
A CONDITION FOR THE SOLVABILITY OF A FINITE GROUP
BY

W. E. DESKINS

In [8] H. Wielandt introduced the concept of subinvariant subgroup and
proved that the set of all subinvariant subgroups of a finite group G form a
lattice, 8(G), under the usual compositions of intersection and subgroup
union. (Cf. [2], Chapter 8.) Clearly the definition of solvability for G
requires 8(G) to form a rather substantial skeleton for 2(G), the lattice of
all subgroups of G under the same compositions, and suggests that there exist
relations between s(G) and (G) which insure the solvability of G. One
such relationship was given by Wielandt in [8]" A finite group G is nilpotent
if and only if (G) S(G).
Now a direct extension of a portion of this result based only on the ratio

of the number of elements in 2(G) to the number in 8(G) is impossible as
the direct product of a simple nonabelian group of small order with a nil-
potent group of large order indicates. Thus the distribution of the elements
of $(G) in (G) must be considered. We prove here that, stated roughly,
if the elements of 8(G) comprise over 20% of (G) and are rather uniformly
distributed throughout 2(G), then G is a solvable group.

1. On maximal subgroups
Two intermediate results essential to the proof of the theorem mentioned

above are proved in this section. Both are results concerning maximal sub-
groups and are of some interest in themselves.

THEOREM 1. If the finite group G contains a maximal subgroup M which is
nilpotent of class less than 3, then G is solvable.

This result is properly contained in a theorem of B. Huppert [4] except
when M contains a 2-subgroup of class 2. However this rather special case
attains a degree of importance from some work of N. It6 and of J. G. Thomp-
son. In [6] Thompson announced that. a finite group which contains as a
maximal subgroup a nilpotent group of odd order is a solvable group, while
in [5] It6 showed that certain nonsolvable linear fractional groups contain
maximal subgroups which are nilpotent (and of even order).
Now if the theorem is not true, then among the nonsolvable groups which

contain as maximal subgroups nilpotent groups of class less than 3 there is
one (at least) of minimal order. Denote such a group by G. We shall show
that G cannot exist and thereby prove the theorem.

First of all G contains no normal subgroups ( (1)) which lie entirely in
M. For if K M is normal in G, then G/K satisfies the hypothesis of the
theorem. Since the order of G/K, o(G/K), is less than o(G), G/K is solv-
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able. Also K is solvable since it is a subgroup of M. But the extension of a
solvable group by a solvable group is solvable. This means, since G is non-
solvable, that G has no such subgroups as K.
Next we shall show that G contains a normal subgroup H such that

G/H-- M, and we use the theory of the transfer to do this. Let p be a
rational prime divisor of o(M), and let P be the p-Sylow subgroup of M.
Then P is also a Sylow subgroup of G, for suppose a p-subgroup S of G prop-
erly contains P. If (S), the center of S, lies in P, then(S) (l) is
normal in G since G M o S. If (S) does not lie in P, then (P) is nor-
mal in G since M u (S) G in this case. Thus the supposition that P is
not a Sylow subgroup of G leads to the existence of a normal subgroup of G
lying in M, a possibility that was ruled out above. So P is a Sylow subgroup
of G.
Now consider the transfer of G into P. According to the First Theorem

of Gr0n ([9], p. 140) the transferred group is isomorphic with P/P1, where

PI (P r ’(P) u (P n x P’x-) u u (P n Xn

Here 9’(P) is the commutator subgroup of 9(P), the normalizer of P in G,
P’ is the commutator subgroup of P, and the x are the n o(G) elements
of G. We must show that P is a proper subgroup of P, and since P is of
class 1 or 2, there are two cases to consider.

Case 1. P is abelian. Therefore P’= (1) so that P P ng’(P).
Since M contains no subgroups normal in G, and since M is maximal in G, it
follows that (P) M. Thus ’(P) M’, and since M is the direct
product of its Sylow subgroups, P n M’ is precisely P’ which is (1) since P
is abelian. So Px (1) in this case, and G is homomorphic with P.

