INDECOMPOSABLE REPRESENTATIONS

BY
A. Heller and I. Reiner ${ }^{1}$
\section*{1. Introduction}

Let Λ be a finite-dimensional algebra over a field K. By a Λ-module we shall mean always a finitely generated left Λ-module on which the unity element of Λ acts as identity operator. It is well known that the Krull-Schmidt theorem holds for Λ-modules: each module is a direct sum of indecomposable Λ-modules, and these summands are uniquely determined up to order of occurrence and Λ-isomorphism. Thus the problem of classifying Λ-modules is reduced to that of finding the isomorphism classes of indecomposable Λ modules. We denote the set of these by $M(\Lambda)$.

A central problem in the theory of group representations is that of determining a set of representatives of $M(\Lambda)$ for the special case where $\Lambda=K G$, the group algebra of a finite group G over the field K. A definitive answer can be given when the characteristic of K does not divide the group order [$G: 1$]; in this case $K G$ is semisimple, all indecomposable modules over $K G$ are irreducible, and a full set of non-isomorphic minimal left ideals of $K G$ constitute a set of representatives of $M(K G)$. For the case where the characteristic of K is $p(p \neq 0)$, Higman [6] has proved the following remarkable result: $M(K G)$ is finite if and only if the p-Sylow subgroups of G are cyclic. If such is the case, Higman obtained an upper bound on the number of elements of $M(K G)$. A best possible upper bound was later obtained by Kasch, Kupisch, and Kneser [5].

We shall attempt to elucidate Higman's theorem by considering in detail the special case where G is an abelian p-group, and K a field of characteristic p. We shall exhibit some new classes of indecomposable modules. However we shall show that the problem of computing $M(K G)$, in case G is not cyclic, is at least as difficult as a classical unsolved problem in matrix theory.

It should be pointed out that the question of determining all representations of a p-group in a field of characteristic p has been extensively treated by Brahana [1, 2, 3] from a somewhat different viewpoint. There is consequently a certain amount of overlapping between his results and ours, but we have thought it best to make this paper completely self-contained.

2. C -algebras

Inasmuch as we shall need to consider, together with modules over an algebra Λ, also modules over sub- and quotient-algebras of Λ, we cannot re-

[^0]strict our attention only to group algebras. Instead we shall work with a special type of commutative completely primary algebras.

Definition. A C-algebra Λ over a field K of arbitrary characteristic is a finite-dimensional commutative algebra over K with a unity element, such that

$$
\Lambda / R(\Lambda) \cong K
$$

where $R(\Lambda)$ denotes the radical of Λ. Any quotient algebra of a C-algebra is easily seen to be a C-algebra. Likewise any subalgebra Λ^{\prime} of a C-algebra Λ, which contains the unity element of Λ, is a C-algebra.

We may describe a C-algebra Λ explicitly as follows. Let

$$
u_{1}, \cdots, u_{n} \in R(\Lambda)
$$

map onto a K-basis of $R(\Lambda) / R(\Lambda)^{2}$. From the nilpotency of $R(\Lambda)$ it follows readily that

$$
\begin{equation*}
\Lambda=K\left[u_{1}, \cdots, u_{n}\right] \tag{1}
\end{equation*}
$$

though of course there are polynomial relations connecting the $\left\{u_{i}\right\}$. Let x_{1}, \cdots, x_{n} be indeterminates over K, and define a K-homomorphism

$$
\begin{equation*}
\phi: K\left[x_{1}, \cdots, x_{n}\right] \rightarrow \Lambda \tag{2}
\end{equation*}
$$

by means of

$$
\begin{equation*}
\phi(1)=1, \quad \phi\left(x_{1}\right)=u_{1}, \quad \cdots, \quad \phi\left(x_{n}\right)=u_{n} \tag{3}
\end{equation*}
$$

