hOMOMORPHISMS OF MEASURE ALGEBRAS

BY
Arthur B. Simon ${ }^{1,2}$

1. Introduction

In their recent paper [2] Hewitt and Kakutani prove a truly remarkable theorem: Let G be a locally compact Abelian group, and let $M(G)$ be the measure algebra on G. Let P be an independent subset of G, and denote by $M(P \mathbf{u}-P)$ the linear subspace of measures concentrated on $(P \mathbf{u}-P)$. If L is any linear functional on $M(P \mathbf{u}-P)$ of norm 1 and satisfying the property $L\left(\sigma_{x}\right) L\left(\sigma_{-x}\right)=1$ for every $x \in P$, then there is a homomorphism h defined on all of $M(G)$ which agrees with L on $M(Q)$.

Their proof is an existence proof. In this paper we actually construct such a homomorphism. This construction, we believe, contributes to a better understanding of the complexities of measure algebras. It is easy to prove, via this construction, that the extension of a linear functional to a homomorphism is unique if restricted to the subalgebra M defined below. In a later paper we hope to use this fact to describe the ideal space of M and to give an analysis of this subalgebra.

We outline the procedure for constructing the homomorphism. Let M_{0} be the algebra generated by $M(P \mathrm{u}-P)$ and all the discrete measures. Then let M_{1} be the algebra consisting of all those measures which are absolutely continuous to some element of M_{0}. We let $h=L$ on $M(P$ u $-P)$ and extend h to M_{1} making use of Šreĭder's "generalized functions" (see [3]). After proving h is well defined and h is a homomorphism on M_{1}, we extend h to be a homomorphism on the closure M of M_{1}. Next, we show that the orthogonal complement M^{\perp} of M is an ideal and $M(G)$ is the direct sum of M and M^{\perp}. We conclude by defining $h(\mu)=h\left(\mu_{M}\right)$ where $\mu \epsilon M(G)$ and μ_{M} is the projection of μ on M.

In §3 we prove a "generalized Lebesgue decomposition theorem" which plays a small but important role in our construction. In $\S 4$ we construct the homomorphism.

2. Preliminaries

Throughout this paper we assume G is a locally compact Abelian additive group. We let $M(G)$ be the set of all complex-valued regular Borel measures on G. It should be noted that Haar measure m is in $M(G)$ if and only if G is compact. With addition and scalar multiplication defined in the obvious way, $M(G)$ is a Banach space under the norm of total variation, i.e., $\|\mu\|=$

[^0]$\int_{G} d|\mu|$. (For this and other notation not specifically explained, see Halmos [1].) We can define a multiplication, called convolution, between measures. Let μ and λ be elements of $M(G)$, and let S be any Borel subset of G; define
\[

$$
\begin{equation*}
\mu * \lambda(S)=\int_{G} \mu(S-x) d \lambda(x) \tag{2.1}
\end{equation*}
$$

\]

Clearly, $\|\mu * \lambda\| \leqq\|\mu\|\|\lambda\|$ so that with this multiplication, $M(G)$ is a Banach algebra. It is commutative since G is Abelian. An equivalent definition (see Stromberg [4]) which we use extensively is as follows: let

$$
T=\{(x, y) \in G \times G: x+y \in S\} .
$$

Then define

$$
\begin{equation*}
\mu * \lambda(S)=\mu \times \lambda(T) \quad(\mu \times \lambda \text { is the product measure }) \tag{2.2}
\end{equation*}
$$

Given two measures μ and λ, we say μ is absolutely continuous with respect to λ, in symbols $\mu \ll \lambda$, if $\mu(S)=0$ whenever $|\lambda|(S)=0$. If $\mu \ll \lambda$ and $\lambda \ll \mu$, then λ and μ are equivalent and we write $\mu \equiv \lambda$. A measure μ is singular (or orthogonal) to another measure λ, in symbols $\mu \perp \lambda$, if there are sets A and B such that A u $B=G$ and $|\mu|(S \cap B)=0=|\lambda|(S \cap A)$ for every Borel set S. The Lebesgue decomposition theorem states that given $\mu, \lambda \in M(G)$ there exist measures μ_{1} and μ_{2} such that $\mu=\mu_{1}+\mu_{2}$ with $\mu_{1} \ll \lambda$ and $\mu_{2} \perp \lambda$. We make frequent use of this result. If $M \subset M(G)$, we denote by M^{\perp} the orthogonal complement of M, i.e.,

$$
M^{\perp}=\{\lambda \in M(G): \mu \in M \Rightarrow \mu \perp \lambda\}
$$

A measure μ is concentrated on a set A if $\mu(B)=0$ whenever $A \cap B=\emptyset$. If μ is concentrated on a countable set, then μ is called discrete. For any $x \in G$, we will always denote by σ_{x} the measure defined by $\sigma_{x}(A)=0$ or 1 depending on whether $x \notin A$ or $x \in A$; thus every discrete measure can be represented by a sum $\sum_{i=1}^{\infty} z_{i} \sigma_{x_{i}}, z_{i}$ complex. The measure σ_{0} is the identity of $M(G)$. If $\mu(\{x\})=0$ for all $x \in G$, then μ is said to be continuous. The continuous measures form an ideal of $M(G)$. If $\mu \in M(G)$ and $A \subset G$, the measure $\lambda=\mu \mid A$ is defined by $\lambda(S)=\mu(A \cap S)$.

When we want to say a relation $p(x)=q(x)$ holds almost everywhere with respect to a measure μ, we write $p(x)=q(x)[\mu]$. By this we mean $|\mu|(\{x: p(x) \neq q(x)\})=0$.

For any set $A \subset G$, we set $A^{0}=\{0\}, A^{1}=A$, and $A^{n}=A+A^{n-1}$ for $n=2,3, \cdots$. Againset $A^{(1)}=A$ and $A^{(n)}=A \times A^{(n-1)}$ for $n=2,3, \cdots$.