Case 2. Pis of class 2. ThenP ](P) Zbut](P/Z) P/Z, and
consequently P’_ Z. Now let x e G, x M, and suppose xZx-n M
T (1). Then T xZx-, for consider the normalizer of T in G. (T)
contains xMx- since T lies in the center of xMx-. Also 9(T) contains
(M) since T is in M. Since T cannot be normal in G, (T) xMx-, so
that ](M)

_
xMx-. But this means that xZx- lies in the normalizer of

(M), so that if T xZx- then G M u xZ:- is the normalizer of ](M)
an impossibility. Moreover Z xZx- (1) since (Z xZx-), the cen-
tralizer of Z xZx-, equals M u xMx- which is G.
Now form the subgroup U Z u xZx-. U is normal in M for if y e M

and zx xZx-, then yz y-1 z z for some z e Z since P is of class 2. Simi-
larly, U is normal in xMx-1, and so, since G M u xMx-, U is normal in
G. As this possibility was ruled out earlier, the assumption xZx- M (1)
when x M cannot hold. Consequently,

(PnxlP’x-1) u u (PaxnP’x) _Z.

Since P n 9’(P) still equals P’ exactly as in Case 1, we see that P

_
Z.

Thus P1 is a proper subgroup of P.



308 w.E. DESKINS

However we can carry the argument further in the second case and obtain
the same conclusion as in the first, namely, that G is homomorphic with P.
The above proves that G contains a normal subgroup K such that G/K
P/P1. Therefore P1 is a p-Sylow subgroup of K. Consider the transfer of
K into Px, and apply Grfin’s Theorem again. Then the transferred group is
isomorphic with Px/P, where

P (P (P)) o (P x P’I x-) o o (P n x P’
Here 9(P) denotes the commutator subgroup of the normalizer of P in K.
By the Second Isomorphism Theorem ([9], p. 34) P P K and is normal
in P, hence in M. Therefore 9(P1)

_
M K. But if 9(P) contains an

element not in M, then P is normal in G. Thus 9(P) M K. Since
M n K is nilpotent, P n 9t(P) P’ which equals (1) since PI is abelian.
Therefore P2 (1) and K is homomorphie with P. This yields the de-
sired result: G is homomorphie with P in both eases.

If the kernel of the above homomorphism is denoted by Hv, then H f’l Hv
for all the distinct prime divisors of o(M) is precisely a normal subgroup of
G having the property that G/H -- M. Moreover G HM and H n M
(1). The elements of M induce automorphisms of H; in particular, an ele-
ment x from (M) induces an automorphism of H which fixes no element of
H except the identity. For if xhx- h 1 in H, then x generates a cyclic
subgroup of M which is normal in G since M (h) G. Therefore H
possesses a fixed-point-free automorphism of prime order, so that by a result
of J. G. Thompson [7] H is a nilpotent group. (We note that a method of
I. Herstein [3] can also be adapted to prove that H is nilpotent.)

This means, however, that the nonsolvable group G is an extension of a
nilpotent group H by a nilpotent group M. Since such an extension is solv-
able, we see that G is both solvable and nonsolvable. Clearly this is impossi-
ble. So, G does not exist, and the theorem is proved.
The intersection of all maximal subgroups of a finite group G is known to be

a nilpotent group, the Frattini subgroup of G. The nature of the generalized
Frattini subgroups [1] of the next theorem will prove useful in the following
section.

THEOREM 2. The intersection v(G) qf all the maximal subgroups of the
finite group G whose indices in G are not divisible by the prime p is a solvable
group.

Let P be a p-Sylow subgroup of F (G). If P (1), then F is the
Frattini subgroup of G, for otherwise G contains a maximal subgroup N such
that FuN- G. HoweverG/FN/FN, so that the index of NinG
is not divisible by p. But that means F

_
N and F u N N G. There-

fore F is the Frattini subgroup of G and is certainly solvable.
Now suppose P (1). By the Sylow theorems G contains a Sylow sub-

group S such that P F a S. Therefore S

_
9(P), the normalizer of P
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in G, so that if 9t(P) G, then Tt(P) is contained in a maximal subgroup
M of G whose index in G is not divisible by p. Suppose y e G, y e M; then
ypy-1 is also a Sylow subgroup of F. Therefore F contains an element x
such that x(yPy-)x- P, which means that xy 91(P) and thus M. But
F c M so that x- M, and therefore y M. This impossibility means that
(P) G.
Now consider ,(G/P); we again have the first case in that the p-Sylow

subgroup of ,(G/P) -- ,(G)/P is (1). Therefore ,(G)/P is the Frat-
tini subgroup of G/P, and so F is solvable since it is an extension of a nil-
potent group by nilpotent group.

