
FUNCTIONALS RELATED TO MIXED VOLUMES

BY

We denote by R
sub-vector-spce of R, of dimension m, will be termed m-flt, a stands for
the fmily of l! mpct, convex subsets of /n. An A
convex body;
locally compact, separable, metric spce with the topology introduced by
Minkowski nd Blschke. A reM vlued, continuous function : a R
will be cMled functional (of convex bodies). We will deM only with ’s
hving the following properties"

(1) (tA) (A) (t:R--- Rn; t(x) x + Xo)

(2) (A u B) + (A n B) (A) + (B) (A, B, A u Be e).

We choose now a proper convex body U, to be fixed in the rest of this note.
Theorem 1 below could be formulated in terms of Minkowski integral geome-
try [3], [4], the convex body U being either the indieatrix, or the isoperimetrix.
However, in the present note, we do not want to pursue this direction. It
suffices to say, in order to suggest the role of U in the present context, that,
if we substitute the unit ball, B {x:xe R, x --< 1}, in place of g in
Theorem 1 below, the statement is a well known and useful theorem of
euclidean geometry.
The mixed volumes [2;p. 40]

(3) (A) V(A, U) (i 0, ..., n),

considered as functions of the first argument, are particular functionals
having properties (1), (2). If U B", 0, 1 are proportional to the volume
and surface area, respectively. Furthermore, it is well known [7; p. 221],
that the functionals

(4) W(A) V(A, B) (i O, ..., n)

form a basis in the vector space of the functionls , which are dditive, in
the sense of (2), and are invariant under isometries, that is to say, such that

(5) gA A g R -- Rn; g isometry

holds true for every isometry g.
A weaker form of this statement is the following. A functional is of the

form

(6) (A)
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if and only if (1), (2), and the following condition hold true"

If W(A) W(B), i O, n, then (A) (B).

We will generalize this statement in the present note. Specifically, the
proper, convex body U being given, we consider functionals such that (1),
(2), and the following condition"

(7) If V(A, U) V(B, V), i O, ..., n, then (A) (B)

hold true, and we characterize these functionals.

THnOnnM 1. Let U be a given proper convex body. Then the mixed volumes
V(A, U), i O, n, form a basis in the vector space of functionals satis-
fying (1), (2), (7). In other words, if is a (continuous) functional of convex
bodies, which is translation invariant, additive, and such that (7) holds true, then

(8) (A) 0, V(A, U) (, R)

where the a s are well determined constants. Clearly, all these conditions are
also necessary in order that be of the form (8).

Proof. We will first state and prove some facts on mixed volumes, which
are needed in the proof of Theorem 1.
For every A C, we have V0(A, U) V(A), i.e., the volume of A, and

Vn(A, U) V(U). It is known, and easy to prove, thnt

(9) /fdimA <= k, then Vi(A, U) O, i 0,.-.,n- It- 1.

Let us denote by C] the volume of C C in the smallest flat containing C.
Thus C 0, DI V(D) amounts to saying that C is empty and D is
proper. Given a direction u, i.e., unit vector u, we denote by A the pro-
jection of A into an (n 1)-flat perpendicular to u. In fact, we will use the
well determined A only. Then we have

(10) V,(A - ,[u], U) cY(A, U)u - V,(A, U),

where e R, > 0, [u] denotes the segment joining the origin to u, c is a

constant, and V(A,, U) stands for the i mixed volume in the (n 1 )-flat
containing A and U.. Equation (10) can easily be proved by computing

8__ V(A + [u], V);

see [6] for a similar result.
The last auxiliary result needed concerns V(C, U), where C is a/c-dimen-

sional box. Let there be given k linearly independent unit vectors

See [5] for complete proofs. ([5] is a Technical Report, which can be obtained from
the University of California, Berkeley, Department of Mthematics.) The present note
is but a short version of [5], which gives detailed proofs as well as some discussion of the
relevant prt of the theory of convex bodies.
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ul, uk, andkrealnulnbersti > 0, i 1, lc. If Ck denotes the
box spanned by 1 ul, "-’, tk uk, or, equivalently, the Minkowski sum
tl[Ul] + + tk[u], we have

(11) Vi(C, U) O, i O, ..., n Ic 1;

(12) v_(c u) c tth tz (1 0, lc).

In (12) we have a full homogeneous polynomial of degree l; moreover,

(13) cil"’’i > 0

for every choice of integers, repetitions allowed, from the set {1, ..., k};
we may agree that the c’s are symmetric in the superscripts.

Of course, (11 is just a special case of (9). We prove (12) by an induction
on It, using the decomposition C C_ + tt[u] A + td in (10). In
this manner the c’s can also be computed, but it is enough to know (13) in
the sequel.

