
INDECOMPOSABLE REPRESENTATIONS
BY

A. HELLER AND I. REINER

1. Introduction

Let A be finite-dimensional lgebm over field K. By A-module we
shll mean always finitely generated left A-module on which the unity ele-
ment of A cts s identity operator. It is well known that the Krull-Schmidt
theorem holds for A-modules: ech module is direct sum of indecomposble
A-modules, nd these summnds re uniquely determined up to order of
occurrence nd A-isomorphism. Thus the problem of classifying A-modules
is reduced to that of finding the isomorphism classes of indecomposble A-
modules. We denote the set of these by M(A).
A central problem in the theory of group representations is that of deter-

mining set of representatives of M(A) for the special cse where A KG,
the group lgebra of finite group G over the field K. A definitive nswer
cn be given when the characteristic of K does not divide the group order
[G:I]; in this cse KG is. semisimple, ll indecomposble modules over KG re
irreducible, nd full set of non-isomorphic minimal left ideals of KG con-
stitute set of representatives of M(KG). For the cse where the charac-
teristic of K is p (p # 0), Higman [6] has proved the following remarkable
result: M(KG) is finite if and only if the p-Sylow subgroups of G are cyclic.
If such is the cse, Higmn obtained n upper bound on the number of ele-
ments of M(KG). A best possible upper bound ws lter obtained by Kasch,
Kupisch, nd Kneser [5].
We shll ttempt to elucidate Higmn’s theorem by considering in detail

the special cse where G is n belin p-group, nd K field of characteristic
p. We shll exhibit some new classes of indecomposable modules. How-
ever we shall show that the problem of computing M(KG), in cse G is not
cyclic, is t least s difficult s clssicul unsolved problem in mtrix theory.

It should be pointed out that the question of determining ll representa-
tions of p-group in field of chmcteristic p hs been extensively treated by
Bmhna [1, 2, 3] from somewhat different viewpoint. There is conse-
quently certain mount of overlapping between his results nd ours, but we
hve thought it best to mke this pper completely self-contined.

2. C-algebras
Inasmuch s we shll need to consider, together with modules over n

lgebm A, lso modules over sub- nd quotient-lgebms of A, we cnnot re-
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strict our attention only to group algebras. Instead we shall work with a
special type of commutative completely primary algebras.

DEFINITION. A C-algebra A over a field K of arbitrary characteristic is a
finite-dimensional commutative algebra over K with a unity element, such
that

A/R(A) -- K,

where R(A) denotes the radical of A. Any quotient algebra of a C-algebra
is easily seen to be a C-algebra. Likewise any subalgebra A’ of a C-algebra
A, which contains the unity element of A, is a C-algebra.

We may describe a C-algebra A explicitly as follows. Let

u,-.., u R(A)

map onto a K-basis of R(A)/R(A). From the nilpotency of R(A) it follows
readily that

(1) A K[u, u,],

though of course there are polynomial relations connecting the {u}. Let
xl,.", Xn be indeterminates over K, and define a K-homomorphism

(2) h K[xl x,] --. h

by means of

(3) (1) 1, b(xl) u, ..., (x) u..
Then b is an algebra epimorphism; its kernel J has the property that

(4) %/J (x_, ..., x),
where as usual

/J {F K[x xn]:F r}eJ for some

xn) denotes the ideal generated by the

K[x ,..., Xn]/J A.

We haveand where

(5)

Conversely if J is an ideal in K[x,
equation (5) defines a C-algebra A. The integer n given by

n dim R(A)/R(A)
we shall call the rank of A.

In particular let G be an abelian p-group, and write

G

where for each i, G is cyclic generated by an element g of order r p
Let K be any field of characteristic p. Then the K-homomorphism

:K[xl, x] - KG

.., x] for which (4) holds, then
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defined by

is an algebra epimorphism with kernel

Thus KG is a C-algebra of rank n.

3. Quotient algebras; the height of a module
Let A be a finite-dimensional K-algebra, and let A A/W be a quotient

algebra of A, where W is a two-sided ideal in A. Then each A’-module M
may be made into a A-module by defining

k.m ( W)m, ) e h, m e M.

The A-modules obtained in this way are precisely those which are annihilated
by W.

Moreover if a A-module is annihilated by W, then so is each sub- or quotient-
module. In particular the direct sum of two A-modules is annihilated by W
if and only if each summand is. Thus a A’-module is indecomposable if and
only if it is indecomposable when considered as a A-module. This immedi-
ately implies the following result.

PROPOSITION 1. If h is a quotient algebra of A, then M( A’) may be canoni-
cally identified with a subset of M(A).

Now suppose that R R(A) is the radical of A; then for some integer
m, R 0. Thus for any A-module A there is a smallest integer h such that
RhA O. We call this h the height of A, and clearly h =< m.
Thus a module is of height -< h if and only if it is annihilated by R, and

so by Proposition 1 we may identify M(A/R) with the subset of M(A) con-
sisting of the isomorphism classes of h-modules of height =< h.