Example. Let G be the group defined by the relations a b 1 and
ab ba. In this group of order 20 the Frattini subgroup is (1), while (G)
is the subgroup of order 10 generated by a and b. is solvable but not
nilpotent.

2. Subinvariance and variance of a group

A subgroup H of a group G is subinvariant in G if there exist subgroups
H0 G D D H H such that H is a normal subgroup of H-I for
i 1, 2,-.., n. For some of the properties and applications of subin-
variance see the aforementioned paper of Wielandt [8] and Chapter 8 of [2].
We shall need the following additional property.

LEMMA 1. If the subinvariant subgroup H of the finite group G is contained
in the nonnormal maximal subgroup K of G, and if no subgroup of K properly
containing H is subinvariant in G, then H is normal in G.

Let y e K, y H. Then yHy- is also subinvariant in G, for if

G HoDH1D DH. H

with Hi normal in H_, then G yHo y- D yH y- D yHy-
with yHy- normal in y(H_)y-. A result of Wielandt states that
H u yHy- is also subinvariant in G, and since H

_
H yHy- _

K, it fol-
lows that yHy- H. Thus Tt(H) K. On the other hand Tt(H)
which is not a subgroup of K since it is subinvariant in G and contains Hn H
properly. Therefore 91(H) K gn-1 G, and so H is normal in G.
A collection of subgroups Lo, LI, Ln of G is called an upper chain,

e,, of G of length n if L0 G and if ech L is maximal in L_I,
i 1, 2, n. The subinvariance of (, s(), is defined to be the num-
ber of L L0 which are subinvariant in G. The variance of (, v(), is
defined as n/S(en) if s() 0, and as n otherwise. Then v(G), the variance
of G, is the maximum of the v(am) for all an of G. (Only finite groups are
being considered here.) This number v(G) describes to some extent the
distribution of the elements of 8(G) in 2(G). For example, v(G) 1 if
and only if $(G) (G).
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LEMM_ 2. If H is a nonnormal maximal subgroup of the finite group G,
then v(H) < v(G).

Let ’:H Ko KI K be an upper chain of H; then
+i:G L0 L1 K0 L K1 Ln.1 K is an upper chain
of G. Since a subgroup of H is subinvariant in G only if it is subinvariant in
H, we see that S(n+) =< s(e’n). If S(e+) > 0, then

v(e+) (n -t- 1)/s(e+) ->_ (n + 1)/s(e’) > n/s(e’,) v(e’).
If s(e+l) 0, then v(e,,+l) n + 1 > n _>- v(e’), which is n if s(’) 0
and n/s(a’) otherwise. Since G is finite, the strict inequality is preserved
when maxima are considered, and hence v(G) > v(H).
A simple consequence of this result is the following characterization of

nilpotent groups"

A finite group G is nilpotent if and only if v(G) v(H) for every proper
subgroup H of G.

For if v(G) v(H) when H is maximal in G, then H must be normal, and
a group all of whose maximal subgroups are normal is certainly nilpotent.
Conversely if G is nilpotent, then v(G) 1, and since a subgroup H of G is
also nilpotent, v(H) 1. Therefore v(G) v(H).

LEMMA 3. If v(G) r and H is a normal subgroup of G, then v(G/H) <= r.

Let v(G/H) m. Then G/H contMns an upper chain

e*’G/H L L L*,
such that v(*) m. Therefore G contains the upper chain

n’G Lo L1 L,

where Li contains H and Li/H L i 0,1,2, ,n. Clearly Li is
subinvariant in G if and only if L is subinvariant in G/H, so that v(en) r.
Since v(G) >= v( e), it follows that v(G/H) <= r.

LEMMA 4. If H is a nonnormal maximal subgroup of the finite group G, if
H is solvable but contains no subgroups (1) subinvariant in G, and if
v(G) < n, then o(H) is the product of at most n 2 not necessarily distinct
primes.

Let H-H0H1D H (1) be a composition series for H;
therefore o(H) is a product of r primes. Then

(r+l"G L0 D L1 H D L H1 D L,+l (1)

is an upper chain of G, and s(+l) 1 since L+ is the only element of the
chain which is subinvariant in G. Hence n > v(G) >= (r + 1)/1 r+ 1,
so thatr n- landr-< n- 2.
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Now we are in position to prove our main result.

THEOREM 3. The finite group G is solvable if (i) v(G) < 5 and (o(G), 3) 1,
or (ii) v(G) < 4.