A subset $P \subset G$ is said to be independent (over the integers) if whenever x_{1}, \cdots, x_{n} are distinct elements of P and q_{1}, \cdots, q_{n} are integers not all zero, we have $q_{1} x_{1}+\cdots+q_{n} x_{n} \neq 0$.

A regular family of sets in G is a collection F of subsets of G satisfying: (1) if $A \in F$, then every Borel subset of A is again in F, (2) F is closed under countable unions, (3) F is closed under arithmetic sums, i.e., $A, B \in F$ implies
$(A+B) \in F$, and (4) all countable sets are in F. It is not hard to see that for a given set $A \subset G$, the regular family generated by A is the collection $\left\{\left\{\mathrm{U}_{n=1}^{\infty}\left(A_{n}+x_{n}\right): A_{n} \subset A^{n}, x_{n} \in G\right\}\right\}$, where if $A_{n}=\emptyset$, then $\left(A_{n}+x_{n}\right)=$ $\left\{x_{n}\right\}$. A measure μ is concentrated in F if μ is concentrated on some element of F. We say μ is concentrated outside F if $\mu(A)=0$ for all $A \in F$. D. A. Raǐkov (see Šreǐder [3]) has proved (1) the set H of measures concentrated in F is an algebra; (2) the set I of measures concentrated outside F is an ideal, and (3) $M(G)$ is the direct sum of H and I.

One final preliminary remark.
We make use of Šreĭder's "generalized functions." A generalized function L is a function $L: M(G) \times G \rightarrow C$ ($C=$ complex plane) such that (1) for fixed $\mu \in M(G), L(\mu, x)$ is μ-measurable, and (2) if $\mu \ll \lambda$, then $L(\mu, x)=$ $L(\lambda, x)[\mu]$. Šreĭder [3] proved these generalized functions characterize the dual space of $M(G)$ in the following way: If L is any bounded linear functional on $M(G)$, then there is a generalized function $L(\mu, x)$ such that

$$
L(\mu)=\int_{\sigma} L(\mu, x) d \mu(x) \quad \text { and } \quad\|L\|=\sup _{\mu \epsilon M(\sigma)}\left\{\operatorname{ess} . \sup _{x \epsilon \epsilon}|L(\mu, x)|\right\}
$$

3. Generalized Lebesgue decomposition theorem

Let M be a closed linear subspace of $M(G)$ with the property that $\mu \in M$ and $\lambda \ll \mu$ implies $\lambda \in M$. Then $M(G)$ can be decomposed into the direct sum $M(G)=M+M^{\perp}$.

Remark. By the statement $M(G)$ is the direct sum of M and M^{\perp} we mean that each element $\mu \in M(G)$ has a unique representation $\mu=\mu^{\prime}+\mu^{\prime \prime}$ with $\mu^{\prime} \in M$ and $\mu^{\prime \prime} \in M^{\perp}$.

Proof. The proof is by contradiction; we suppose that $\mu \in M(G)$ and μ cannot be written as $\mu=\mu^{\prime}+\mu^{\prime \prime}$ with $\mu^{\prime} \in M$ and $\mu^{\prime \prime} \in M^{\perp}$. Since $\mu є M^{\perp}$, there exists a $\lambda \in M$ such that $\mu=\nu_{1}+\tau_{1}$ with $\nu_{1} \ll \lambda$ and $\tau_{1} \perp \lambda$. Thus (1) $\nu_{1} \neq 0$, (2) $\nu_{1} \in M$, and (3) there is a subset $K_{1} \subset G$ with $\mu \mid K_{1}=\nu_{1}$. We proceed by transfinite induction. Let Φ be the first uncountable ordinal, and suppose for each ordinal $\psi, \psi<\psi_{0}<\Phi$, we have defined a ν_{ψ} such that (1), (2), and (3) hold and, in addition, (4) $K_{\psi_{1}} \cap K_{\psi_{2}}=\emptyset$ if $\psi_{1} \neq \psi_{2}$. It follows from (3) and (4) and the fact ψ_{0} is a countable ordinal that the sum $\nu_{0}=\sum_{\psi<\psi_{0}} \nu_{\psi}$ makes sense; for

$$
\nu_{0}(S)=\sum_{\psi<\psi_{0}} \nu_{\psi}(S)=\sum_{\psi<\psi_{0}} \mu\left(S \cap K_{\psi}\right)=\mu\left(\cup_{\psi<\psi_{0}}\left(S \cap K_{\psi}\right)\right)
$$

Furthermore, $\nu_{0} \in M$ since M is closed. Now write $\mu=\mu_{1}+\mu_{2}$ with $\mu_{1} \ll \nu_{0}$ and $\mu_{2} \perp \nu_{0}$. By our assumption $\mu_{2} \neq 0$ and $\mu_{2} \in M^{\perp}$; by decomposing μ_{2} in the right way we can produce $\nu_{\psi_{0}}$ in such a way that properties (1)-(4) hold for $\psi \leqq \psi_{0}$. Thus, for each countable ordinal ψ we have a nonzero ν_{ψ}. This is obviously not possible since there are uncountably many countable ordinals and μ is a finite measure.

Note. The above theorem can be obtained from a general result on or-
dered linear spaces due to F. Riesz (see N. Bourbaki, Integration). The proof is included here for completeness.

4. Construction of the homomorphism

Let P be an independent subset of G, and set $Q=P$ u $-P$. We denote by $M(Q)$ the linear subspace of all measures in $M(G)$ which are concentrated on Q.

Suppose L is any linear functional on $M(Q)$ of norm 1 with the property $L\left(\sigma_{x}\right) L\left(\sigma_{-x}\right)=1$ for any $x \in P$. We wish to construct a homomorphism h defined on all of $M(G)$ which agrees with L when restricted to $M(Q)$.

