HOMOMORPHISMS OF MEASURE ALGEBRAS

ΒY

ARTHUR B. SIMON^{1, 2}

1. Introduction

In their recent paper [2] Hewitt and Kakutani prove a truly remarkable theorem: Let G be a locally compact Abelian group, and let M(G) be the measure algebra on G. Let P be an independent subset of G, and denote by $M(P \cup -P)$ the linear subspace of measures concentrated on $(P \cup -P)$. If L is any linear functional on $M(P \cup -P)$ of norm 1 and satisfying the property $L(\sigma_x)L(\sigma_{-x}) = 1$ for every $x \in P$, then there is a homomorphism h defined on all of M(G) which agrees with L on M(Q).

Their proof is an existence proof. In this paper we actually *construct* such a homomorphism. This construction, we believe, contributes to a better understanding of the complexities of measure algebras. It is easy to prove, via this construction, that the extension of a linear functional to a homomorphism is *unique* if restricted to the subalgebra M defined below. In a later paper we hope to use this fact to describe the ideal space of M and to give an analysis of this subalgebra.

We outline the procedure for constructing the homomorphism. Let M_0 be the algebra generated by $M(P \cup -P)$ and all the discrete measures. Then let M_1 be the algebra consisting of all those measures which are absolutely continuous to some element of M_0 . We let h = L on $M(P \cup -P)$ and extend h to M_1 making use of Šreider's "generalized functions" (see [3]). After proving h is well defined and h is a homomorphism on M_1 , we extend h to be a homomorphism on the closure M of M_1 . Next, we show that the orthogonal complement M^{\perp} of M is an ideal and M(G) is the direct sum of Mand M^{\perp} . We conclude by defining $h(\mu) = h(\mu_M)$ where $\mu \in M(G)$ and μ_M is the projection of μ on M.

In §3 we prove a "generalized Lebesgue decomposition theorem" which plays a small but important role in our construction. In §4 we construct the homomorphism.

2. Preliminaries

Throughout this paper we assume G is a locally compact Abelian additive group. We let M(G) be the set of all complex-valued regular Borel measures on G. It should be noted that Haar measure m is in M(G) if and only if G is compact. With addition and scalar multiplication defined in the obvious way, M(G) is a Banach space under the norm of total variation, i.e., $\|\mu\| =$

Received August 30, 1960.

¹ This research was supported by the U. S. Airforce Office of Scientific Research.

² The author wishes to thank Professors Hewitt and Kakutani for allowing him to see their results in manuscript form.

 $\int_{G} d \mid \mu \mid$. (For this and other notation not specifically explained, see Halmos [1].) We can define a multiplication, called convolution, between measures. Let μ and λ be elements of M(G), and let S be any Borel subset of G; define

(2.1)
$$\mu * \lambda(S) = \int_{g} \mu(S - x) \, d\lambda(x).$$

Clearly, $\| \mu * \lambda \| \leq \| \mu \| \| \lambda \|$ so that with this multiplication, M(G) is a Banach algebra. It is commutative since G is Abelian. An equivalent definition (see Stromberg [4]) which we use extensively is as follows: let

$$T = \{(x, y) \epsilon G \times G : x + y \epsilon S\}.$$

Then define

(2.2)
$$\mu * \lambda(S) = \mu \times \lambda(T)$$
 $(\mu \times \lambda \text{ is the product measure}).$

Given two measures μ and λ , we say μ is absolutely continuous with respect to λ , in symbols $\mu \ll \lambda$, if $\mu(S) = 0$ whenever $|\lambda|(S) = 0$. If $\mu \ll \lambda$ and $\lambda \ll \mu$, then λ and μ are equivalent and we write $\mu \equiv \lambda$. A measure μ is singular (or orthogonal) to another measure λ , in symbols $\mu \perp \lambda$, if there are sets A and B such that $A \sqcup B = G$ and $|\mu|(S \cap B) = 0 = |\lambda|(S \cap A)$ for every Borel set S. The Lebesgue decomposition theorem states that given $\mu, \lambda \in M(G)$ there exist measures μ_1 and μ_2 such that $\mu = \mu_1 + \mu_2$ with $\mu_1 \ll \lambda$ and $\mu_2 \perp \lambda$. We make frequent use of this result. If $M \subset M(G)$, we denote by M^{\perp} the orthogonal complement of M, i.e.,

$$M^{\perp} = \{ \lambda \ \epsilon \ M(G) : \mu \ \epsilon \ M \Longrightarrow \mu \perp \lambda \}.$$

A measure μ is concentrated on a set A if $\mu(B) = 0$ whenever $A \cap B = \emptyset$. If μ is concentrated on a countable set, then μ is called *discrete*. For any $x \in G$, we will always denote by σ_x the measure defined by $\sigma_x(A) = 0$ or 1 depending on whether $x \notin A$ or $x \notin A$; thus every discrete measure can be represented by a sum $\sum_{i=1}^{\infty} z_i \sigma_{x_i}$, z_i complex. The measure σ_0 is the identity of M(G). If $\mu(\{x\}) = 0$ for all $x \in G$, then μ is said to be continuous. The continuous measures form an ideal of M(G). If $\mu \in M(G)$ and $A \subset G$, the measure $\lambda = \mu \mid A$ is defined by $\lambda(S) = \mu(A \cap S)$.

