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1. Introduction

In their recent pper [2] Hewitt nd Kkutni prove truly remarkable
theorem: Let G be a locally compact Abelian group, and let M(G) be the meas-
ure algebra on G. Let P be an independent subset of G, and denote by
M P u P) the linear subspace of measures concentrated on P u P If
L is any linear functional on M(P u -P) of norm 1 and satisfying the property
L(rx)L((r_x) l for eery x P, then there is a homomorphism h defined on all
of M G which agrees with L on M Q

Their proof is an existence proof. In this paper we actually construct
such a homomorphism. This construction, we believe, contributes to bet-
ter understanding of the complexities of measure algebras. It is easy to
prove, vi this construction, that the extension of a linear functional to a
homomorphism is unique if restricted to the subalgebra M defined below.
In later paper we hope to use this fct to describe the ideal space of M and
to give an analysis of this sublgebra.
We outline the procedure for constructing the homomorphism. Let M0

be the algebra generated by M(P u-P) and all the discrete measures.
Then let M be the algebr consisting of all those measures which re b-
solutely continuous to some element of M0. We let h L on M(P u -P)
and extend h to M m,king use of reider’s "generalized functions" (see [3]).
After proving h is well defined nd h is a homomorphism on M, we extend
h to be a homomorphism on the closure M of M. Next, we show that the
orthogonal complement M" of M is an ideal and M(G) is the direct sum of M
and M’. We conclude by defining h() h(.) where t* M(G) und #.

is the projection of t* on M.
In 3 we prove a "generalized Lebesgue decomposition theorem" which

plays a small but important role in our construction. In 4 we construct
the homomorphism.

2. Preliminaries

Throughout this pper we ssume G is a locally compact Abelian dditive
group. We let M(G) be the set, of all complex-valued regular Borel measures
on G. It should be noted that Haar measure rn is in M(G) if and only if G
is compact. With addition and scalar multiplication defined in the obvious
way, M(G) is a Banach space under the norm of total variation, i.e.,
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f dl I. (For this and other notation not specifically explained, see Hal-
mos [1].) We can define a multiplication, called convolution, between meas-
ures. Let t and X be elements of M(G), and let S be any Borel subset of G;
define

(2.1) X(S) f z( S x) dX(x).

Clearly, x Ix so that with this multiplication, M(G) is a
Banaeh algebra,. It is commutative since G is Abelian. An equivalent defi-
nition (see Stromberg [4]) which we use extensively is as follows" let

T {(x,y) eG X G’x L y
Then define

(2.2) .,x(s) =.xx(T) ( X X is the product measure).

Given two measures and h, we say is absolutely continuous with respect to, in symbols <<X, if (S) 0 whenever IXI(S) 0. If < and
< , then X and are equivalent and we write =- . A measure is singu-

lar (or orthogonal) to another measure X, in symbols _L , if there are sets
A and B such that A u B G and II(S n B) 0 xl(S A) for
every Borel set S. The Lebesgue decomposition theorem states that given, X M(G) there exist measures 1 and 2 such that t 1 -t- ,. with << X
and ,. _L X. We make frequent use of this result. If M c M(G), we de-
note by M" the orthogonal complement of M, i.e.,

M" {XeM(G):,eM, 2 X}.

A measure is concentrated on a set A if t(B) 0 whenever A n B 9.
If t is concentrated on a countable set, then is called discrete. For any
x e G, we will always denote by Cx the measure defined by (A) 0 or 1
depending on whether x A or x e A; thus every discrete measure can be
represented by a sum=z z complex. The measure 0 is the identity
of M(G). If ({x}) 0 for all x G, then t is said to be continuous. The
continuous measures form an ideal of M(G). If t M(G) and A c G,
the measure =IA is defined by X(S) (A n S).
When we want to say a relation p(x) q(x) holds almost everywhere

with respect to a measure t, we write p(x) q(x)[t]. By this we mean

For any set A G, we set A {0}, A A, and A A +A- for
n 2, 3,.... Again setA (*) AandA() A X A(-l) forn 2, 3,....
A subset P G is said to be independent (over the integers) if whenever

x, x, are distinct elements of P and q, q,, arc integers not all
zero, we have q x, - q- q., x 0.
A regular family of sets in G is a collection F of subsets of G satisfying: (1)

if A F, then every Borel subset of A is again in F, (2) F is closed under count-
able unions, (3) F is closed under arithmetic sums, i.e., A, B e F implies