First, observe that by the Hahn-Banach theorem and Šreĭder's work, we know there is a generalized function $L(\mu, x)$ such that $L(\mu)=\int L(\mu, x) d \mu(x)$ for all $\mu \in M(Q)$.

Next, we note that $\|L\|=1$ and $L\left(\sigma_{x}\right) L\left(\sigma_{-x}\right)=1$ together imply $L\left(\sigma_{x}\right)=$ $\overline{L\left(\sigma_{-x}\right)}$. Since P is independent, it now follows that the function $\chi(x)=$ $L\left(\sigma_{x}, x\right)$ for $x \in Q$ can be extended to a homomorphism of the entire group G into the circle group. We denote this extension also by χ. For any discrete measure δ, define $h(\delta)=\int \chi(x) d \delta(x)$. Then $h(\delta)=L(\delta)$ if $\delta \epsilon M(Q)$, and furthermore, h is a multiplicative linear functional on the algebra of all discrete measures in $M(G)$.

Third, we let M_{0} be the algebra generated by all discrete measures and $M(Q)$. Then a general element μ of M_{0} may be represented as

$$
\begin{align*}
u= & \delta+\sum_{j=1}^{n} \delta_{j} * \mu_{1, j} * \cdots * \mu_{m, j} \tag{4.1}\\
& \left(\delta, \delta_{j} \operatorname{discrete} ; m=1,2, \cdots ; \mu_{m, j} \text { continuous members of } M(Q)\right)
\end{align*}
$$

Abbreviating $\mu_{j}=\delta_{j} * \mu_{1, j} * \cdots * \mu_{m, j}$, we use the notation above to define

$$
\begin{align*}
h(\mu)= & \int \chi(x) d \delta(x) \\
& +\sum_{j=1}^{n} \int \chi(s) L\left(\mu_{1, j}, t\right) \cdots L\left(\mu_{m, j}, v\right) d \mu_{j}(s+t+\cdots+v) \tag{4.2}
\end{align*}
$$

Let us suppose for the moment that h is well defined on M_{0} by (4.2).
Clearly, h agrees with L on $M(Q)$. Applying the Fubini theorem and the generalized version of (2.2) to the second term of (4.2) yields

$$
\begin{aligned}
h(\mu) & =h(\delta)+\sum_{j=1}^{n} h\left(\delta_{j}\right) L\left(\mu_{1, j}\right) \cdots L\left(\mu_{m, j}\right) \\
& =h(\delta)+\sum_{j=1}^{n} h\left(\delta_{j}\right) h\left(\mu_{1, j}\right) \cdots h\left(\mu_{m, j}\right) .
\end{aligned}
$$

This, together with the fact h is already a homomorphism on the discrete measures implies that h is a homomorphism on M_{0}.

Now let M_{1} be the set of all measures in $M(G)$ which are absolutely continuous with respect to some measure in M_{0}. Observe that if

$$
\mu=\delta+\sum_{j=1}^{n} \delta_{j} * \mu_{1, j} * \cdots * \mu_{m, j}
$$

is in M_{0}, then so is $\tilde{\mu}=|\delta|+\sum_{j=1}^{n}\left|\delta_{j}\right| *\left|\mu_{1, j}\right| * \cdots *\left|\mu_{m, j}\right|$. It follows that M_{1} is an algebra. (Addition is trivial; for convolution see, for example, Šrě̆der [3], p. 9.) We now extend h to M_{1} by the following device. If $\mu=\delta+\sum_{j=1}^{n} \mu_{j}\left(\mu_{j}\right.$ is as in (4.2)) is in M_{0} and $\lambda \ll \mu$, we write λ as the $\operatorname{sum} \lambda=\sum_{j=0}^{n} \lambda_{j}$ of mutually singular components with $\lambda_{0} \ll \delta$ and $\lambda_{j} \ll \mu_{j}$, $1 \leqq j \leqq n$. Then we define h by

$$
\begin{align*}
h(\lambda)= & \int \chi(x) d \lambda_{0}(x) \\
& +\sum_{j=1}^{n} \int \chi(s) L\left(\mu_{1, j}, t\right) \cdots L\left(\mu_{m, j}, v\right) d \lambda_{j}(s+t+\cdots+v) \tag{4.3}
\end{align*}
$$

We interrupt our construction at this point to prove h is well defined by (4.2) and (4.3) and these definitions are consistent. We need the following lemmas.

Lemma 1. Let x and y be arbitrary elements of G, and let $\mu_{1}, \cdots \mu_{n}$ be continuous measures in $M(Q)$. If $n>m$, then

$$
\left|\sigma_{x} * \mu_{1} * \cdots * \mu_{n}\right|\left(y+Q^{m}\right)=0
$$

Proof. Let $\mu=\sigma_{x} * \mu_{1} * \cdots * \mu_{n}$; then μ is concentrated on $x+Q^{n}$. We will show $|\mu|\left(\left(x+Q^{n}\right) \cap\left(y+Q^{m}\right)\right)=0$. To that end, let S be any Borel subset of that intersection, and let

$$
S_{n}=\left\{\left(x, s_{1}, \cdots, s_{n}\right) \in\{x\} \times Q^{(n)}: x+s_{1}+\cdots+s_{n} \in S\right\}
$$

By definition (2.2),

$$
\mu(S)=\sigma_{x} \times \mu_{1} \times \cdots \times \mu_{n}\left(S_{n}\right)
$$

Now if $\left(x, s_{1}, \cdots, s_{n}\right) \in S_{n}$, then there is a set $\left\{t_{1}, \cdots, t_{m}\right\} \subset Q$ such that

$$
x+s_{1}+\cdots+s_{n}=y+t_{1}+\cdots+t_{m}
$$

Write $s_{i}=\varepsilon u_{i}$ and $t_{j}=\varepsilon v_{j}$ where $\varepsilon= \pm 1$ and u_{i} and v_{j} are in P. Thus

$$
\varepsilon u_{1}+\cdots+\varepsilon u_{n}-\varepsilon v_{1}-\cdots-\varepsilon v_{m}=y-x
$$

