the identity in m(2;); no mean is left-invariant on m(2;).
Of course, there is no common fixed point of the transformations of the set
because the ranges of the two transformations are disjoint.
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