Then ϕ is an algebra epimorphism; its kernel J has the property that

$$
\begin{equation*}
\sqrt{ } J=\left(x_{1}, \cdots, x_{n}\right) \tag{4}
\end{equation*}
$$

where as usual

$$
\sqrt{ } J=\left\{F \in K\left[x_{1}, \cdots, x_{n}\right]: F^{r} \in J \text { for some } r\right\}
$$

and where $\left(x_{1}, \cdots, x_{n}\right)$ denotes the ideal generated by the $\left\{x_{i}\right\}$. We have

$$
\begin{equation*}
K\left[x_{1}, \cdots, x_{n}\right] / J \cong \Lambda \tag{5}
\end{equation*}
$$

Conversely if J is an ideal in $K\left[x_{1}, \cdots, x_{n}\right]$ for which (4) holds, then equation (5) defines a C-algebra Λ. The integer n given by

$$
n=\operatorname{dim}_{K} R(\Lambda) / R(\Lambda)^{2}
$$

we shall call the rank of Λ.
In particular let G be an abelian p-group, and write

$$
G=G_{1} \times \cdots \times G_{n}
$$

where for each i, G_{i} is cyclic generated by an element g_{i} of order $r_{i}=p^{\alpha_{i}}$. Let K be any field of characteristic p. Then the K-homomorphism

$$
\phi: K\left[x_{1}, \cdots, x_{n}\right] \rightarrow K G
$$

defined by

$$
\phi(1)=1, \quad \phi\left(x_{1}\right)=g_{1}-1, \quad \cdots, \quad \phi\left(x_{n}\right)=g_{n}-1
$$

is an algebra epimorphism with kernel

$$
J=\left(x_{1}^{r_{1}}, \cdots, x_{n}^{r_{n}}\right)
$$

Thus $K G$ is a C-algebra of rank n.

3. Quotient algebras; the height of a module

Let Λ be a finite-dimensional K-algebra, and let $\Lambda^{\prime}=\Lambda / W$ be a quotient algebra of Λ, where W is a two-sided ideal in Λ. Then each Λ^{\prime}-module M may be made into a Λ-module by defining

$$
\lambda \cdot m=(\lambda+W) m, \quad \lambda \in \Lambda, \quad m \in M
$$

The Λ-modules obtained in this way are precisely those which are annihilated by W.

Moreover if a Λ-module is annihilated by W, then so is each sub- or quotientmodule. In particular the direct sum of two Λ-modules is annihilated by W if and only if each summand is. Thus a Λ^{\prime}-module is indecomposable if and only if it is indecomposable when considered as a Λ-module. This immediately implies the following result.

Proposition 1. If Λ^{\prime} is a quotient algebra of Λ, then $M\left(\Lambda^{\prime}\right)$ may be canonically identified with a subset of $M(\Lambda)$.

Now suppose that $R=R(\Lambda)$ is the radical of Λ; then for some integer $m, R^{m}=0$. Thus for any Λ-module A there is a smallest integer h such that $R^{h} A=0$. We call this h the height of A, and clearly $h \leqq m$.

Thus a module is of height $\leqq h$ if and only if it is annihilated by R^{h}, and so by Proposition 1 we may identify $M\left(\Lambda / R^{h}\right)$ with the subset of $M(\Lambda)$ consisting of the isomorphism classes of Λ-modules of height $\leqq h$.

If A is of height h, we have the upper Loewy series

$$
A \supset R A \supset \cdots \supset R^{h-1} A \supset R^{h} A=0
$$

and all inclusions are proper. On the other hand R annihilates each quotient of two successive terms, and so each quotient is semisimple. This establishes

Proposition 2. A Λ-module of height h is an $(h-1)$-fold successive extension of semisimple modules. In particular a module of height 1 is semisimple, while a module of height 2 is an extension of one semisimple module by another.

4. Height two modules over C -algebras

Let Λ be a C-algebra over K, and let R be its radical. Then $\Lambda / R \cong K$ shows that a semisimple Λ-module is just a vector space over K, so that $M(\Lambda / R)$ has just one element, namely, the class containing K.