If $s_{i} \pm s_{j} \neq 0$ for $1 \leqq i<j \leqq n$, then the independence of P and the hypothesis $n>m$ insures the existence of $u_{k}, 1 \leqq k \leqq n$, such that every such representation of $y-x$ contains the term $u_{k}= \pm s_{k}$. Clearly, the subset of S_{n} consisting of those elements for which some coordinate (larger than 1) is $\pm s_{k}$ has measure zero w.r.t. $\sigma_{x} \times \mu_{1} \times \cdots \times \mu_{n}$. Now consider those elements of S_{n} for which $s_{i} \pm s_{j} \neq 0$ and $\pm s_{k}$ does not appear. Then $\pm s_{k}$ must appear as some v_{k}, and we will be left, as before, with a $u_{r}= \pm s_{r}$. This can only proceed a finite number of times, and at each step we have a set of measure zero. We conclude that the subset of S for which $s_{i} \pm s_{j} \neq 0$ has measure zero w.r.t. $\sigma_{x} * \mu_{1} * \cdots * \mu_{n}$. If $s_{i} \pm s_{j}=0$ for some $i \neq j$, the
situation is somewhat more complicated. For $1 \leqq i<j \leqq n$, let

$$
\begin{gathered}
T_{i, j}=\left\{\left(x, s_{1}, \cdots, s_{n}\right) \in S_{n}: s_{i} \pm s_{j}=0\right\} \\
T_{i, j, s_{j}}=\left\{\left(x, y_{1}, \cdots, y_{n-1}\right) \in\{x\} \times Q^{(n-1)}:\right. \\
\left.\left(x, y_{1}, \cdots, y_{j-1}, s_{j}, y_{j}, \cdots, y_{n-1}\right) \in T_{i, j}\right\}
\end{gathered}
$$

Now $T_{i, j, s_{j}} \subset\{x\} \times Q \times \cdots \times\left\{ \pm s_{j}\right\} \times \cdots \times Q$ where $\left\{ \pm s_{j}\right\}$ appears as the $i^{\text {th }}$ factor. Since μ_{i} is continuous,

$$
\sigma_{x} \times \mu_{1} \times \cdots \times \mu_{j-1} \times \mu_{j+1} \times \cdots \times \mu_{n}\left(T_{i, j, s_{j}}\right)=0
$$

It follows from the definition of product measures (see Halmos [1]) that $\sigma_{x} \times \mu_{1} \times \cdots \times \mu_{n}\left(T_{i, j}\right)=0$. Thus we divide S into a finite number of sets each of which has μ-measure zero. Our lemma is proved.

Corollary. Let δ_{1} and δ_{2} be any discrete measures, and let μ_{1}, \cdots, μ_{n}, $\lambda_{1}, \cdots, \lambda_{m}$ be continuous elements of $M(Q)$. If $n>m$, then $\delta_{1} * \mu_{1} * \cdots * \mu_{n}$ is singular to $\delta_{2} * \lambda_{1} * \cdots * \lambda_{m}$.

The corollary is an immediate consequence of Lemma 1.
The next lemma plays an important role in our construction and is quite interesting in its own right.

Lemma 2. Let δ_{1} and δ_{2} be any two discrete measures, and let μ_{1}, \cdots, μ_{n}, $\lambda_{1}, \cdots, \lambda_{n}$ be continuous elements of $M(Q)$. Suppose that $\left\{\mu_{i}\right\}_{i=1}^{k}$ and $\left\{\lambda_{j}\right\}_{j=1}^{m}$ are orthogonal collections, i.e., $\mu_{i} \perp \lambda_{j}$ for $1 \leqq i \leqq k \leqq n$ and $1 \leqq j \leqq m \leqq$ n. If $k+m>n$, then $\mu=\delta_{1} * \mu_{1} * \cdots * \mu_{n}$ is singular to $\lambda=$ $\delta_{2} * \lambda_{1} * \cdots * \lambda_{n}$.

Proof. It is sufficient to prove the statement for the case $\delta_{1}=\sigma_{x}$ and $\delta_{2}=\sigma_{y}$. It follows from the orthogonality condition there exist sets A and B contained in Q such that $A \cap B=\emptyset$, each $\mu_{i}, 1 \leqq i \leqq k$, is concentrated on A, and each $\lambda_{j}, 1 \leqq j \leqq m$, is concentrated on B. Hence μ is concentrated on $\left(x+A^{k}+Q^{n-k}\right)$, while λ is concentrated on $\left(y+B^{m}+Q^{n-m}\right)$. Again let S be any Borel subset of $\left(\left(x+A^{k}+Q^{n-k}\right) \cap\left(y+B^{m}+Q^{n-m}\right)\right)$. If $x+a_{1}+\cdots+a_{k}+q_{k+1}+\cdots+q_{n} \in S$, then there are elements b_{1}, \cdots, b_{m} and r_{m+1}, \cdots, r_{n} of B and Q, respectively, with

$$
x_{1}+a_{1}+\cdots+q_{n}=y+b_{1}+\cdots+r_{n}
$$

In other words

$$
\begin{aligned}
\left(a_{1}+\cdots+a_{k}-b_{1}-\right. & \left.\cdots-b_{m}\right) \\
& +\left(q_{k+1}+\cdots+q_{n}-r_{m+1}-\cdots-r_{n}\right)=y-x
\end{aligned}
$$

Since $k+m>(n-k)+(n-m)$ and $A \cap B=\emptyset$ we may split S into two sets: S_{1}, the set where at least one a_{i} is not cancelled by any q or r, and S_{2}, the complement. Using precisely the same argument as in Lemma 1, $\mu\left(S_{1}\right)=\lambda\left(S_{2}\right)=0$ holds. It follows that μ and λ are singular.