(A -k B) e F, and (4) all countable sets are in F. It is not hard to see that
for a given set A c G, the regular family generated by A is the collection
{{U:=I(A - x)’A A, xe G}}, where if A 0, then (A -k x)
{xn}. A measure p is concentrated in F if is concentrated on some element of
F. We say is concentrated outside F if (A) 0 for all A eF. D.A.
Raikov (see Sreder [3]) has proved (1) the set H of measures concentrated in
F is an algebra; (2) the set I of measures concentrated outside F is an ideal, and
(3) M(G) is the direct sum of H and I.
One final preliminary remark.
We make use of reder’s "generalized functions." A generalized function

L is a function L’M(G) X G-- C (C complex plane) such that (1) for
fixed t e M(G), L(, x) is -measurable, and (2) if << X, then L(, x)
L(},, x)[t]. Srelder [3] proved these generalized functions characterize the
dual space of M(G) in the following way" If L is any bounded linear func-
tional on M(G), then there is a generalized function L(t, x) such that

L(t) fo L(t, x) dt(x) and L sup,()[ess, sup[ L(t, x) 1}.

3. Generalized Lebesgue decomposition theorem

Let M be a closed linear subspace of M(G) with the property that M and
t implies M. Then M(G) can be decomposed into the direct sum

M(G) M -- M’.
Remartc. By the statement M(G) is the direct sum of M and M" we mean

that each element e M(G) has a unique representation t’ -k t" with
t’ e M and t" e M’.

Proof. The proof is by contradiction; we suppose that e M(G) and t
M’. Mcannot be written as ’ -k- " with ’ M and " Since

there exists aXeMsuchthat t l-f- rlwith <<Xand rl_L X. Thus
(1) 0, (2) e M, and (3) there is a subset K G with t[K .
We proceed by transfinite induction. Let be the first uncountable ordinal,
and suppose for each ordinal k, k < 0 < , we have defined a such that
(1), (2), and (3) hold and, in addition, (4) KI n K2 0 if kl k2. It
follows from (3) and (4) and the fact 0 is a countable ordinal that the sum
0 <o makes sense; for

,0(S) <0 (S) <0 t(S n K) ,(U<0(S n K)).

Furthermore, 0 e M since M is closed. Now write t -k 2 with , << 0
Mand _L 0. By our assumption 0 and 2 e by decomposing 2

in the right way we can produce 0 in such a way that properties (1)-(4)
hold for k _-< k0. Thus, for each countable ordinal k we have nonzero. This is obviously not possible since there are uncountably many count-
able ordinals and is a finite measure.

Note. The above theorem can be obtaiDed from a general result on or-
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dered linear spaces due to F. Riesz (see N. BOURBAKI, Integration). The proof
is included here for completeness.

4. Construction of the homomorphism
Let P be an independent subset of G, and set Q P u -P. We denote

by M(Q) the linear subspace of all measures in M(G) which are concentrated
Oil Qo

Suppose L is any linear functional on M(Q) of norm 1 with the property
L(rx)L((r_x) 1 for any x P. We wish to construct a homomorphism h
defined on all of M(G) which agrees with L when restricted to M(Q).

First, observe that by the Hahn-Banach theorem and Sreider’s work, we
know there is a generalized function L(t, x) such that L() fL(, x) d(x)
for all e M(Q).

Next, we note that L 1 and L(ax)L(a_x) 1 together imply L(ax)
L(a_.). Since P is independent, it now follows that the function x(x)
L(rx, x) for x Q can be extended to a homomorphism of the entire group G
into the circle group. We denote this extension also by x. For any dis-
crete measure , define h() fx(x) d(x). Then h(t) L() if t M(Q),
and furthermore, h is a multiplicative linear functional on the algebra of all dis-
crete measures in M(G).

Third, we let M0 be the algebra generated by all discrete measures and
M(Q). Then a general element of M0 may be represented as

(4.1) u + ’lt}’*tl,i*’’’*tm,"
(, t" discrete; m 1, 2, vm, continuous members of M(Q) ).

Abbreviating v. t. vl,. tm,", we use the notation above to define

h(t) .fx(x) d(x)
(4.2)

2V X(s)L(#I, t) L(tzm,i v) dttj(8 -J- -J- -J-

Let us suppose for the moment that h is well defined on Mo by (4.2).
Clearly, h agrees with L on M(Q). Applying the Fubini theorem and the

generalized version of (2.2) to the second term of (4.2) yields

h(,) h() - =1 h(i)L(t,i) L(m,i)

h(i) + =1 h(.)h(l,-) h(m,.).