When we want to say a relation p(x) = q(x) holds almost everywhere with respect to a measure μ , we write $p(x) = q(x)[\mu]$. By this we mean $|\mu|(\{x:p(x) \neq q(x)\}) = 0.$

For any set $A \subset G$, we set $A^0 = \{0\}$, $A^1 = A$, and $A^n = A + A^{n-1}$ for $n = 2, 3, \cdots$. Again set $A^{(1)} = A$ and $A^{(n)} = A \times A^{(n-1)}$ for $n = 2, 3, \cdots$.

A subset $P \subset G$ is said to be *independent* (over the integers) if whenever x_1, \dots, x_n are distinct elements of P and q_1, \dots, q_n are integers not all zero, we have $q_1 x_1 + \dots + q_n x_n \neq 0$.

A regular family of sets in G is a collection F of subsets of G satisfying: (1) if $A \epsilon F$, then every Borel subset of A is again in F, (2) F is closed under countable unions, (3) F is closed under arithmetic sums, i.e., A, $B \epsilon F$ implies

 $(A + B) \ \epsilon F$, and (4) all countable sets are in F. It is not hard to see that for a given set $A \subset G$, the regular family generated by A is the collection $\{\{\bigcup_{n=1}^{\infty}(A_n + x_n): A_n \subset A^n, x_n \ \epsilon \ G\}\}$, where if $A_n = \emptyset$, then $(A_n + x_n) =$ $\{x_n\}$. A measure μ is concentrated in F if μ is concentrated on some element of F. We say μ is concentrated outside F if $\mu(A) = 0$ for all $A \ \epsilon F$. D. A. Raikov (see Šreider [3]) has proved (1) the set H of measures concentrated in F is an algebra; (2) the set I of measures concentrated outside F is an ideal, and (3) M(G) is the direct sum of H and I.

One final preliminary remark.

We make use of Šreĭder's "generalized functions." A generalized function L is a function $L:M(G) \times G \to C$ (C = complex plane) such that (1) for fixed $\mu \in M(G)$, $L(\mu, x)$ is μ -measurable, and (2) if $\mu \ll \lambda$, then $L(\mu, x) = L(\lambda, x)[\mu]$. Šreĭder [3] proved these generalized functions characterize the dual space of M(G) in the following way: If L is any bounded linear functional on M(G), then there is a generalized function $L(\mu, x)$ such that

$$L(\mu) = \int_{\mathcal{G}} L(\mu, x) d\mu(x) \text{ and } ||L|| = \sup_{\mu \in M(\mathcal{G})} \{ \text{ess. } \sup_{x \in \mathcal{G}} |L(\mu, x)| \}.$$

3. Generalized Lebesgue decomposition theorem

Let M be a closed linear subspace of M(G) with the property that $\mu \in M$ and $\lambda \ll \mu$ implies $\lambda \in M$. Then M(G) can be decomposed into the direct sum $M(G) = M + M^{\perp}$.

Remark. By the statement M(G) is the direct sum of M and M^{\perp} we mean that each element $\mu \in M(G)$ has a *unique* representation $\mu = \mu' + \mu''$ with $\mu' \in M$ and $\mu'' \in M^{\perp}$.

Proof. The proof is by contradiction; we suppose that $\mu \in M(G)$ and μ cannot be written as $\mu = \mu' + \mu''$ with $\mu' \in M$ and $\mu'' \in M^{\perp}$. Since $\mu \notin M^{\perp}$, there exists a $\lambda \in M$ such that $\mu = \nu_1 + \tau_1$ with $\nu_1 \ll \lambda$ and $\tau_1 \perp \lambda$. Thus (1) $\nu_1 \neq 0$, (2) $\nu_1 \in M$, and (3) there is a subset $K_1 \subset G$ with $\mu \mid K_1 = \nu_1$. We proceed by transfinite induction. Let Φ be the first uncountable ordinal, and suppose for each ordinal $\psi, \psi < \psi_0 < \Phi$, we have defined a ν_{ψ} such that (1), (2), and (3) hold and, in addition, (4) $K_{\psi_1} \cap K_{\psi_2} = \emptyset$ if $\psi_1 \neq \psi_2$. It follows from (3) and (4) and the fact ψ_0 is a countable ordinal that the sum $\nu_0 = \sum_{\psi < \psi_0} \nu_{\psi}$ makes sense; for

$$\nu_0(S) = \sum_{\psi < \psi_0} \nu_{\psi}(S) = \sum_{\psi < \psi_0} \mu(S \cap K_{\psi}) = \mu(\bigcup_{\psi < \psi_0} (S \cap K_{\psi})).$$

Furthermore, $\nu_0 \in M$ since M is closed. Now write $\mu = \mu_1 + \mu_2$ with $\mu_1 \ll \nu_0$ and $\mu_2 \perp \nu_0$. By our assumption $\mu_2 \neq 0$ and $\mu_2 \notin M^{\perp}$; by decomposing μ_2 in the right way we can produce ν_{ψ_0} in such a way that properties (1)-(4) hold for $\psi \leq \psi_0$. Thus, for each countable ordinal ψ we have a nonzero ν_{ψ} . This is obviously not possible since there are uncountably many countable ordinals and μ is a *finite* measure.