Lemma 3. Let $\mu=\delta_{1} * \mu_{1} * \cdots * \mu_{n}$, and let $\lambda=\delta_{2} * \lambda_{1} * \cdots * \lambda_{m}$, where δ_{1}, δ_{2} are discrete and the μ_{i} 's and λ_{j} 's are continuous elements of $M(Q)$. Suppose $\mu=\gamma_{1}+\gamma_{2}$ where $\gamma_{1} \perp \lambda$ and $\gamma_{2} \ll \lambda$. Then

$$
\chi(s) L\left(\mu_{1}, t\right) \cdots L\left(\mu_{n}, v\right)=\chi(s) L\left(\lambda_{1}, t\right) \cdots L\left(\lambda_{m}, v\right)\left[\gamma_{2}\right]
$$

where t, \cdots, v are in Q and s is arbitrary.
Remark. It makes sense to talk about these products being equal almost everywhere w.r.t. γ_{2} since, if we disregard the variable s, γ_{2} is concentrated on Q^{n}. Hence an element in the "domain" of γ_{2} looks like $t+\cdots+v$.

Proof. First observe if $\gamma_{2}=0$ the statement is trivial; if $\gamma_{2} \neq 0$, then $n=m$ holds by the corollary to Lemma 1.

Write λ_{i} as the sum of 2^{n-1} mutually orthogonal components

$$
\lambda_{i}=\sum \alpha_{i, j(1), \cdots, j(n)}
$$

where $j(r)=0$ or 1 according to whether this component is singular or absolutely continuous to λ_{r}. Since $j(i)$ is always 1 , there are 2^{n-1} different components. This decomposition is accomplished as follows: write

$$
\lambda_{1}=\alpha_{1,0}+\alpha_{1,1}
$$

with $\alpha_{1,0} \perp \lambda_{2}$ and $\alpha_{1,1} \ll \lambda_{2}$. Then $\alpha_{1,0}=\alpha_{1,0,0}+\alpha_{1,0,1}$ with $\alpha_{1,0,0} \perp \lambda_{3}$ and $\alpha_{1,0,1} \ll \lambda_{3}$, etc. It is important to note that given any component α_{i} of λ_{i} and any $\lambda_{r}, 1 \leqq r \leqq n$, then $\alpha_{i} \perp \lambda_{r}$ or $\alpha_{i} \ll \lambda_{r}$.

We list these components in the form of an $n \times 2^{n-1}$ matrix where the $i^{\text {th }}$ row is the decomposition of λ_{i}. For each $k, 1 \leqq k \leqq n$, we write $\mu_{k}=$ $\beta_{k, 1,1}+\gamma$ where $\beta_{k, 1,1}$ is absolutely continuous to the (1,1) entry in the matrix and γ is singular to it. Next write $\gamma=\beta_{k, 1,2}+\gamma^{\prime}$ with $\beta_{k, 1,2}$ absolutely continuous to the $(1,2)$ entry and γ^{\prime} singular to it. Continuing in this way we can write μ_{k} as the sum of $n 2^{n-1}+1$ measures: $n 2^{n-1}$ measures $\beta_{k, i, j}, 1 \leqq$ $i \leqq n$ and $1 \leqq j \leqq 2^{n-1}$ plus one measure $\beta_{k, 0,0}$ which is singular to each entry and, hence, singular to each λ_{r}. Again, it is important to notice that for a given $\beta_{k, i, j}$ and any λ_{r}, either $\beta_{k, i, j} \ll \lambda_{r}$ or $\beta_{k, i, j} \perp \lambda_{r}$.

Now a general term in the product $\delta_{1} * \mu_{1} * \cdots * \mu_{n}$ looks like

$$
\delta_{1} * \beta_{1, i_{1}, j_{1}} * \cdots * \beta_{n, i_{n}, j_{n}}
$$

where the i 's and j 's run over the proper ranges. Now if this term is singular to λ, we are not interested in it; therefore we assume this term is not singular to λ. If this is the case, Lemma 2 assures us there is some factor $\beta_{k, i_{k}, j_{k}} \ll \lambda_{1}$; for the sake of economy in notation call it β_{1}. Using this notation, we proceed by induction. Suppose we have arranged the factors so that $\beta_{k} \ll \lambda_{k}$ for $k=1,2, \cdots, r<n$. If, in the remaining factors, one is absolutely continuous to λ_{r+1}, we call it β_{r+1}, and our induction is complete; thus we must assume the remaining $(n-r)$ factors are all singular to λ_{r+1}. Let $\left\{\beta_{k_{1}}, \cdots, \beta_{k_{p}}\right\}$ be the subset of $\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ each of whose elements is absolutely continuous to λ_{r+1} and let $\left\{\beta_{m_{1}}, \cdots, \beta_{m_{s}}\right\}$ be that subset each of
whose elements is singular to λ_{r+1}. Since each β-factor is either singular or absolutely continuous to λ_{r+1}, we have $p+s=r$. We know $p>0$ because if it were 0 we could invoke Lemma 2 to produce a contradiction to our assumption of nonsingularity. If any one of the remaining β-factors is absolutely continuous to some $\lambda_{k_{i}}, 1 \leqq i \leqq p$, we can rearrange to let this new β-factor become $\beta_{k_{i}}$ and let the original $\beta_{k_{i}}$ stand for β_{r+1}. If this is not the case, then the remaining $(n-r)$ factors are all singular to each $\lambda_{k_{i}}$, and there are p of these; hence $s>0$. Now let $\left\{\beta_{q_{1}}, \cdots, \beta_{q_{t}}\right\}$ be that subset of $\left\{\beta_{m_{1}}, \cdots, \beta_{m_{s}}\right\}$ each of whose elements is absolutely continuous to some $\lambda_{k_{i}}, 1 \leqq i \leqq p$, and let $\left\{\beta_{\mu_{1}}, \cdots, \beta_{\mu_{v}}\right\}$ be that subset each of whose elements is singular to every $\lambda_{k_{i}}$. As before, $t+v=s$; if $t=0$, then each $\beta_{m_{i}}, 1 \leqq$ $j \leqq s$, is singular to $\lambda_{k_{1}}, \cdots, \lambda_{k_{p}}$ and λ_{r+1}. Thus the set $\left\{\beta_{m_{1}}, \cdots, \beta_{m_{s}}\right\}$ together with the remaining $(n-r)$ factors are each singular to $(p+1)$ λ-factors; but $(n-r+s)+(p+1)=n+1$, so we know $t>0$. If any one of the remaining ($n-r$) factors is absolutely continuous to some $\lambda_{q_{i}}, 1 \leqq i \leqq t$, we make two rearrangements similar to the one above and end our proof. If not, then the $(n-r) \beta$-factors are singular to each $\lambda_{q_{i}}$. So far then, they are singular to $(p+t+1) \lambda$-factors. Lemma 2 and our assumption will call an early halt to such proceedings, and we conclude an arrangement may be made so that $\beta_{i} \ll \lambda_{i}$ for $i=1, \cdots, n$. This being so, we know, by a property of generalized functions, that