This, together with the fact h is already a homomorphism on the discrete
measures implies that h is a homomorphism on Mo.
Now let M be the set of all measures in M(G) which are absolutely con-

tinuous with respect to some measure in M0. Observe that if

+ ; ,. .... ,,
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is in M0, then so is Il + EII *1,1 *-" *1,1. It
follows that M1 is an algebra. (Addition is trivial; for convolution see, for
example, Sreider [3], p. 9.) We now extend h to M1 by the following device.
If + 1j ( is gS in (4.2)) is in M0 and << , we write X as the
sum k 0X of mutually singular components with 0 << and X << p,
1 j n. Then we define h by

h(x) ./x(x) dXo(X)
(4.3)

+ E ]x()L(,, t) L(,, v)d( + + + ).

We interrupt our construction t this point to prove h is well defined by
(4.2) and (4.3) and these definitions are consistent. We need the following
lemmns.

LEMMA 1. Let x and y be arbitrary elements of G, and let , be
continuous measures in M(Q). If n > m, then

l** ,1( + Q) 0.

Proof. Let z,,-.. *n; then is concentrated on x+ Q".
Wcwillshow]I((x+ Q’) n (y+ Qm)) 0. To that end, let Sbeany
Borel subset of that intersection, and let, {(x, s, Sn) {X} X Q(n)’x + s + + Sn }.

By definition (2.2),

() x ,n(n).

Now if (x, Sl, s,) S,, then there is a se {t, t} Q such that

x+s+...+s,=y+t+...+t.

Write s uand t vwhere a 1 and uand vare in P. Thus

u + + au vv vv y- x.

If s s 0 for 1 i < j n, then the independence of P and the hy-
pothesis n > m insures the existence of u, 1 n, such that every such
representation of y- x contains the term u s. Clearly, the subset
of S, consisting of those elements for which some coordinate (larger than 1)
is s has measure zero w.r.t. X X X ,. Now consider those
elements of S, for which s s # 0 and s does not appear. Then
s must appear as some v, and we will be left, as before, with a u s.
This can only proceed a finite number of times, and at each step we have a
set of measure zero. We conclude that the subset of S for which s s # 0
has measure zero w.r.t, z ,. If s s 0 for some i # j, the
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situation is somewhat more complicated. For 1 _-< i < j _-< n, let

Ti,] (x, 81, ’’’, 8n) . Sn’Si 8j 0},

T,j,sj (x, Yl, Y-I) e {z} X
(x, Yl Yj-1 8j yj Yn--1) e

Now T,j,8. c {x} X Q X X {-+-s-} X X Q where /=t=s’} appears
as the ith factor. Since is continuous,

It follows from the definition of product measures (see Halmos [1]) that
zx X tl X X n(T,’) 0. Thus we divide S into a finite number of
sets each of which has p-measure zero. Our lemma is proved.

COROLLARY. Let 1 and be any discrete measures, and let tl, ,
1, , be continuous elements of M(Q). If n > m, then #1 * *
is singular to 1 * * ,.
The corollary is an immediate consequence of Lemma 1.
The next lemma plays an important role in our construction and is quite

interesting in its own right.

LEMMA 2. Let and be any two discrete measures, and let t,,,..., ,, be continuous elements of M(Q). Suppose that {}=1 and
are orthogonal collections, i.e., t _k for 1 <__ i <= ]c <= n and 1 <= j <=m <=
n. If t - m > n, then t 1 * tl * * is singular to

* 1" *

Proof. It is sufficient to prove the statement for the case til x and
a. It follows from the orthogonality condition there exist sets A and

B contained in Q such that A a B ), each , 1 _<- i _-< ]c, is concentrated
on A, and each h., 1 __< j =< m, is concentrated on B. Hence t is concen-
trated on (x - A - Q-), while is concentrated on (y - B + Q-m).
Again let S be any Borel subset of ((x + A - Q-) a (y -t- B -t- Q’-)).
If x- al- - a q+- - qn eS, then there are elements
bl, b and r+, r of B and Q, respectively, with

xl a - - q, y bl rn.

In other words

(a -t- -t- a b b.)