Note. The above theorem can be obtained from a general result on or-

dered linear spaces due to F. Riesz (see N. BOURBAKI, *Integration*). The proof is included here for completeness.

4. Construction of the homomorphism

Let P be an independent subset of G, and set $Q = P \mathbf{u} - P$. We denote by M(Q) the linear subspace of all measures in M(G) which are concentrated on Q.

Suppose L is any linear functional on M(Q) of norm 1 with the property $L(\sigma_x)L(\sigma_{-x}) = 1$ for any $x \in P$. We wish to construct a homomorphism h defined on all of M(G) which agrees with L when restricted to M(Q).

First, observe that by the Hahn-Banach theorem and Šreider's work, we know there is a generalized function $L(\mu, x)$ such that $L(\mu) = \int L(\mu, x) d\mu(x)$ for all $\mu \in M(Q)$.

Next, we note that ||L|| = 1 and $L(\sigma_x)L(\sigma_{-x}) = 1$ together imply $L(\sigma_x) = \overline{L(\sigma_{-x})}$. Since *P* is independent, it now follows that the function $\chi(x) = L(\sigma_x, x)$ for $x \in Q$ can be extended to a homomorphism of the entire group *G* into the circle group. We denote this extension also by χ . For any discrete measure δ , define $h(\delta) = \int \chi(x) d\delta(x)$. Then $h(\delta) = L(\delta)$ if $\delta \in M(Q)$, and furthermore, *h* is a multiplicative linear functional on the algebra of all discrete measures in M(G).

Third, we let M_0 be the algebra generated by all discrete measures and M(Q). Then a general element μ of M_0 may be represented as

(4.1)
$$u = \delta + \sum_{j=1}^{n} \delta_j * \mu_{1,j} * \cdots * \mu_{m,j}$$

(δ, δ_j discrete; $m = 1, 2, \cdots; \mu_{m,j}$ continuous members of $M(Q)$).

Abbreviating $\mu_j = \delta_j * \mu_{1,j} * \cdots * \mu_{m,j}$, we use the notation above to define

(4.2)
$$h(\mu) = \int \chi(x) \ d\delta(x) + \sum_{j=1}^{n} \int \chi(s) L(\mu_{1,j}, t) \ \cdots \ L(\mu_{m,j}, v) \ d\mu_{j}(s+t+\cdots+v).$$

Let us suppose for the moment that h is well defined on M_0 by (4.2).

Clearly, h agrees with L on M(Q). Applying the Fubini theorem and the generalized version of (2.2) to the second term of (4.2) yields

$$h(\mu) = h(\delta) + \sum_{j=1}^{n} h(\delta_j) L(\mu_{1,j}) \cdots L(\mu_{m,j})$$

= $h(\delta) + \sum_{j=1}^{n} h(\delta_j) h(\mu_{1,j}) \cdots h(\mu_{m,j}).$

This, together with the fact h is already a homomorphism on the discrete measures implies that h is a homomorphism on M_0 .

Now let M_1 be the set of all measures in M(G) which are absolutely continuous with respect to some measure in M_0 . Observe that if

$$\mu = \delta + \sum_{j=1}^n \delta_j * \mu_{1,j} * \cdots * \mu_{m,j}$$

is in M_0 , then so is $\tilde{\mu} = |\delta| + \sum_{j=1}^{n} |\delta_j| * |\mu_{1,j}| * \cdots * |\mu_{m,j}|$. It follows that M_1 is an algebra. (Addition is trivial; for convolution see, for example, Šreĭder [3], p. 9.) We now extend h to M_1 by the following device. If $\mu = \delta + \sum_{j=1}^{n} \mu_j$ (μ_j is as in (4.2)) is in M_0 and $\lambda \ll \mu$, we write λ as the sum $\lambda = \sum_{j=0}^{n} \lambda_j$ of mutually singular components with $\lambda_0 \ll \delta$ and $\lambda_j \ll \mu_j$, $1 \leq j \leq n$. Then we define h by

(4.3)
$$h(\lambda) = \int \chi(x) \, d\lambda_0(x) + \sum_{j=1}^n \int \chi(s) L(\mu_{1,j}, t) \cdots L(\mu_{m,j}, v) \, d\lambda_j(s+t+\cdots+v).$$

We interrupt our construction at this point to prove h is well defined by (4.2) and (4.3) and these definitions are consistent. We need the following lemmas.