$$
L\left(\beta_{i}, x\right)=L\left(\lambda_{i}, x\right)\left[\beta_{i}\right] .
$$

We further conclude the lemma is proved.
In view of Lemma $3, h$ is certainly well defined by (4.2); for if

$$
\delta+\sum_{j=1}^{n} \mu_{j}=\delta^{\prime}+\sum_{k=1}^{m} \mu_{k}^{\prime}
$$

then $\delta=\delta^{\prime}$, and we can write

$$
\mu_{j}=\gamma_{1, j}+\cdots+\gamma_{m, j} \quad \text { and } \quad \mu_{k}^{\prime}=\gamma_{1, k}^{\prime}+\cdots+\gamma_{n, k}^{\prime}
$$

with $\gamma_{i, j} \equiv \gamma_{j, i}^{\prime}$. It follows that (4.2) yields the same value for each representation. That (4.3) is well defined and is consistent with (4.2) is now immediate.

Recall that M_{0} is the smallest algebra containing $M(Q)$ and all discrete measures, and M_{1} is the algebra of all measures absolutely continuous w.r.t. some element of M_{0}. We wish to show that h defined on M_{1} by (4.3) is a homomorphism. First h is additive, for suppose

$$
\lambda \ll \delta+\sum_{j=1}^{n} \mu_{j} \quad \text { and } \quad \nu \ll \delta^{\prime}+\sum_{k=1}^{m} \mu_{k}^{\prime}
$$

There is no loss of generality in assuming each of these measures is positive. Then λ, ν, and $(\lambda+\nu)$ are absolutely continuous to the sum of these two measures. As in the definition (4.3) we write λ, μ, and $(\lambda+\nu)$ as the sum of $1+n+m$ components since there are that many terms in the sum, where $\lambda_{0} \ll \delta+\delta^{\prime}, \lambda_{i} \ll \mu_{i}, 1 \leqq i \leqq n$, and $\lambda_{i} \ll \mu_{i}^{\prime}, 1 \leqq i-n \leqq n+m ;$
and similarly for ν and $(\lambda+\nu)$. Now given any Borel set S, there is a set $K_{i} \subset G\left(\mu_{i}\right.$ is concentrated on $\left.K_{i}\right)$, and $\lambda_{i}(S)=\lambda\left(S \cap K_{i}\right)$; the equality remains true if we replace λ_{i} and λ by ν_{i} and ν, or by $(\lambda+\nu)_{i}$ and $(\lambda+\nu)$. Thus

$$
\begin{aligned}
(\lambda+\nu)_{i}(S)=(\lambda+\nu)\left(S \cap K_{i}\right)=\lambda\left(S \cap K_{i}\right) & +\nu\left(S \cap K_{i}\right) \\
& =\lambda_{i}(S)+\nu_{i}(S)
\end{aligned}
$$

i.e., $(\lambda+\nu)_{i}=\lambda_{i}+\nu_{i}$. It follows that h is additive on M_{1}. Clearly h is homogeneous, and to prove multiplicity we let

$$
\lambda=\sum_{j=0}^{n} \lambda_{j} \quad \text { and } \quad \nu=\sum_{k=0}^{m} \nu_{k}
$$

as in (4.3). Since h is additive, we have $h(\lambda * \nu)=\sum_{j, k} h\left(\lambda_{j} * \nu_{k}\right)$. Now $\lambda_{j} * \nu_{k} \ll \mu_{j} * \mu_{k}^{\prime}$. Referring to the definition of μ_{j} and μ_{k}^{\prime} and using the Fubini theorem we see that $h\left(\lambda_{j} * \nu_{k}\right)=h\left(\lambda_{j}\right) h\left(\nu_{k}\right)$. Thus

$$
\begin{aligned}
h(\lambda * \nu)=\sum_{j, k} h\left(\lambda_{j} * \nu_{k}\right)=\sum_{j, k} h\left(\lambda_{j}\right) & h\left(\nu_{k}\right) \\
& =\left(\sum_{j} h\left(\lambda_{j}\right)\right)\left(\sum_{k} h\left(\nu_{k}\right)\right)=h(\lambda) h(\nu)
\end{aligned}
$$

So h is a bounded homomorphism on M_{1}; extend h uniquely to a homomorphism on the closure M of M_{1}.

Now M satisfies the hypothesis of the generalized Lebesgue decomposition theorem. To see this, let $\mu \in M$ and let $\lambda \ll \mu$. There is a sequence $\left\{\mu_{n}\right\} \subset M_{1}$ with $\mu_{n} \rightarrow \mu$. Write $\lambda=\lambda_{1, n}+\lambda_{2, n}$, where $\lambda_{1, n} \perp \mu_{n}$ and $\lambda_{2, n} \ll \mu_{n}$. It follows that $\lambda_{1, n} \rightarrow 0$ and $\lambda_{2, n} \rightarrow \lambda$. But each $\lambda_{2, n} \in M_{1}$, so $\lambda \in M$. Therefore we may decompose $M(G)$ into the direct sum $M(G)=$ $M+M^{\perp}$.