+ (q+ -t- -f- q= r+ r=) y x.

Since k -t- m > (n /c) -t- (n m) and A n B 0 we may split S into
two sets" S, the set where at least one a is not cancelled by any q or r, and
S, the complement. Using precisely the same argument as in Lemma 1,
g(S1) ),($2) 0 holds. It follows that g and X are singular.
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LEMMA 3. Let t 1 * t * * t, and let X 2 * * * hm
where 2 are discrete and the ’s and h’s are continuous elements of M(Q).
Suppose =.n ’ where / .L and /<<X. Then

x(s)L( t) L( v) x(8)L(Xl t) L(h, v)[,2],

where t, v are in Q and s is arbitrary.

Remarlc. It makes sense to talk about these products being equal almost
everywhere w.r.t. "r since, if we disregard the variable s, / is concentrated
on Qn. Hence an element in the "domain" of looks like + -t- v.

Proof. First observe if ,2 0 the statement is trivial; if , 0, then
n m holds by the corollary to Lemma 1.

Write X as the sum of 2n-1 mutually orthogonM components

i E 0/i,(1),"’,J(n)

where j(r) 0 or 1 according to whether this component is singular or
absolutely continuous to Xr. Since j(i) is always 1, there are 2n-1 different
components. This decomposition is accomplished as follows" write

)kl 0/1,0 + 0/1,1

with a,o _k X2 and a, << X2. Then O/1,0 0/1,0,0 + 0/1,0,1 with 0/1,o,o _k ),
and 0/1,o,1 << X, etc. It is important to note that given any component 0/ of
X and any’ X, 1 N r n, then a X or a << Xr.
We list these components in the form of an n 2- matrix where the it

row is the decomposition of . For each lc, 1 N lc N n, we write
fl,, + where ,1, is absolutely continuous to the (1,1) entry in the matrix
and is singular to it. Next write ,, + ’ with ,, absolutely con-
tinuous to the (1,2) entry and ’ singular to it. Continuing in this way we
can write as the sum of n2- + 1 measures" n2"- measures ,,, 1 N
i N n and 1 N j N 2"-1 plus one measure ,0,0 which is singular to each
entry and, hence, singular to each hr. Again, it is important to notice that
for a given ,,i and any X, either ,, << X or ,, X.
Now a general term in the product 1 * * looks like

1 * l,il,Jl * * n,in,jn

where the i’s and j’s run over the proper ranges. Now if this term is singular
to X, we are not interested in it; therefore we assume this term is not singular
to X. If this is the case, Lemma 2 assures us there is some factor ,. << X
for the sake of economy in notation call it 1. Using this notation, we pro-
ceed by induction. Suppose we have arranged the factors so that e << X
for 1, 2, r < n. if, in the remaining factors, one is absolutely con-
tinuous to Xr+, we call it +, and our induction is complete; thus we
must assume the remaining (n r) factors are all singular to Xr+. Let
{1, "’", 1 be the subset of {1, "", r} each of whose elements is ab-
solutely continuous to Xr+ and let {,-.-,,} be that subset each of
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whose elements is singular to Xr+.. Since each /%factor is either singular
or absolutely continuous to Xr+l, we have p + s r. We know p > 0
because if it were 0 we could invoke Lemma 2 to produce a contradiction
to our assumption of nonsingularity. If any one of the remaining -faetors
is absolutely continuous to some Xki, 1 -< i =< p, we can rearrange to let this
new/-faetor become ki and let the original stand for r+l. If this is not
the ease, then the remaining (n r) factors are all singular to each
and there are p of these; hence s > 0. Now let {ql, q} be that subset of
/ml,"’, fires} each of whose elements is absolutely continuous to some
X, 1 =< i _<- p, and let/,, ,/,} be that subset each of whose elements is
singular to everyX. As before, t-t- v s; if 0, theneaeh, 1 =<
j __< s, is singular to Xk,... , Xt and Xr+l. Thus the set {,.-.,
together with the remaining (n- r) factors are each singular to (p - 1)
X-factors; but (n- r + s) -t- (p-t- 1) n+ 1, so we know > 0. If
any one of the remaining (n r) factors is absolutely continuous to some
Xqi, 1 -< i __< t, we make two rearrangements similar to the one above and
end our proof. If not, then the (n r) -factors are singular to each X.
So far then, they are singular to (p -- -t- 1) X-factors. Lemma 2 and our
assumption will call an early halt to such proceedings, and we conclude an
arrangement may be made so that/ << X for i 1, n. This being so,
we know, by a property of generalized functions, that

L(/i, x) L(Xi, x)[/i].