LEMMA 1. Let x and y be arbitrary elements of G, and let μ_1, \dots, μ_n be continuous measures in M(Q). If n > m, then

$$|\sigma_x * \mu_1 * \cdots * \mu_n|(y + Q^m) = 0.$$

Proof. Let $\mu = \sigma_x * \mu_1 * \cdots * \mu_n$; then μ is concentrated on $x + Q^n$. We will show $|\mu|((x + Q^n) \cap (y + Q^m)) = 0$. To that end, let S be any Borel subset of that intersection, and let

$$S_n = \{(x, s_1, \cdots, s_n) \ \epsilon \ \{x\} \ \times \ Q^{(n)} : x + s_1 + \cdots + s_n \ \epsilon \ S\}.$$

By definition (2.2),

$$\mu(S) = \sigma_x \times \mu_1 \times \cdots \times \mu_n(S_n).$$

Now if $(x, s_1, \dots, s_n) \in S_n$, then there is a set $\{t_1, \dots, t_m\} \subset Q$ such that

$$x + s_1 + \cdots + s_n = y + t_1 + \cdots + t_m.$$

Write $s_i = \varepsilon u_i$ and $t_j = \varepsilon v_j$ where $\varepsilon = \pm 1$ and u_i and v_j are in P. Thus

$$\varepsilon u_1 + \cdots + \varepsilon u_n - \varepsilon v_1 - \cdots - \varepsilon v_m = y - x$$

If $s_i \pm s_j \neq 0$ for $1 \leq i < j \leq n$, then the independence of P and the hypothesis n > m insures the existence of u_k , $1 \leq k \leq n$, such that every such representation of y - x contains the term $u_k = \pm s_k$. Clearly, the subset of S_n consisting of those elements for which some coordinate (larger than 1) is $\pm s_k$ has measure zero w.r.t. $\sigma_x \times \mu_1 \times \cdots \times \mu_n$. Now consider those elements of S_n for which $s_i \pm s_j \neq 0$ and $\pm s_k$ does not appear. Then $\pm s_k$ must appear as some v_k , and we will be left, as before, with a $u_r = \pm s_r$. This can only proceed a finite number of times, and at each step we have a set of measure zero w.r.t. $\sigma_x * \mu_1 * \cdots * \mu_n$. If $s_i \pm s_j = 0$ for some $i \neq j$, the

402

situation is somewhat more complicated. For $1 \leq i < j \leq n$, let

$$T_{i,j} = \{(x, s_1, \dots, s_n) \in S_n : s_i \pm s_j = 0\},$$

$$T_{i,j,s_j} = \{(x, y_1, \dots, y_{n-1}) \in \{x\} \times Q^{(n-1)}:$$

$$(x, y_1, \dots, y_{j-1}, s_j, y_j, \dots, y_{n-1}) \in T_{i,j}\}.$$

Now $T_{i,j,s_j} \subset \{x\} \times Q \times \cdots \times \{\pm s_j\} \times \cdots \times Q$ where $\{\pm s_j\}$ appears as the *i*th factor. Since μ_i is continuous,

$$\sigma_x \times \mu_1 \times \cdots \times \mu_{j-1} \times \mu_{j+1} \times \cdots \times \mu_n(T_{i,j,s_j}) = 0.$$

It follows from the definition of product measures (see Halmos [1]) that $\sigma_x \times \mu_1 \times \cdots \times \mu_n(T_{i,j}) = 0$. Thus we divide S into a finite number of sets each of which has μ -measure zero. Our lemma is proved.

COROLLARY. Let δ_1 and δ_2 be any discrete measures, and let μ_1, \dots, μ_n , $\lambda_1, \dots, \lambda_m$ be continuous elements of M(Q). If n > m, then $\delta_1 * \mu_1 * \dots * \mu_n$ is singular to $\delta_2 * \lambda_1 * \dots * \lambda_m$.

The corollary is an immediate consequence of Lemma 1.

The next lemma plays an important role in our construction and is quite interesting in its own right.

LEMMA 2. Let δ_1 and δ_2 be any two discrete measures, and let μ_1, \dots, μ_n , $\lambda_1, \dots, \lambda_n$ be continuous elements of M(Q). Suppose that $\{\mu_i\}_{i=1}^k$ and $\{\lambda_j\}_{j=1}^m$ are orthogonal collections, i.e., $\mu_i \perp \lambda_j$ for $1 \leq i \leq k \leq n$ and $1 \leq j \leq m \leq n$. If k + m > n, then $\mu = \delta_1 * \mu_1 * \cdots * \mu_n$ is singular to $\lambda = \delta_2 * \lambda_1 * \cdots * \lambda_n$.

Proof. It is sufficient to prove the statement for the case $\delta_1 = \sigma_x$ and $\delta_2 = \sigma_y$. It follows from the orthogonality condition there exist sets A and B contained in Q such that $A \cap B = \emptyset$, each μ_i , $1 \leq i \leq k$, is concentrated on A, and each λ_j , $1 \leq j \leq m$, is concentrated on B. Hence μ is concentrated on $(x + A^k + Q^{n-k})$, while λ is concentrated on $(y + B^m + Q^{n-m})$. Again let S be any Borel subset of $((x + A^k + Q^{n-k}) \cap (y + B^m + Q^{n-m}))$. If $x + a_1 + \cdots + a_k + q_{k+1} + \cdots + q_n \in S$, then there are elements b_1, \cdots, b_m and r_{m+1}, \cdots, r_n of B and Q, respectively, with

$$x_1 + a_1 + \cdots + q_n = y + b_1 + \cdots + r_n.$$

In other words

$$(a_1 + \dots + a_k - b_1 - \dots - b_m) + (q_{k+1} + \dots + q_n - r_{m+1} - \dots - r_n) = y - x.$$