We now extend h to the entire algebra by the usual device: if $\mu \epsilon M(G)$, define

$$
\begin{equation*}
h(\mu)=h\left(\mu_{M}\right) \quad\left(\mu_{M} \text { is the projection of } \mu \text { on } M\right) \tag{4.4}
\end{equation*}
$$

A simple calculation shows that h is linear on $M(G)$. If we can prove that M^{\perp} is an ideal, it will follow h is also multiplicative.

Consider the regular family of sets F generated by Q (see §2). Let H be the algebra of all measures concentrated in F, and let I be the ideal of all measures concentrated outside F. We know $M(G)=H+I$ and, clearly, $M \subset H$ and $I \subset M^{\perp}$. To prove our assertion above, let $\nu \in M^{\perp}$ and $\lambda \in M(G)$. Write $\nu=\nu_{H}+\nu_{I}$ and $\lambda=\lambda_{H}+\lambda_{I}$, where ν_{H}, etc. are the projections on H and I. So $\nu * \lambda=\nu_{H} * \lambda_{H}+\gamma$ where $\gamma \epsilon I \subset M^{\perp}$; hence we may as well assume that ν and λ are concentrated in F. Because of our earlier remarks on regular families, and because H and M^{\perp} are "translation invariant" (this means $\mu \in H \Leftrightarrow \mu_{x} \in H$ for all $x \in G ; \mu_{x}$ is a measure defined by $\mu_{x}(A)=$ $\mu(A-x)$), we may, and do, assume that ν and λ are concentrated on Q^{s} and Q^{t}, respectively. We make one further observation; it is sufficient to prove $\nu * \lambda \perp \mu_{1} * \cdots * \mu_{m}$ where $\mu_{i} \in M(Q), 1 \leqq i \leqq m$. For, if this is
true for all $\lambda \in H$, then $\nu *\left(\lambda * \sigma_{-x}\right) \perp \mu_{1} * \cdots * \mu_{m}$ which implies

$$
\nu * \lambda \perp \sigma_{x} * \mu_{1} * \cdots * \mu_{m} .
$$

It would follow that $\nu * \lambda \perp M_{0}$, and consequently, $\nu * \lambda \in M^{\perp}$.
Therefore, we assume $\nu \in\left(M^{\perp} \cap H\right), \lambda \in H, \nu$ is concentrated on Q^{s}, λ is concentrated on Q^{t}, and $\mu=\mu_{1} * \cdots * \mu_{m}$ where $\mu_{i} \in M(Q)$. We will prove $\nu * \lambda \perp \mu$.

Let $Q_{0}=\{0\}, Q_{1}=Q$, and for each $n=2,3, \cdots$, let $Q_{n}=Q^{n}-\cup_{i=1}^{n-1} Q^{i}$. Then $Q^{n}=\cup_{i=1}^{n}\left(Q_{i} \cap Q^{n}\right)$, and the sets $\left(Q_{i} \cap Q^{n}\right)$ are mutually disjoint. Let $\nu_{i}=\nu \mid\left(Q_{i} \cap Q^{s}\right)$ and $\lambda_{j}=\lambda \mid\left(Q_{j} \cap Q^{t}\right)$ for $1 \leqq i \leqq s$ and $1 \leqq j \leqq t$.

Lemma 4. For each $k=2,3, \cdots, i<s$, there are only a countable number of elements $\left\{x_{k, j}\right\}_{j=1}^{\infty} \subset Q_{i-k}$ such that $\left(Q_{k}+x_{k, j}\right) \subset Q_{i}$ and $\nu_{i}\left(Q_{k}+x_{k, j}\right) \neq 0$.

Proof. Clearly $\nu_{i}\left(Q_{1}+x\right)=0$ for every $x \epsilon G$ since $\nu_{i} \perp M$. Let $k=2$. For $x_{1} \neq x_{2} \in Q_{i-2}$, let $x_{1}=q_{1}+\cdots+q_{i-2}$ and $x_{2}=r_{1}+\cdots+r_{i-2}$. Then $\left(Q_{2}+x_{1}\right) \cap\left(Q_{2}+x_{2}\right)$ is empty, one point, or a translation of Q_{1} depending on whether x_{1} and x_{2} have $(i-5)$ or less common terms, $(i-4)$ common terms, or $(i-3)$ common terms. In any case

$$
\nu_{i}\left(\left(Q_{2}+x_{1}\right) \cap\left(Q_{2}+x_{2}\right)\right)=0
$$

this surely implies the lemma is true for $k=2$. Using induction, suppose the statement is true for $k<n \leqq i$. Now $x_{1} \neq x_{2}$ are in Q_{i-n}, and

$$
\left(Q_{n}+x_{j}\right) \subset Q_{i}, \quad j=1,2
$$

By using the above argument, if they have $i-2 n+1$ or less elements in common, $\nu_{i}\left(\left(Q_{n}+x_{1}\right) \cap\left(Q_{n}+x_{2}\right)\right)=0$. On the other hand, for each $j=1,2, \cdots, n-2$, if x_{1} and x_{2} have $i-2 n+1+j$ common terms, then $\left(Q_{n}+x_{1}\right) \cap\left(Q_{n}+x_{2}\right) \subset\left(Q_{j+1}+y\right)$ where $y \in Q_{i-j-1}$. Observe, since all of these sets are in Q_{i}, a term appears in y if and only if it appears either in x_{1} or x_{2}. (It is assumed, of course, if a term appears more than once, it is counted as a separate term each time.) Thus, there are at most $\binom{i-j-1}{i-n}$ sets $\left(Q_{n}+x\right)$ whose pairwise intersections are contained in $\left(Q_{j+1}+y\right)$ for each $y \in Q_{i-j-1}$. By the induction hypothesis only a countable number of sets $\left(Q_{n}+x\right)$ can have pairwise intersections of nonzero ν_{i}-measure; so the rest must have pairwise intersections of zero ν_{i}-measure. The desired conclusion is now immediate.