As we have seen, the set of isomorphism classes of indecomposable Λ modules of height $\leqq 2$ may be identified with $M\left(\Lambda / R^{2}\right)$. But Λ / R^{2} depends only upon the rank of Λ, since we have

Proposition 3. Set $\Delta_{n}=K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}, \cdots, x_{n}\right)^{2}$, where the $\left\{x_{i}\right\}$ are indeterminates over K. If Λ is any C-algebra over K of rank n, then

$$
\Lambda / R^{2} \cong \Delta_{n}
$$

Proof. Let $u_{1}, \cdots, u_{n} \in R$ map onto a K-basis of R / R^{2}. For each $\lambda \in \Lambda$ let $\bar{\lambda}$ denote its image in Λ / R^{2}. Then we have at once

$$
\Lambda / R^{2}=K \overline{1} \oplus K \bar{u}_{1} \oplus \cdots \oplus K \bar{u}_{n}
$$

On the other hand let $x \in K\left[x_{1}, \cdots, x_{n}\right]$ map onto $\tilde{x} \in \Delta_{n}$. Then

$$
\begin{equation*}
\Delta_{n}=K \tilde{1} \oplus K \tilde{x}_{1} \oplus \cdots \oplus K \tilde{x}_{n} \tag{6}
\end{equation*}
$$

The map $\overline{1} \rightarrow \tilde{1}, \bar{u}_{i} \rightarrow \tilde{x}_{i}(1 \leqq i \leqq n)$ thus gives the desired isomorphism.
Corollary. The set of isomorphism classes of indecomposable Λ-modules of height $\leqq 2$ may be identified with $M\left(\Delta_{n}\right)$, where $n=$ rank of Λ.

We remark that (6) determines the structure of Δ_{n}, since $\tilde{1}$ is its unity element, and $\tilde{x}_{i} \tilde{x}_{j}=0$ for all i, j. Set

$$
S=K \tilde{x}_{1} \oplus \cdots \oplus K \tilde{x}_{n}=\text { radical of } \Delta_{n}
$$

If A is any Δ_{n}-module, the sequence

$$
0 \rightarrow S A \rightarrow A \rightarrow A / S A \rightarrow 0
$$

is exact. Both $S A$ and $A / S A$ are annihilated by S, hence are semisimple Δ_{n}-modules, that is, they are vector spaces over K which are annihilated by S, and upon which K acts by scalar multiplication. For each i we define a K-homomorphism

$$
\zeta_{i}: A / S A \rightarrow S A
$$

by means of

$$
a+S A \rightarrow \tilde{x}_{i} a, \quad a \in A
$$

Then A is Δ_{n}-isomorphic to the space

$$
A / S A \oplus S A
$$

the action on Δ_{n} on this space being given by

$$
\begin{equation*}
\tilde{x}_{i}(a+S A, b)=\left(0, \zeta_{i} a\right), \quad a \in A, b \in S A, 1 \leqq i \leqq n \tag{7}
\end{equation*}
$$

We have thus shown that to each module A there corresponds a pair of vector spaces $A / S A$ and $S A$, and an n-tuple of homomorphisms of the first space into the second. This pair of spaces, and the set of homomorphisms, completely determines A up to isomorphism.

Conversely let V, W be any pair of K-spaces, and let

$$
\zeta_{1}, \cdots, \zeta_{n} \in \operatorname{Hom}_{K}(V, W)
$$

be arbitrary. Define the action of Δ_{n} on $V \oplus W$ by letting K act by scalar multiplication, and using (7) to define the action of S. Then $V \oplus W$ becomes a Δ_{n}-module which we denote by

$$
\left[V, W ; \zeta_{1}, \cdots, \zeta_{n}\right]
$$

and it is clear that the preceding construction associates with this module precisely the spaces V and W, and the homomorphisms $\zeta_{1}, \cdots, \zeta_{n}$.