Since k + m > (n - k) + (n - m) and $A \cap B = \emptyset$ we may split S into two sets: S_1 , the set where at least one a_i is not cancelled by any q or r, and S_2 , the complement. Using precisely the same argument as in Lemma 1, $\mu(S_1) = \lambda(S_2) = 0$ holds. It follows that μ and λ are singular. LEMMA 3. Let $\mu = \delta_1 * \mu_1 * \cdots * \mu_n$, and let $\lambda = \delta_2 * \lambda_1 * \cdots * \lambda_m$, where δ_1 , δ_2 are discrete and the μ_i 's and λ_j 's are continuous elements of M(Q). Suppose $\mu = \gamma_1 + \gamma_2$ where $\gamma_1 \perp \lambda$ and $\gamma_2 \ll \lambda$. Then

$$\chi(s)L(\mu_1, t) \cdots L(\mu_n, v) = \chi(s)L(\lambda_1, t) \cdots L(\lambda_m, v)[\gamma_2],$$

where t, \dots, v are in Q and s is arbitrary.

Remark. It makes sense to talk about these products being equal almost everywhere w.r.t. γ_2 since, if we disregard the variable s, γ_2 is concentrated on Q^n . Hence an element in the "domain" of γ_2 looks like $t + \cdots + v$.

Proof. First observe if $\gamma_2 = 0$ the statement is trivial; if $\gamma_2 \neq 0$, then n = m holds by the corollary to Lemma 1.

Write λ_i as the sum of 2^{n-1} mutually orthogonal components

$$\lambda_i = \sum \alpha_{i,j(1)}, \dots, j(n) ,$$

where j(r) = 0 or 1 according to whether this component is singular or absolutely continuous to λ_r . Since j(i) is always 1, there are 2^{n-1} different components. This decomposition is accomplished as follows: write

$$\lambda_1 = \alpha_{1,0} + \alpha_{1,1}$$

with $\alpha_{1,0} \perp \lambda_2$ and $\alpha_{1,1} \ll \lambda_2$. Then $\alpha_{1,0} = \alpha_{1,0,0} + \alpha_{1,0,1}$ with $\alpha_{1,0,0} \perp \lambda_3$ and $\alpha_{1,0,1} \ll \lambda_3$, etc. It is important to note that given any component α_i of λ_i and any λ_r , $1 \leq r \leq n$, then $\alpha_i \perp \lambda_r$ or $\alpha_i \ll \lambda_r$.

We list these components in the form of an $n \times 2^{n-1}$ matrix where the i^{th} row is the decomposition of λ_i . For each $k, 1 \leq k \leq n$, we write $\mu_k = \beta_{k,1,1} + \gamma$ where $\beta_{k,1,1}$ is absolutely continuous to the (1,1) entry in the matrix and γ is singular to it. Next write $\gamma = \beta_{k,1,2} + \gamma'$ with $\beta_{k,1,2}$ absolutely continuous to the (1,2) entry and γ' singular to it. Continuing in this way we can write μ_k as the sum of $n2^{n-1} + 1$ measures: $n2^{n-1}$ measures $\beta_{k,i,j}$, $1 \leq i \leq n$ and $1 \leq j \leq 2^{n-1}$ plus one measure $\beta_{k,0,0}$ which is singular to each entry and, hence, singular to each λ_r . Again, it is important to notice that for a given $\beta_{k,i,j}$ and any λ_r , either $\beta_{k,i,j} \ll \lambda_r$ or $\beta_{k,i,j} \perp \lambda_r$.

Now a general term in the product $\delta_1 * \mu_1 * \cdots * \mu_n$ looks like

$$\delta_1 * \beta_{1,i_1,j_1} * \cdots * \beta_{n,i_n,j_n},$$

where the *i*'s and *j*'s run over the proper ranges. Now if this term is singular to λ , we are not interested in it; therefore we assume this term is not singular to λ . If this is the case, Lemma 2 assures us there is some factor $\beta_{k,i_k,j_k} \ll \lambda_1$; for the sake of economy in notation call it β_1 . Using this notation, we proceed by induction. Suppose we have arranged the factors so that $\beta_k \ll \lambda_k$ for $k = 1, 2, \dots, r < n$. If, in the remaining factors, one is absolutely continuous to λ_{r+1} , we call it β_{r+1} , and our induction is complete; thus we must assume the remaining (n - r) factors are all singular to λ_{r+1} . Let $\{\beta_{k_1}, \dots, \beta_{k_p}\}$ be the subset of $\{\beta_1, \dots, \beta_r\}$ each of whose elements is absolutely continuous to λ_{r+1} and let $\{\beta_{m_1}, \dots, \beta_{m_s}\}$ be that subset each of