If A is of height h, we have the upper Loewy series

A RA R-IA RA O,

and all inclusions are proper. On the other hand R annihilates each quotient
of two successive terms, and so each quotient is semisimple. This establishes

PROPOSITION 2. A A-module of height h is an (h 1)-fold successive ex-
tension of semisimple modules. In particular a module of height 1 is semi-
simple, while a module of height 2 is an extension of one semisimple module by
another.

4. Height two modules over C-algebras
Let A be a C-algebra over K, and let R be its radical. Then A/R ._ K

shows that a semisimple A-module is iust a vector space over K, so that
M(A/R) has iust one element, namely, the class containing K.
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As we have seen, the set of isomorphism classes of indecomposable A-
modules of height __< 2 may be identified with M(A/R). But A/R depends
only upon the rank of h, since we have

PROPOSITION 3. Set An K[xl Xn]/(Xl Xn)3, where the {x} are
indeterminates over K. If A is any C-algebra over K of rank n, then

AIR --. An.

Proof. Let u, un e R map onto a K-basis of R/R. For each k e A
let , denote its image in AIR. Then we have at once

AIR Ki KI Kn.
On the other hand let x K[xl, Xn] map onto e An. Then

(6) A KI
The map i --. i, -- (1 -< i =< n) thus gives the desired isomorphism.

COROLLARY. The set of isomorphism classes of indecomposable A-modules
of height <= 2 may be identified with M(Zn), where n rank of A.

We remark that (6) determines the structure of An, since I is its unity
element, and 0 for all i, j. Set

S KI ) () Kn radical of

If A is any zn-module, the sequence

0---. SA ---> A --- A/SA ---.0

is exact. Both SA and A/SA are annihilated by S, hence are semisimple
An-modules, that is, they are vector spaces over K which are annihilated by
S, and upon which K acts by scalar multiplication. For each i we define a
K-homomorphism

:A/SA SA
by means of

a SA a, a eA.

Then A is An-isomorphic to the space

A/SA SA,

the action on An on this space being given by

’(a + SA, b) (0, a), a eA, b e SA, 1 =< i =< n.

We have thus shown that to each module A there corresponds a pair of vector
spaces A/SA and SA, and an n-tuple of homomorphisms of the first space
into the second. This pair of spaces, and the set of homomorphisms, com-
pletely determines A up to isomorphism.
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Conversely let V, W be any pair of K-spaces, and let

i’1, i% e Hom(V, W)

be arbitrary. Define the action of As on V @ W by letting K act by scalar
multiplication, and using (7) to define the action of S. Then V $ W be-
comes a/-module which we denote by

and it is clear that the preceding construction associates with this module
precisely the spaces V and W, and the homomorphisms

Clearly IV, W; ’_,
K-isomorphisms

O: V V’, :W
_

W’
such that

n] :N IVt, W!; i’, i"] if and only if there exist

We note further that the direct sum of the modules [V, W;
IV’, w’; (, ..., ’] is just

[v v’, w w’; (, ..., , ,’].

l<-i<=n
.., ’] and

We have thus introduced the concepts of isomorphism and decomposability
for arrays IV, W; ’, ’], and have proved

PROPOSITION 4. The elements of M(A,) are in one-to-one correspondence
with the set S(n) of isomorphism classes of indecomposable arrays.

(We have in fact constructed functors which connect the category of Am-
modules with that of arrays, and which provide a weak equivalence of these
categories.
The problem of determining a complete set of non-isomorphic indecompos-

able arrays is a classical problem of matrix theory, namely that of equivalence
of matrix n-tuples. (In matrix terminology, we seek a complete set of non-
equivalent indecomposable n-tuples of matrices, where "equivalence" is
given by

(T, ..., Tn) (PT1 Q, ..., laT Q),
I and Q nonsingular.) The problem has been solved for n __< 2 (see [4], [7]),
and is unsolved for n > 2. We shall use the solution for the case n 2
to compute M(A2), and hence to give a set of representatives for the isomor-
phism classes of indecomposable A-modules of height =< 2.

Since we are dealing with a C-algebra A of rank 2, we may write A
K[ul, u2], where u and u2 e R(A) are such that their images form a K-basis
for R(A)/R(A). Then we have

PROPOSITION 5. Up to isomorphism, there is only one indecomposable A-
module of height 1, namely the space K on which K acts by scalar multiplication,
and which is annihilated by u and u There are infinitely many non-isomorphic
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indecomposable A-modules of height 2, and a full set of these is given by the spaces
V @ W, where

V Kal @ @ Kar, W Kbl @ @ Kbs,

the action of K being scalar multiplication, and the action of ul, u2 given by

"(’b 1 < i< r, m 1,2,tm’ai EJ=I ij

where
1) T(2)T(1) (t.), (t)

are r X s matrices over K given by the following choices"

(i) Tm Ie., T() Ce(p(x))

where I. denotes the era-rowed identity matrix, e is an arbitrary positive integer,
p(x) x a._l x’-1 ao is an arbitrary irreducible polynomial in
K[x], and C(p(x)) is defined as

B U 0 0

01
B U

C(p(x)) 0 B eB’soccur,

where

(ii)

(iii)

TO)

T(1) I0
Im

1 0 0
0 1 0

0 0 1
al a2 am-1

0 00]

o.!0 0

0 0

companion matrix of p(x),

(m+l) X (m+l)

T(2)

ol(m+l)Xm T(2) I Im 1(m+l)Xm

0 0
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and
(iv)

T(1) I, T()

where in (ii), (iii), and (iv) m is an arbitrary positive integer.