Clearly $\left[V, W ; \zeta_{1}, \cdots, \zeta_{n}\right] \cong\left[V^{\prime}, W^{\prime} ; \zeta_{1}^{\prime}, \cdots \zeta_{n}^{\prime}\right]$ if and only if there exist K-isomorphisms

$$
\theta: V \cong V^{\prime}, \quad \eta: W \cong W^{\prime}
$$

such that

$$
\zeta_{i}^{\prime} \theta=\eta \zeta_{i}, \quad 1 \leqq i \leqq n
$$

We note further that the direct sum of the modules $\left[V, W ; \zeta_{1}, \cdots, \zeta_{n}\right]$ and $\left[V^{\prime}, W^{\prime} ; \zeta_{1}^{\prime}, \cdots, \zeta_{n}^{\prime}\right]$ is just

$$
\left[V \oplus V^{\prime}, W \oplus W^{\prime} ; \zeta_{1} \oplus \zeta_{1}^{\prime}, \cdots, \zeta_{n} \oplus \zeta_{n}^{\prime}\right]
$$

We have thus introduced the concepts of isomorphism and decomposability for arrays $\left[V, W ; \zeta_{1}, \cdots, \zeta_{n}\right.$], and have proved

Proposition 4. The elements of $M\left(\Delta_{n}\right)$ are in one-to-one correspondence with the set $S(n)$ of isomorphism classes of indecomposable arrays.
(We have in fact constructed functors which connect the category of $\Delta_{n^{-}}$ modules with that of arrays, and which provide a weak equivalence of these categories.)

The problem of determining a complete set of non-isomorphic indecomposable arrays is a classical problem of matrix theory, namely that of equivalence of matrix n-tuples. (In matrix terminology, we seek a complete set of nonequivalent indecomposable n-tuples of matrices, where "equivalence" is given by

$$
\left(\mathbf{T}_{1}, \cdots, \mathbf{T}_{n}\right) \sim\left(\mathbf{P T}_{1} \mathbf{Q}, \cdots, \mathbf{P T}_{n} \mathbf{Q}\right)
$$

\mathbf{P} and \mathbf{Q} nonsingular.) The problem has been solved for $n \leqq 2$ (see [4], [7]), and is unsolved for $n>2$. We shall use the solution for the case $n=2$ to compute $M\left(\Delta_{2}\right)$, and hence to give a set of representatives for the isomorphism classes of indecomposable Λ-modules of height $\leqq 2$.

Since we are dealing with a C-algebra Λ of rank 2 , we may write $\Lambda=$ $K\left[u_{1}, u_{2}\right]$, where u_{1} and $u_{2} \in R(\Lambda)$ are such that their images form a K-basis for $R(\Lambda) / R(\Lambda)^{2}$. Then we have

Proposition 5. Up to isomorphism, there is only one indecomposable 1 module of height 1 , namely the space K on which K acts by scalar multiplication, and which is annihilated by u_{1} and u_{2}. There are infinitely many non-isomorphic
indecomposable Λ-modules of height 2 , and a full set of these is given by the spaces $V \oplus W$, where

$$
V=K a_{1} \oplus \cdots \oplus K a_{r}, \quad W=K b_{1} \oplus \cdots \oplus K b_{s}
$$

the action of K being scalar multiplication, and the action of u_{1}, u_{2} given by

$$
u_{m} \cdot a_{i}=\sum_{j=1}^{s} t_{i j}^{(m)} b_{j}, \quad 1 \leqq i \leqq r, \quad m=1,2,
$$

where

$$
\mathbf{T}^{(1)}=\left(t_{i j}^{(1)}\right), \quad \mathbf{T}^{(2)}=\left(t_{i j}^{(2)}\right)
$$

are $r \times s$ matrices over K given by the following choices:

$$
\begin{equation*}
\mathbf{T}^{(1)}=\mathbf{I}_{e m}, \quad \mathbf{T}^{(2)}=\mathbf{C}_{e}(p(x)) \tag{i}
\end{equation*}
$$

where $\mathbf{I}_{e m}$ denotes the em-rowed identity matrix, e is an arbitrary positive integer, $p(x)=x^{m}-a_{m-1} x^{m-1}-\cdots-a_{0}$ is an arbitrary irreducible polynomial in $K[x]$, and $\mathbf{C}_{e}(p(x))$ is defined as