whose elements is singular to λ_{r+1} . Since each β -factor is either singular or absolutely continuous to λ_{r+1} , we have p + s = r. We know p > 0because if it were 0 we could invoke Lemma 2 to produce a contradiction to our assumption of nonsingularity. If any one of the remaining β -factors is absolutely continuous to some λ_{k_i} , $1 \leq i \leq p$, we can rearrange to let this new β -factor become β_{k_i} and let the original β_{k_i} stand for β_{r+1} . If this is not the case, then the remaining (n - r) factors are all singular to each λ_{k_i} , and there are p of these; hence s > 0. Now let $\{\beta_{q_1}, \dots, \beta_{q_t}\}$ be that subset of $\{\beta_{m_1}, \dots, \beta_{m_s}\}$ each of whose elements is absolutely continuous to some λ_{k_i} , $1 \leq i \leq p$, and let $\{\beta_{\mu_1}, \cdots, \beta_{\mu_v}\}$ be that subset each of whose elements is singular to every λ_{k_i} . As before, t + v = s; if t = 0, then each β_{m_i} , $1 \leq s$ $j \leq s$, is singular to $\lambda_{k_1}, \dots, \lambda_{k_p}$ and λ_{r+1} . Thus the set $\{\beta_{m_1}, \dots, \beta_{m_s}\}$ together with the remaining (n-r) factors are each singular to (p+1) λ -factors; but (n - r + s) + (p + 1) = n + 1, so we know t > 0. If any one of the remaining (n - r) factors is absolutely continuous to some λ_{q_i} , $1 \leq i \leq t$, we make two rearrangements similar to the one above and end our proof. If not, then the $(n - r) \beta$ -factors are singular to each λ_{q_i} . So far then, they are singular to $(p + t + 1) \lambda$ -factors. Lemma 2 and our assumption will call an early halt to such proceedings, and we conclude an arrangement may be made so that $\beta_i \ll \lambda_i$ for $i = 1, \dots, n$. This being so, we know, by a property of generalized functions, that

$$L(\beta_i, x) = L(\lambda_i, x)[\beta_i].$$

We further conclude the lemma is proved.

In view of Lemma 3, h is certainly well defined by (4.2); for if

$$\delta + \sum_{j=1}^n \mu_j = \delta' + \sum_{k=1}^m \mu'_k,$$

then $\delta = \delta'$, and we can write

$$\mu_j = \gamma_{1,j} + \cdots + \gamma_{m,j}$$
 and $\mu'_k = \gamma'_{1,k} + \cdots + \gamma'_{n,k}$

with $\gamma_{i,j} \equiv \gamma'_{j,i}$. It follows that (4.2) yields the same value for each representation. That (4.3) is well defined and is consistent with (4.2) is now immediate.

Recall that M_0 is the smallest algebra containing M(Q) and all discrete measures, and M_1 is the algebra of all measures absolutely continuous w.r.t. some element of M_0 . We wish to show that *h* defined on M_1 by (4.3) is a homomorphism. First *h* is additive, for suppose

$$\lambda \ll \delta + \sum_{j=1}^{n} \mu_j$$
 and $\nu \ll \delta' + \sum_{k=1}^{m} \mu'_k$.

There is no loss of generality in assuming each of these measures is positive. Then λ , ν , and $(\lambda + \nu)$ are absolutely continuous to the sum of these two measures. As in the definition (4.3) we write λ , μ , and $(\lambda + \nu)$ as the sum of 1 + n + m components since there are that many terms in the sum, where $\lambda_0 \ll \delta + \delta', \lambda_i \ll \mu_i, 1 \leq i \leq n$, and $\lambda_i \ll \mu'_i, 1 \leq i - n \leq n + m$; and similarly for ν and $(\lambda + \nu)$. Now given any Borel set S, there is a set $K_i \subset G$ (μ_i is concentrated on K_i), and $\lambda_i(S) = \lambda(S \cap K_i)$; the equality remains true if we replace λ_i and λ by ν_i and ν , or by $(\lambda + \nu)_i$ and $(\lambda + \nu)$. Thus

$$\begin{aligned} (\lambda + \nu)_i(S) &= (\lambda + \nu)(S \cap K_i) = \lambda(S \cap K_i) + \nu(S \cap K_i) \\ &= \lambda_i(S) + \nu_i(S); \end{aligned}$$

i.e., $(\lambda + \nu)_i = \lambda_i + \nu_i$. It follows that *h* is additive on M_1 . Clearly *h* is homogeneous, and to prove multiplicity we let

$$\lambda = \sum_{j=0}^{n} \lambda_j$$
 and $\nu = \sum_{k=0}^{m} \nu_k$

as in (4.3). Since h is additive, we have $h(\lambda * \nu) = \sum_{j,k} h(\lambda_j * \nu_k)$. Now $\lambda_j * \nu_k \ll \mu_j * \mu'_k$. Referring to the definition of μ_j and μ'_k and using the Fubini theorem we see that $h(\lambda_j * \nu_k) = h(\lambda_j)h(\nu_k)$. Thus

$$h(\lambda * \nu) = \sum_{j,k} h(\lambda_j * \nu_k) = \sum_{j,k} h(\lambda_j)h(\nu_k)$$

= $(\sum_j h(\lambda_j))(\sum_k h(\nu_k)) = h(\lambda)h(\nu).$

So h is a bounded homomorphism on M_1 ; extend h uniquely to a homomorphism on the closure M of M_1 .