We further conclude the lemma is proved.
In view of Lemma 3, h is certainly well defined by (4.2); for if

E
then ti ti’ and we can write

ti /, q- q- /,i and ,t, q- q- ,,k

with 3’.i i,. It follows that (4.2) yields the same value for each repre-
sentation. That (4.3) is well defined and is consistent with (4.2) is now
immediate.

Recall that M0 is the smallest algebra containing M(Q) and all discrete
measures, and M1 is the algebra of all measures absolutely continuous w.r.t.
some element of M0. We wish to show that h defined on Mt by (4.3) is a
homomorphism. First h is additive, for suppose

X << it + .= and

There is no loss of generality in assuming each of these measures is positive.
Then X, , and (X - ) are absolutely continuous to the sum of these two
measures. As in the definition (4.3) we write X, t, and (X -t- ) as the sum
of 1 -n + m components since there are that many terms in the sum,
whereX0<<it-t-ti’,Xi<<,l =< i_ n, andX<<u,l_<_ i- n_<- n-t-m;
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and similarly for and (X + ). Now given any Borel set S, there is a set
Ki c G (i is concentrated on K), and X(S) X(S n Ki); the equality
remains true if we replace X and X by and ,, or by (X zc ) and (X + ).
Thus

(X + )(S) (X + ,)(SnK) X(SnK) + (SnK)
x(s) + (s);

i.e., ( + ) + ,. It follows that h is additive on M. Clearly
h is homogeneous, and to prove multiplicity we let

X 0X and v 0v
as in (4.3). Since h is additive, we have h(X v) . h(X v). Now
Xi v << vi * . eferring o the definigion of and v and using he
Fubini heorem we see hag h(X. v)= h(Xi)h(v). Thus

h(X v) . h(X v) , h(X)h(v)

(h(X))( h(v)) h(X)h(v).

So h is a bounded homomorphism on M ezend h iqelg to a homomor-
phism on the closure M of M.
Now M sagisfies he hypothesis of he generalized Lebesgue decomposition

heorem. To see this, leg v M and let X << . There is a sequence
{} M1 with . Write X Xl. + X2., where X. v, and
X2,n << n. It follows that X. 0 and Xz, X. But each X2,, Ma, so

X e M. Therefore we may decompose M(G) into the direct sum M(G)
M+M.
We now extend h to the entire algebra by the usual device" if g M(G),

define

(4.4) h() h(g) (. is the projection of u on M).

A simple calculation shows that h is linear on M(G). If we can prove that
M is an ideal, it will follow h is also multiplicative.

Consider the regular family of sets F generated by Q (see 2). Let H
be the algebra of all measures concentrated in F, and let I be the ideal of all
measures concentrated outside F. We know M(G) H + I and, clearly,

MMH and I M. To prove our assertion above, let ue and
heM(G). Writeu= u,+ uandX Xz+X,whereuz,ete. arethepro-
jeetions on H and I. So u X u, X + where I M; hence we may
as well assume that u and X are concentrated in F. Because of our earlier re-
marks on regular families, and because H and M are "translation invariant"
(this means e H u e H for all x G; is a measure defined by g(A)
(A x)), we may, and do, assume that u and X are concentrated on Q"
and Q, respectively. We make one further observation; it is sufficient to
prove u X Z 1 $ $Pm where g e M(Q), 1 N i N m. For, if this is
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true for all XeH, then v,(X,z_x) _[_ 1,’" ,m which implies

It would follow that v X _k M0, and consequently, v X e M.
Therefore, we assume (M+/-n H), X H, v is concentrated on Qs, X is

concentrated on Qt, and 1. * where ti e M(Q). We will
prove , X _1_ #.

n--lfliLet Q0 {0}, Q1 Q, and for each n 2, 3,..., let Q Q’- Ui=l.
Then Qn= Uin...l(Qirl Qn), and the sets (QinQ) are mutually disjoint.
Let i l(QinQS) and X.= Xl(Q.nQt) for 1 _-< i_-< s and 1 _-<j_-< t.

LEMMA 4. For each lc 2, 3, i < s, there are only a countable number
of elements {x,j}.=l Qi_ such that (Q + x,i) Qi and v(Q + x,i) O.