Let there be given /u, u/ and Ivy, vkl, two sets of k linearly
independent vectors each. Given t* (t, t) md (, ),
we denote by C and D the boxes spanned by lu, ..., tu} and
l u, uk}, respectively. We define a map F" R -- R by

F(,) (V_(C, U), ..., V_,(, U))

(, );

the map G" R R, with the same R, is defined similarly, using D in
place of C. It is not difficult to prove then, that there arc numbers
t > 0, > 0, i 1, -.., k, such that F() (;() holds true. This
statement (tan be proved by an induction on It, using (1_2), (13), and the fact
that by an appropriate choice of t > 0, > 0, the functional determinants
of the maps F, G are 0.

Reformulating this result in terms of mixed volumes, we have the follow-
ing. Given two sets of lc independent vectors each, there are/c-dimensional

boxes Ck, D, spanned by proportional vectors, and such that

(14) V(C, U) V:(D, U), i 0,..., n,

holds true.
We come now to the proof proper of Theorem 1. Given , satisfying the

conditions of the theorem, we will define functionals

(5) (A) ,(A) ,._ V(A, U) ( R)

by induction on lc. Our construction will be such that (1), (2), (7) hold
true;furthermore will be such that

(16) /f dim A <= lc, then (A O.

By the last condition, 6 will be identically zero; thus we will have (8).



428

We set a (Xo)/V(U), where x0 is a fixed point of Rn; here we use the
hypothesis that U is a proper convex body; thus V(U) O. Then

R0(A) (A) (x0); thus 0 is zero for every point x because is
translation invariant. This function also has the other required properties.
We suppose now that -1 has been defined and satisfies 1 ), (2), (7), (15),

(16). Let L be a given /c-flat in R. We consider the restriction of

_
to

the family of convex bodies contained in L. This restriction is then simply
additive, i.e.,

_I(AuB) _(A) +_(B) (A,B cL, AuBee),

if dim (AnB) N ]c-- 1, inviewof (2) and (16). From this, and from the
other properties of ,_ follows easily [7] that

(17) _(A) 3Ve(A) (A c L; 3 R),

where V is the volume in the k-flat L. Now, the mixed volume V_(A, U),
as a function of A L, has also the properties (1), (2), (16) for lc 1 in
place of It; thus

(18) V,,_(A, U) V(A.) (A c L; R).

Vrom (17) and (18) follows"

(19) g A c L, _(A a,,_ V,,_(A, V),

with a well determined constant
Let M be another, giwm It-flat in R. There exists then another constant

such that

(20) U A M, then -1(A :_ Y,_ A U)

holds true. We will prove now that, in fact, the two constants are equal"

(21.)

We choose boxes C c L and D c M, whose l-volumes are nonzero, and
such that (14) holds true. Then, by hypothesis (7), we have _(C)
k--l(Dk), and, by (19), this implies (21). As now in (19) the constant
a,,_ is independent of the k-fiat L, we can formulate our result as follows"

(22) g dim A 1, then

_
A a,,_ V,,_ A U

where ,,_ is a constant. We now define Ce by

(A) _1(A) ..._ V_(A. U).

using this constant a_. Then Ce has properties (1), (2), (7), (15), (16)
which completes the induction step. As we remarked at the beginning of the
proof, this implies the statement of Theorem 1.
The mixed volumes (3), and thus, in general, the functionals (8), are not

invariant under rotations. As to the average value of V(gA, U), as a func-
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tion of the element g of the orthogonal group 0,, we have the following
result.

THEOIEM 2. We consider convex bodies in a given euclidean space R’.
There are constants a, v, i, j 0,... n, such that, if dA is the kinematic
density of the convex body A (i.e., the volume element in the rotation group 0,),
then

(23) V(A, U) dA a Wi(A) W(U)
i,j=0

where W denotes the functional defined in (4).

Proof. We fix an integer v, 0 v n, andset

(24) f( U) f V(A, U)dA.

Then f(U) is continuous in U nd has properties (1), (2), (5); thus, for a
given, fixed A, we have

(2) f(U) ,0 ,(A) W(V).

Simple transformations of the integral (24) and uniqueness of the representa-
tion of an additive and isometry-invariant functional in terms of (4) gives
for the coefficients a(A in (25) that a.(gA a(A), g" R Rn, g isome-
try, and

a(AoB) +a(AB) a(A) +a(B) (A, B, A u Bee)

hold true. Hence, using again [7;p. 221], we have"

a W(U).

This completes the proof of (23).
Remark. I was unable to compute effectively the constants a but I con-

jecture that this should be possible, by evaluating the integrals

where denotes an m-dimensional box. So far as I know, i is possible
gha he ’ are all ero, exeep for he diagonal ones.
The resul formulated below follows immediately from he wo previous

gheorems.

To a. Le be a (conio) fnctional of convez bodie which i
lranlaio ivarian, additive, ad hich aifie (7) h i a i Theorem 1.
If dA denoe he inemic denig of he convez bodg A, e have

where *he " are conalan, deermied b .
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