Now M satisfies the hypothesis of the generalized Lebesgue decomposition theorem. To see this, let $\mu \in M$ and let $\lambda \ll \mu$. There is a sequence $\{\mu_n\} \subset M_1$ with $\mu_n \to \mu$. Write $\lambda = \lambda_{1,n} + \lambda_{2,n}$, where $\lambda_{1,n} \perp \mu_n$ and $\lambda_{2,n} \ll \mu_n$. It follows that $\lambda_{1,n} \to 0$ and $\lambda_{2,n} \to \lambda$. But each $\lambda_{2,n} \in M_1$, so $\lambda \in M$. Therefore we may decompose M(G) into the direct sum M(G) = $M + M^{\perp}$.

We now extend h to the entire algebra by the usual device: if $\mu \in M(G)$, define

(4.4)
$$h(\mu) = h(\mu_M)$$
 $(\mu_M \text{ is the projection of } \mu \text{ on } M).$

A simple calculation shows that h is linear on M(G). If we can prove that M^{\perp} is an ideal, it will follow h is also multiplicative.

Consider the regular family of sets F generated by Q (see §2). Let H be the algebra of all measures concentrated in F, and let I be the ideal of all measures concentrated outside F. We know M(G) = H + I and, clearly, $M \subset H$ and $I \subset M^{\perp}$. To prove our assertion above, let $\nu \in M^{\perp}$ and $\lambda \in M(G)$. Write $\nu = \nu_H + \nu_I$ and $\lambda = \lambda_H + \lambda_I$, where ν_H , etc. are the projections on H and I. So $\nu * \lambda = \nu_H * \lambda_H + \gamma$ where $\gamma \in I \subset M^{\perp}$; hence we may as well assume that ν and λ are concentrated in F. Because of our earlier remarks on regular families, and because H and M^{\perp} are "translation invariant" (this means $\mu \in H \Leftrightarrow \mu_x \in H$ for all $x \in G$; μ_x is a measure defined by $\mu_x(A) = \mu(A - x)$), we may, and do, assume that ν and λ are concentrated on Q^s and Q^t , respectively. We make one further observation; it is sufficient to prove $\nu * \lambda \perp \mu_1 * \cdots * \mu_m$ where $\mu_i \in M(Q)$, $1 \leq i \leq m$. For, if this is

true for all $\lambda \in H$, then $\nu * (\lambda * \sigma_{-x}) \perp \mu_1 * \cdots * \mu_m$ which implies

$$\nu * \lambda \perp \sigma_x * \mu_1 * \cdots * \mu_m$$

It would follow that $\nu * \lambda \perp M_0$, and consequently, $\nu * \lambda \in M^{\perp}$.

Therefore, we assume $\nu \in (M^{\perp} \cap H)$, $\lambda \in H$, ν is concentrated on Q^{s} , λ is concentrated on Q^{t} , and $\mu = \mu_{1} * \cdots * \mu_{m}$ where $\mu_{i} \in M(Q)$. We will prove $\nu * \lambda \perp \mu$.

Let $Q_0 = \{0\}, Q_1 = Q$, and for each $n = 2, 3, \cdots$, let $Q_n = Q^n - \bigcup_{i=1}^{n-1} Q^i$. Then $Q^n = \bigcup_{i=1}^n (Q_i \cap Q^n)$, and the sets $(Q_i \cap Q^n)$ are mutually disjoint. Let $\nu_i = \nu \mid (Q_i \cap Q^s)$ and $\lambda_j = \lambda \mid (Q_j \cap Q^t)$ for $1 \leq i \leq s$ and $1 \leq j \leq t$.

LEMMA 4. For each $k = 2, 3, \dots, i < s$, there are only a countable number of elements $\{x_{k,j}\}_{j=1}^{\infty} \subset Q_{i-k}$ such that $(Q_k + x_{k,j}) \subset Q_i$ and $\nu_i(Q_k + x_{k,j}) \neq 0$.

Proof. Clearly $\nu_i(Q_1 + x) = 0$ for every $x \in G$ since $\nu_i \perp M$. Let k = 2. For $x_1 \neq x_2 \in Q_{i-2}$, let $x_1 = q_1 + \cdots + q_{i-2}$ and $x_2 = r_1 + \cdots + r_{i-2}$. Then $(Q_2 + x_1) \cap (Q_2 + x_2)$ is empty, one point, or a translation of Q_1 depending on whether x_1 and x_2 have (i - 5) or less common terms, (i - 4) common terms, or (i - 3) common terms. In any case

$$\nu_i((Q_2 + x_1) \cap (Q_2 + x_2)) = 0;$$

this surely implies the lemma is true for k = 2. Using induction, suppose the statement is true for $k < n \leq i$. Now $x_1 \neq x_2$ are in Q_{i-n} , and

$$(Q_n + x_j) \subset Q_i, \qquad \qquad j = 1, 2.$$

By using the above argument, if they have i - 2n + 1 or less elements in common, $\nu_i((Q_n + x_1) \cap (Q_n + x_2)) = 0$. On the other hand, for each $j = 1, 2, \dots, n-2$, if x_1 and x_2 have i - 2n + 1 + j common terms, then $(Q_n + x_1) \cap (Q_n + x_2) \subset (Q_{j+1} + y)$ where $y \in Q_{i-j-1}$. Observe, since all of these sets are in Q_i , a term appears in y if and only if it appears either in x_1 or x_2 . (It is assumed, of course, if a term appears more than once, it is counted as a separate term each time.) Thus, there are at most $\binom{i-j-1}{i-n}$ sets $(Q_n + x)$ whose pairwise intersections are contained in $(Q_{j+1} + y)$ for each $y \in Q_{i-j-1}$. By the induction hypothesis only a countable number of sets $(Q_n + x)$ can have pairwise intersections of nonzero ν_i -measure; so the rest must have pairwise intersections of zero ν_i -measure. The desired conclusion is now immediate.