Remark.
and Ce(p(x)) takes the simpler form

If K is algebraically closed, then p(x) x a for some a e K

0 0 lJ0 0 a

Ce(p(x))

COROLLARY. Let G G1 X G. where for i 1, 2, Gi is a cyclic group with
generator gi of order p"*, a > O. Let K be any field of characristic p. Then
there are infinitely many indecomposable KG-modules. A complete set of non-
isomorphic indecomposable modules of height 2 is given by the above spaces
V W, where the action of G is given as follows:

)(g-- 1)ai tb, (g-- 1)a i’()h-, 1 =< i=< r,
and where

(g- 1)W (g- 1)W 0.

Finally we note that for n -> 2, 52 is a quotient algebra of Am, and hence
by Proposition 1 we may conclude that M(A) is infinite. Thus M(KG) is
infinite whenever G is a non-cyclic abelian p-group, and K has characteristic p.

5. C-algebras of rank two
We have seen that if an abelian p-group G is a direct product of r cyclic

groups, and K is a field of characteristic p, then KG is a C-algebra of rank r,
and consequently M(KG) contains a subset in one-to-one correspondence
with S(r), the set of isomorphism classes of indecomposable arrays
[V, W; 1, r]. This shows that for r > 2 we cannot hope to find a
complete system of non-isomorphic indecomposable KG-modules. We might
expect, however, that this could be done for the special case where r 2.
The aim of this section is to show that even this special case leads to the
problem of computing S(p), and hence cannot be solved explicitly as soon
asp > 2.

Let G G X G2, where for i 1, 2, Gi is generated by an element gi

of order ri p", ai > 0. Then we have seen that

and so surely
KG K[x x2]/(x, x2

Xrl r2x a (x, x).
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We now prove generally

PROPOSITION 6. Let A K[x, y]/J be a C-algebra of ranl 2 such that for
some n > 2,

Jc (x,y) n.
Then M(A) contains a subset in one-to-one correspondence with S(n).

Proof. We begin by observing that

An K[x, y]/ x,

is a quotient of A, so that M(An) M(A), and it suffices to prove the result
for M(An). Let x and y map onto X and Y, respectively, in An then

an K[X, Y], (X, Y) O.

Using formula (6) for A, we embed A in An by the mapping

,,(i) 1, g,()= X’-, ,,()= Xn-Y, ..., ,,(n)= Y’*-,
which is easily seen to be an algebra isomorphism of An into An. By means
of this embedding we may regard /xn as a subMgebra of An.

If A is a z,-module, define

(8) A* An (R)a. A,

which is a A,-module. The correspondence A -- A* preserves isomorphisms
and direct sums. In the other direction we proceed as follows. Let

R (X, Y) radical of

Then (as a subalgebra of An)

(9) An K’I R"-1,
and Rn-1 S is the radical of An. If B is a As-module, then for 1 =< i =< n
we have

2i B X"-iYi-IB R"-IB,
2i.RB R"B O,

and so there exists a K-homomorphism Oi’B/RB-- Rn-IB given by

O(b + RB) 2ib, b eB.
Setting

B’ B/RB Rn-B,
we may therefore make B’ into a A,-module by defining for each i,

R"-IB.2(, b) (0, O ))
The correspondence B -- B’ maps A.-modules onto A,-modules and clearly
preserves isomorphisms and direct sums.
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We shall prove that for any An-module A, we have

(10) (A*)’

_
A,

so that each class in M(/n) determines a class in M(An), and the result fol-
lows from Proposition 4.
We have shown in Section 4 that

AA/SA SA,

the action of An on the right-hand side being given by

i(a + SA, at O, a a A at SA.

On the other hand every element of A* is expressible as a sum

o_+<_n-t XY (R) a a A.
But we have

X’-Yi-1 (R) a 1 (R) i a, a A,
and so every element of A* is expressible as

a* 1 (R) a0W0<i+<_lXiY(R) ai, aoeA, {a.} cA.

To compute (A*)’, we determine RA*:

Xa* X (R) ao 0<+<-2 Xi+IY @ a +=n-2 1 (R) Sn-i-z ai.,

and likewise for Ya*. Thus

A*/RA*--- (1 (R) A)/(1 (R) SA) . A/SA.
Furthermore

Thus
R-A* 1 @ SA SA.

(A*)’-- A/SA SA,

where the action of each is given by

(a+ SA, at) (1 (R) a+ 1 (R) SA, 1 (R) SA)

1 (R) ia (0,ia), aeA, ateSA.
This completes the proof of (10), and establishes the proposition.
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