$$
\mathbf{C}_{e}(p(x))=\left[\begin{array}{ccccc}
\mathbf{B} & \mathbf{U} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{B} & \mathbf{U} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{B} & \cdots & \mathbf{0} \\
. & . & . & \cdots & \mathbf{U} \\
. & . & . & \cdots & \mathbf{B}
\end{array}\right], \quad \text { e } \mathbf{B} \text { 's occur }
$$

where

$$
\begin{aligned}
& \mathbf{B}=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
. & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & 1 \\
a_{0} & a_{1} & a_{2} & \cdots & a_{m-1}
\end{array}\right]=\text { companion matrix of } p(x), \\
& \mathbf{U}=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
. & \cdot & \cdots & . & . \\
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] .
\end{aligned}
$$

(ii)

$$
\mathbf{T}^{(1)}=\left[\begin{array}{cccc}
0 & \cdots & 0 & 0 \\
& & & 0 \\
& \mathbf{I}_{m} & & \vdots \\
& & & 0
\end{array}\right]^{(m+1) \times(m+1)}, \quad \mathbf{T}^{(2)}=\mathbf{I}_{m}
$$

(iii)

$$
\mathbf{T}^{(1)}=\left[\begin{array}{lll}
0 & \cdots & 0
\end{array}\right]^{(m+1) \times m}, \quad \mathbf{T}^{(2)}=\left[\begin{array}{lll}
& \mathbf{I}_{m} & \\
0 & \cdots & 0
\end{array}\right]^{(m+1) \times m}
$$

and
(iv)

$$
\mathbf{T}^{(1)}=\left[\begin{array}{cc}
0 & \\
\vdots & \mathbf{I}_{m} \\
0 &
\end{array}\right]^{m \times(m+1)}, \quad \mathbf{T}^{(2)}=\left[\begin{array}{cc}
& 0 \\
\mathbf{I}_{m} & \vdots \\
& 0
\end{array}\right]^{m \times(m+1)}
$$

where in (ii), (iii), and (iv) m is an arbitrary positive integer.
Remark. If K is algebraically closed, then $p(x)=x-\alpha$ for some $\alpha \epsilon K$ and $\mathbf{C}_{e}(p(x))$ takes the simpler form

$$
\mathbf{C}_{e}(p(x))=\left[\begin{array}{cccc}
\alpha & 1 & \cdots & 0 \\
0 & \alpha & \cdots & 0 \\
. & . & \cdots & . \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & \alpha
\end{array}\right]
$$

Corollary. Let $G=G_{1} \times G_{2}$, where for $i=1,2, G_{i}$ is a cyclic group with generator g_{i} of order $p^{\alpha_{i}}, \alpha_{i}>0$. Let K be any field of characteristic p. Then there are infinitely many indecomposable KG-modules. A complete set of nonisomorphic indecomposable modules of height 2 is given by the above spaces $V \oplus W$, where the action of G is given as follows:

$$
\left(g_{1}-1\right) a_{i}=\sum t_{i j}^{(1)} b_{j}, \quad\left(g_{2}-1\right) a_{i}=\sum t_{i j}^{(2)} b_{j}, \quad 1 \leqq i \leqq r
$$

and where

$$
\left(g_{1}-1\right) W=\left(g_{2}-1\right) W=0
$$

Finally we note that for $n \geqq 2, \Delta_{2}$ is a quotient algebra of Δ_{n}, and hence by Proposition 1 we may conclude that $M\left(\Delta_{n}\right)$ is infinite. Thus $M(K G)$ is infinite whenever G is a non-cyclic abelian p-group, and K has characteristic p.