Let $\{x_{i,k,j}\}$, $i = 2, \dots, s - 1$; $k = 2, \dots, i$; and $j = 1, 2, \dots$ be the sequence of elements such that (1) $x_{i,k,j} \in Q_{i-k}$, (2) $(Q_k + x_{i,k,j}) \subset Q_i$, and (3) $\nu_i(Q_k + x_{i,k,j}) \neq 0$. For convenience, we also allow 0 to be in this sequence.

We assert the existence of subsets A, B_1, \dots, B_m such that

(1) ν is concentrated on A and μ_p is concentrated on B_p , $1 \leq p \leq m$, and

(2) $\mu_{p_1} * \cdots * \mu_{p_r}((B_{p_1} + \cdots + B_{p_r}) \cap (A \pm x_{i,k,j})) = 0$

(here we want 0 to be one of the $x_{i,k,j}$) for any combination of μ_p 's and all $x_{i,k,j}$'s. The construction of such sets is not hard; we consider μ_1, \dots, μ_m and all products of these. There are only countably many finite sums $\sum \sigma_{\pm x_{i,k,j}}$, and $\nu * \sum \sigma_{\pm x_{i,k,j}} = \sum \nu_{\pm x_{i,k,j}}$ is singular to M. The rest is straightforward.

We are now ready to prove $\nu * \lambda \perp \mu$. Recall λ is concentrated on Q^t , and now ν is concentrated on $Q^s \cap A$, and μ is concentrated on

$$\sum_{p=1}^{m} B_p = B_1 + \dots + B_p$$

Also $\nu_i = \nu \mid (Q_i \cap Q^s \cap A)$ and $\lambda_j = \lambda \mid (Q_j \cap Q^t)$. It is sufficient to prove $\nu_i * \lambda_j \perp \mu$ for all i and j, $1 \leq i \leq s$ and $1 \leq j \leq t$. We shall show that any Borel set $S \subset (\sum_{p=1}^m B_p \cap ((Q_i \cap A) + Q_j))$ can be written as the union of sets each of which is either of $\nu_i * \lambda_j$ -measure zero or of μ -measure zero.

First, if m > i + j, then Lemma 1 provides $\mu(S) = 0$; we therefore assume $m \leq i + j$ and $\sum_{p=1}^{m} B_p \subset Q_m$. Next, if m = i + j, then some finite sum of b_p 's is in A, and by condition (2) above it would follow that $\mu(S) = 0$. So it reduces to the case m < i + j. If $s \in S$, there is an $x = q_1 + \cdots + q_i \in Q_i \cap A$, a $y = r_1 + \cdots + r_j \in Q_j$, and a $b = b_1 + \cdots + b_m \in \sum_{p=1}^{m} B_p$ such that s = x + y = b. Since m < i + j, we must have $q_{u_1} = -r_{v_1}$, \cdots , $q_{u_w} = -r_{v_w}$ where $w = \frac{1}{2}(i + j - m)$.

Thus $x \in (Q_{i-w} + z)$ where $z = -(q_{u_1} + \cdots + q_{u_w}) \in Q_w$. Divide S into sets

$$S_1 = \{s \in S : s = x + y; x \in (Q_{i-w} + z) \cap A; \nu_i(Q_{i-w} + z) \neq 0\}$$

and its complement S_2 . If $s \in S_1$, then z is some $x_{i,k,j}$. But x = q + z, $q \in Q_{i-w}$; this makes $q = x - z \in (A - z)$. This compels a finite sum of b_p 's to be in (A - z), and, as before, $\mu(S_1) = 0$. Now

$$S_2 = \{s \in S : s = x + y; x \in (Q_{i-w} + z) \cap A; \nu_i(Q_{i-w} + z) = 0\}.$$

So for each fixed y, $\nu_i(Q_{i-w} + z) = 0$, and we infer that $\nu_i * \lambda_j(S_2) = 0$. This completes the proof and the construction.

References

- 1. PAUL HALMOS, Measure theory, New York, D. Van Nostrand Co., 1950.
- E. HEWITT AND S. KAKUTANI, A class of multiplicative linear functionals on the measure algebra of a locally compact Abelian group, Illinois J. Math., vol. 4 (1960), pp. 553-574.
- 3. YU. A. ŠREIDER, The structure of maximal ideals in rings of measures with convolution, Amer. Math. Soc. Translations, no. 81, Providence, 1953.
- 4. KARL STROMBERG, A note on the convolution of regular measures, Math. Scand., vol. 7 (1959), pp. 347-352.

Northwestern University Evanston, Illinois