Since there are actually two theorems here, we shall prove the truth of the
conclusion for hypothesis (i) and then indicate the few minor changes which
yield a proof in the other case.

If the conclusion is not true, then there is a nonsolvable group G having
v(G) < 5 and (o(G), 3) 1 such that any group of smaller order with these
properties is solvable. We shall prove the theorem by showing that such a
group does not exist, and we will do this by considering the maximal sub-
groups of G.

First of all, G must contain nonnormal maximal subgroups since a group
having all its maximal subgroups normal is nilpotent, hence solvable. So
let H be a nonnormal maximal subgroup of G. Then since v(H) < v(G), by
Lemma 2, and since o(H) divides o(G), we see that H satisfies (i). Since G
is a nonsolvable group of minimal order satisfying (i), we see that H must be
solvable. Hence all of the nonnormal maximal subgroups of G are solvable
groups.
We can obtain still more information about these subgroups. Suppose H

contains a subgroup (1) which is subinvariant in G; then it contains a sub-
group K maximal in this property. Therefore, by Lemma 1, K is actually
normal in G. Now consider G/K. By Lemma 3, v(G/K) <= v(G), and since
o(G/K) divides o(G), it follows that G/K satisfies (i). Again the mini-
mality of o(G) among the orders of the nonsolvable groups satisfying (i)
implies that G/K is solvable. But K is also a solvable group since it is a
subgroup of a nonnormai maximal subgroup H of G. This means that G is
an extension of a solvable group by a solvable group and hence is solvable
itself. Thus the supposition that H contains a subgroup (1) which is sub-
invariant in G cannot hold. Now we can apply Lemma 4 to the nonnormal
maximal subgroups of G. Thus we have the following information about
some of the maximal subgroups of G.

(.) G has nonnormal maximal subgroups each of which is a solvable group
whose order is a product of at most three primes.

Now consider the normal maximal subgroups of G. By a well-known
theorem ([9], p. 139) the order of a nonsolvable group is divisible by either
12 or the cube of the smallest prime dividing the order of the group. Since
G is nonsolvable, and since (o(G), 3) 1, o(G) has a prime divisor p such
that p31o(G). Let P be a p-Sylow subgroup of G. If G contains no normal
subgroups, then P is contained in a nonnormal maximal subgroup M of G.
But by (.), o(M) is a product of at most three primes, so that M P and
o(M) p3. Since a group of order p3 is nilpotent of class -< 2, this implies,
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by Theorem 1, that G is solvable. Thus the supposition that G contains no
normal subgroups leads to a contradiction of the nonsolvability of G. If
L (1) is a normal subgroup of G, then G/L is solvable due to the mini-
mality of o(G). Therefore we conclude that G must contain a maximal sub-
group which is normal. We note further that the above argument also shows
that each p-Sylow subgroup of G, for any prime p such that p3 o(G), is con-
tained only in a maximal subgroup which is normal. Thus we have the fol-
lowing additional information about the maximal subgroups of G"

(**) G contains at least one maximal subgroup which is normal. Moreover,
if p is the smallest prime dividing o(G), then the p-Sylow subgroups of G are
contained only in normal maximal subgroups of G.

Now we are in a position to prove that there exists no nonsolvable group
satisfying both (.) and (**). For suppose G1 is a group with properties (.)
and (**). Then if p is the smallest prime dividing o(G), (G1), the inter-
section of all maximal subgroups of G which have indices relatively prime to
p, is the intersection of certain of the normal maximal subgroups of G. There-
fore G/(G1) is abelian since it is the direct product of images of G modulo
those normal maximal subgroups. Theorem 2, however, states that p(G1) is
a solvable group, so that G, as an extension of a solvable group by an abelian
group, is a solvable group. Thus there does not exist a nonsolvable group
with properties (.) and (**), and so the proof (for hypothesis (i)) is com-
plete.
The proof for hypothesis (ii) runs along the same lines, with one simplifi-

cation. In the above it was necessary to have the cube of a prime dividing
o(G) since this, together with the order of a nonnormal maximal subgroup
being the product of at most three primes, enabled us to prove that G had a
normal subgroup. However, if v(G) < 4, the nonnormal maximal subgroups
of a nonsolvable G with minimal o(G) will have orders which are products of
two primes. This means it will only be necessary to have the square of some
prime divide o(G), something which is true for every nonsolvable group.
We note that the variance of A, the alternating group of order 60, is 4.

Hence the condition on o(G) in (i) is necessary.
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