5. C-algebras of rank two

We have seen that if an abelian p-group G is a direct product of r cyclic groups, and K is a field of characteristic p, then $K G$ is a C-algebra of rank r, and consequently $M(K G)$ contains a subset in one-to-one correspondence with $S(r)$, the set of isomorphism classes of indecomposable arrays [$V, W ; \zeta_{1}, \cdots, \zeta_{r}$]. This shows that for $r>2$ we cannot hope to find a complete system of non-isomorphic indecomposable $K G$-modules. We might expect, however, that this could be done for the special case where $r=2$. The aim of this section is to show that even this special case leads to the problem of computing $S(p)$, and hence cannot be solved explicitly as soon as $p>2$.

Let $G=G_{1} \times G_{2}$, where for $i=1,2, G_{i}$ is generated by an element g_{i} of order $r_{i}=p^{\alpha_{i}}, \alpha_{i}>0$. Then we have seen that

$$
K G \cong K\left[x_{1}, x_{2}\right] /\left(x_{1}^{r_{1}}, x_{2}^{r_{2}}\right)
$$

and so surely

$$
\left(x_{1}^{r_{1}}, x_{2}^{r_{2}}\right) \subset\left(x_{1}, x_{2}\right)^{p} .
$$

We now prove generally
Proposition 6. Let $\Lambda=K[x, y] / J$ be a C-algebra of rank 2 such that for some $n>2$,

$$
J \subset(x, y)^{n}
$$

Then $M(\Lambda)$ contains a subset in one-to-one correspondence with $S(n)$.
Proof. We begin by observing that

$$
\Lambda_{n}=K[x, y] /(x, y)^{n}
$$

is a quotient of Λ, so that $M\left(\Lambda_{n}\right) \subset M(\Lambda)$, and it suffices to prove the result for $M\left(\Lambda_{n}\right)$. Let x and y map onto X and Y, respectively, in Λ_{n}; then

$$
\Lambda_{n}=K[X, Y], \quad(X, Y)^{n}=0
$$

Using formula (6) for Δ_{n}, we embed Δ_{n} in Λ_{n} by the mapping

$$
\psi(\tilde{1})=1, \quad \psi\left(\tilde{x}_{1}\right)=X^{n-1}, \quad \psi\left(\tilde{x}_{2}\right)=X^{n-2} Y, \quad \cdots, \quad \psi\left(\tilde{x}_{n}\right)=Y^{n-1}
$$

which is easily seen to be an algebra isomorphism of Δ_{n} into Λ_{n}. By means of this embedding we may regard Δ_{n} as a subalgebra of Λ_{n}.

If A is a Δ_{n}-module, define

$$
\begin{equation*}
A^{*}=\Lambda_{n} \otimes_{\Delta_{n}} A \tag{8}
\end{equation*}
$$

which is a Λ_{n}-module. The correspondence $A \rightarrow A^{*}$ preserves isomorphisms and direct sums. In the other direction we proceed as follows. Let

$$
R=(X, Y)=\text { radical of } \Lambda_{n}
$$

Then (as a subalgebra of Λ_{n})

$$
\begin{equation*}
\Delta_{n}=K \cdot 1 \oplus R^{n-1} \tag{9}
\end{equation*}
$$

and $R^{n-1}=S$ is the radical of Δ_{n}. If B is a Λ_{n}-module, then for $1 \leqq i \leqq n$ we have

$$
\begin{gathered}
\tilde{x}_{i} B=X^{n-i} Y^{i-1} B \subset R^{n-1} B \\
\tilde{x}_{i} \cdot R B \subset R^{n} B=0
\end{gathered}
$$

and so there exists a K-homomorphism $\theta_{i}: B / R B \rightarrow R^{n-1} B$ given by

$$
\theta_{i}(b+R B)=\tilde{x}_{i} b, \quad b \in B
$$

Setting

$$
B^{\prime}=B / R B \oplus R^{n-1} B
$$

we may therefore make B^{\prime} into a Δ_{n}-module by defining for each i,

$$
\tilde{x}_{i}\left(\bar{b}, b_{1}\right)=\left(0, \theta_{i} \bar{b}\right), \quad \bar{b} \in B / R B, \quad b_{1} \in R^{n-1} B
$$

The correspondence $B \rightarrow B^{\prime}$ maps Λ_{n}-modules onto Δ_{n}-modules and clearly preserves isomorphisms and direct sums.