Let $\left\{x_{i, k, j}\right\}, i=2, \cdots, s-1 ; k=2, \cdots, i$; and $j=1,2, \cdots$ be the sequence of elements such that (1) $x_{i, k, j} \in Q_{i-k}$, (2) $\left(Q_{k}+x_{i, k, j}\right) \subset Q_{i}$, and (3) $\nu_{i}\left(Q_{k}+x_{i, k, j}\right) \neq 0$. For convenience, we also allow 0 to be in this sequence.

We assert the existence of subsets A, B_{1}, \cdots, B_{m} such that
(1) ν is concentrated on A and μ_{p} is concentrated on $B_{p}, 1 \leqq p \leqq m$, and
(2) $\mu_{p_{1}} * \cdots * \mu_{p_{r}}\left(\left(B_{p_{1}}+\cdots+B_{p_{r}}\right) \cap\left(A \pm x_{i, k, j}\right)\right)=0$
(here we want 0 to be one of the $x_{i, k, j}$) for any combination of μ_{p} 's and all $x_{i, k, j}$'s. The construction of such sets is not hard; we consider μ_{1}, \cdots, μ_{m} and all products of these. There are only countably many finite sums $\sum \sigma_{ \pm x_{i, k, j}}$, and $\nu * \sum \sigma_{ \pm x_{i, k, j}}=\sum \nu_{ \pm x_{i, k, j}}$ is singular to M. The rest is straightforward.

We are now ready to prove $\nu * \lambda \perp \mu$. Recall λ is concentrated on Q^{t}, and now ν is concentrated on $Q^{s} \cap A$, and μ is concentrated on

$$
\sum_{p=1}^{m} B_{p}=B_{1}+\cdots+B_{p}
$$

Also $\nu_{i}=\nu \mid\left(Q_{i} \cap Q^{s} \cap A\right)$ and $\lambda_{j}=\lambda \mid\left(Q_{j} \cap Q^{t}\right)$. It is sufficient to prove $\nu_{i} * \lambda_{j} \perp \mu$ for all i and $j, 1 \leqq i \leqq s$ and $1 \leqq j \leqq t$. We shall show that any Borel set $S \subset\left(\sum_{p=1}^{m} B_{p} \cap\left(\left(Q_{i} \cap A\right)+Q_{j}\right)\right)$ can be written as the union of sets each of which is either of $\nu_{i} * \lambda_{j}$-measure zero or of μ-measure zero.

First, if $m>i+j$, then Lemma 1 provides $\mu(S)=0$; we therefore assume $m \leqq i+j$ and $\sum_{p=1}^{m} B_{p} \subset Q_{m}$. Next, if $m=i+j$, then some finite sum of b_{p} 's is in A, and by condition (2) above it would follow that $\mu(S)=0$. So it reduces to the case $m<i+j$. If $s \in S$, there is an $x=q_{1}+\cdots+$ $q_{i} \epsilon Q_{i} \cap A$, a $y=r_{1}+\cdots+r_{j} \epsilon Q_{j}$, and a $b=b_{1}+\cdots+b_{m} \epsilon \sum_{p=1}^{m} B_{p}$ such that $s=x+y=b$. Since $m<i+j$, we must have $q_{u_{1}}=-r_{v_{1}}$, $\cdots, q_{u_{w}}=-r_{v_{w}}$ where $w=\frac{1}{2}(i+j-m)$.

Thus $x \epsilon\left(Q_{i-w}+z\right)$ where $z=-\left(q_{u_{1}}+\cdots+q_{u_{w}}\right) \in Q_{w}$. Divide S into sets

$$
S_{1}=\left\{s \in S: s=x+y ; x \epsilon\left(Q_{i-w}+z\right) \cap A ; \nu_{i}\left(Q_{i-w}+z\right) \neq 0\right\}
$$

and its complement S_{2}. If $s \in S_{1}$, then z is some $x_{i, k, j}$. But $x=q+z$, $q \epsilon Q_{i-w}$; this makes $q=x-z \epsilon(A-z)$. This compels a finite sum of b_{p} 's to be in $(A-z)$, and, as before, $\mu\left(S_{1}\right)=0$. Now

$$
S_{2}=\left\{s \in S: s=x+y ; x \in\left(Q_{i-w}+z\right) \cap A ; \nu_{i}\left(Q_{i-w}+z\right)=0\right\} .
$$

So for each fixed $y, \nu_{i}\left(Q_{i-w}+z\right)=0$, and we infer that $\nu_{i} * \lambda_{j}\left(S_{2}\right)=0$. This completes the proof and the construction.

References

1. Paul Halmos, Measure theory, New York, D. Van Nostrand Co., 1950.
2. E. Hewitt and S. Kakutani, A class of multiplicative linear functionals on the measure algebra of a locally compact Abelian group, Illinois J. Math., vol. 4 (1960), pp. 553-574.
3. Yu. A. ŚReĭder, The structure of maximal ideals in rings of measures with convolution, Amer. Math. Soc. Translations, no. 81, Providence, 1953.
4. Karl Stromberg, A note on the convolution of regular measures, Math. Scand., vol. 7 (1959), pp. 347-352.
Northwestern University
Evanston, Illinois

[^0]: Received August 30, 1960.
 ${ }^{1}$ This research was supported by the U. S. Airforce Office of Scientific Research.
 ${ }^{2}$ The author wishes to thank Professors Hewitt and Kakutani for allowing him to see their results in manuscript form.