Proof. Clearly,(Q - x) 0foreveryxeGsince u 2_ M. Letlc 2.
For x x.eQ_, let xt qt + -t- q,- and x. r+ + r_.
Then (Q -t- x) n (Q -t- x.) is empty, one point, or a translation of Q
depending on whether x and x have (i 5) or less common terms, (i 4)
common terms, or (i- 3) common terms. In any case

’i((Q + x) n (Q + x)) 0;

this surely implies the lemma is true for /c 2. Using induction, suppose
the statement is true for lc < n =< i. Now x x. are in Q_, and

(Q, + x.) Q, j 1, 2.

By using the above argument, if they have i 2n + 1 or less elements in
common, ,((Qn + x) n (Q, - x)) 0. On the other hand, for each
j 1, 2, n 2, if xl and x have i 2n + 1 -[- j common terms, then
(Q - x) n (Q -t- x2) (Q+i - y) where y e Q--I. Observe, since
all of these sets are in Q., a term appears in y if and only if it appears either
in x or x.. (It is assumed, of course, if a term appears more than once, it is
counted as a separate term each time.) Thus, there are at most (-)
sets (Q - x) whose pairwisc intersections arc contained in (Q.+ + y)
for each y Qi-i-1. By the induction hypothesis only a countable number
of sets (Q + x) can have pairwisc intersections of nonzero -mcasure; so
the rest must have pairwise intersections of zero ,i-measure. The desired
conclusion is now immediate.

Let {x,,}, i 2,--., s- 1; lc 2,..., i; and j 1, 2,...be the
sequence of elements such that (1) x,,, Qi_, (2) (Q + x,,-) Q,
and (3) (Q + x,,.) 0. For convenience, we also allow 0 to be in this
sequence.
We assert the existence of subsets A, B, B such that
(1) v is concentrated on A and , is concentrated on B,, 1 =< p _-< m,

and
(2) .pi * * tzp Bp At- -at- Bpr rl A -4- xi,,j 0
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(here we want 0 to be one of the xi,k,) for any combination of t’s and all
x,k..’s. The construction of such sets is not hard; we consider
and all products of these. There are only countabIy many finite sums

x..., and . :x... .. is singular to M. The rest is
straightforward.
We are now ready to prove v. X . Recall X is concentrated on Qt,

and now v is concentrated on Q" n A, and is concentrated on

=B=B+... +B.
Also = u i(QQaA) ndX= ](QQ). It is sufficient to prove
u,k for 811 i ndj, 1 i s and 1 j t. We shall show that
any Borel set S (= B, (Q A) + Q)) can be written as the union

of sets each of which is either of h-measure zero or of -measure zero.

First, if m > i + j, then Lemma 1 provides (S) 0; we therefore as-
sumem iWjand=BQ. Next, ifm i+j, then some finite
sum of b’s is in A, and by condition (2) above it would follow that (S) 0.
So it reduces to the case m < i + j. If s

qi e Q A, a y r + + r e Q and
such that s x + y b. Since m < i +j, we must have qu -r,,

qu -r, where w (i + j m).
Thusxe(Q_ +z) where z --(qul + + q) e Qw DivideSinto

sets

S {s S:s x + y; x (Q_, + z) , A; ,(Q_ + z) 0}

and its complement S. If seS, then zis some x,,. But x q+z,
qeQ_; this makes q x- ze(A z). This compels finite sum of
b’s to be in (A z), and, as before, ($1) 0. Now

S={sS’s=x+y;x(O_.+z)A;(Q_+z) =01.
So for each fixed y, u(Qi_ + z) 0, and we infer that u. h(S) 0.
This completes the proof and the construction.

REFERENCES

1. PAUL HALMOS, Measure theory, New York, D. Van Nostrand Co., 1950.
2. E. HEWITT AND S. KAKUTANI, A class of multiplicative linear functionals on the meas-

ure algebra of a locally compact Abelian group, Illinois J. Math., vol. 4 (1960),
pp. 553-574.

3. YU. A. REIDER, The structure of maximal ideals in rings of measures with convolution,
Amer. Math. Soc. Translations, no. 81, Providence, 1953.

4. KARL STROMBERG, A note on the convolution of regular measures, Math. Scand.,
vol. 7 (1959), pp. 347-352.

NORTHWESTERN UNIVERSITY
EVANSTON ILLINOIS