We shall prove that for any Δ_{n}-module A, we have

$$
\begin{equation*}
\left(A^{*}\right)^{\prime} \cong A \tag{10}
\end{equation*}
$$

so that each class in $M\left(\Delta_{n}\right)$ determines a class in $M\left(\Lambda_{n}\right)$, and the result follows from Proposition 4.

We have shown in Section 4 that

$$
A \cong A / S A \oplus S A
$$

the action of Δ_{n} on the right-hand side being given by

$$
\tilde{x}_{i}\left(a+S A, a_{1}\right)=\left(0, \tilde{x}_{i} a\right), \quad a \in A, \quad a_{1} \in S A
$$

On the other hand every element of A^{*} is expressible as a sum

$$
\sum_{0 \leqq i+j \leqq n-1} X^{i} Y^{j} \otimes a_{i j}, \quad a_{i j} \in A
$$

But we have

$$
X^{n-i} Y^{i-1} \otimes a=1 \otimes \tilde{x}_{i} a, \quad a \in A
$$

and so every element of A^{*} is expressible as

$$
a^{*}=1 \otimes a_{0}+\sum_{0<i+j<n-1} X^{i} Y^{j} \otimes a_{i j}, \quad a_{0} \in A, \quad\left\{a_{i j}\right\} \in A
$$

To compute $\left(A^{*}\right)^{\prime}$, we determine $R A^{*}$:

$$
X a^{*}=X \otimes a_{0} \oplus \sum_{0<i+j<n-2} X^{i+1} Y^{j} \otimes a_{i j} \oplus \sum_{i+j=n-2} 1 \otimes \tilde{x}_{n-i-1} a_{i j}
$$ and likewise for $Y a^{*}$. Thus

$$
A^{*} / R A^{*} \cong(1 \otimes A) /(1 \otimes S A) \cong A / S A
$$

Furthermore

$$
R^{n-1} A^{*}=1 \otimes S A \cong S A
$$

Thus

$$
\left(A^{*}\right)^{\prime} \cong A / S A \oplus S A
$$

where the action of each \tilde{x}_{i} is given by

$$
\begin{aligned}
\tilde{x}_{i}\left(a+S A, a_{1}\right) & =\tilde{x}_{i}(1 \otimes a+1 \otimes S A, 1 \otimes S A) \\
& =1 \otimes \tilde{x}_{i} a=\left(0, \tilde{x}_{i} a\right), \quad a \in A, \quad a_{1} \in S A
\end{aligned}
$$

This completes the proof of (10), and establishes the proposition.

References

1. H. R. Brahana, Metabelian groups of order p^{n+m} with commutator subgroups of order p^{m}, Trans. Amer. Math. Soc., vol. 36 (1934), pp. 776-792.
2. ——, Metabelian groups and trilinear forms, Duke Math. J., vol. 1 (1935), pp. 185197.
3. -_, Metabelian groups and pencils of bilinear forms, Amer. J. Math., vol. 57 (1935), pp. 645-667.
4. J. Dieudonńe, Sur la réduction canonique des couples de matrices, Bull. Soc. Math. France, vol. 74 (1946), pp. 130-146.
5. F. Kasch, M. Kneser und H. Kupisch, Unzerlegbare modulare Darstellungen endlicher Gruppen mit zyklischer p-Sylow-Gruppe, Arch. Math., vol. 8 (1957), pp. 320-321.
6. D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J., vol. 21 (1954), pp. 377-381.
7. G. Pickert, Normalformen von Matrizen, Enzyklopädie der mathematischen Wissenschaften (2. Aufl.), Bd. I, Nr. 7, Leipzig, 1953.

University of Illinois
Urbana, Illinois

[^0]: Received June 10, 1960.
 ${ }^{1}$ Research of the first author was supported in part by the A. P. Sloan Foundation. Research of the second author was supported in part by a research contract with the Office of Naval Research.

