GROUPS WITH REPRESENTATIONS OF BOUNDED DEGREE I

BY
S. A. AMmITSUR!

Kaplansky has initiated in [3] a study of infinite groups @ all of whose ir-
reducible representations are of bounded degree. It was shown in [3] that if
@ contains a normal abelian subgroup of finite index, then all the irreducible
representations of ¢ are of bounded degree, and a bound was obtained utilizing
identities of finite matrix rings and the theory of Banach algebras.

With the additional information we have about identities of matrix rings
and of discrete group algebras, we are able to obtain more concrete results in
this direction. In particular we obtain among others the result that if G
contains any abelian (not necessarily normal) subgroup of index » in G, then
all representations of G are of degree < n.

The converse is not true even for n = 2. In this case we determine all
groups whose irreducible representation are finite-dimensional of degree < 2,
and show that they belong to two types: (1) groups G having a normal abelian
subgroup of index 2; (2) groups G having a center N such that G/N is an
abelian 2-group of order 8.

1. Finite-dimensional representations

In what follows all representations are considered over fields of character-
istic zero.
The following notations and results will be used:

[xl,x2’ ...’xk];—. Zj:xilxiZ..'xik’

where z; are noncommutative indeterminates and the sum ranges over all
permutations (4, -+, %) of the first k letters and the sign is positive for
even permutations and negative for odd permutations. It is well known [4]
that matrix rings F, satisfy the identity [x;, 2, -+, 22x] = 0 and no identi-
ties of lower degree.

Following (3], a group G is said to have the property P if for any k ele-
ments g, - -+, gr of G, the k!/2 products g,, ¢s, - - - ¢, obtained from all even
permutations is identical with the k!/2 products obtained from the odd per-
mutations. The fact that G has property P; is equivalent to the group ring
F[@] (for arbitrary field of characteristic zero) satisfying the identity

[xlaxza 7xk] = 0.

Let V be a finite-dimensional vector space over some field C, and let it be
also a representation space of G. V determines an absolutely irreducible repre-
sentation of G, if V ®¢ F is G-irreducible for all field extensions F of C.
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A set {V,} of representation spaces of G is said to be a complete set of repre-
sentations of G if, for every element Y n,¢ in the group ring Z[G] over the
integers, there exists at least one space V, for which (Z ngg) Ve #= 0.

Our first result is

TrEOREM 1. The following are equivalent:

(A) G has a complete set of representations (not necessarily wrreducible) of
degree < n.

(B) For any field F (of characteristic zero), F|G)] satisfies the polynomial
identity [y, -+, Xen] = O.

(C) Every primitive image of F|Q), for every F, is a ceniral simple algebra
of dimension < n’ over its center.

(D) Every absolutely irreducible representation of G is of degree < n, and
the set of all its absolutely irreducible represeniations is complete.

Proof. For any space V over a field C, §(V) will denote the ring of all
linear transformations of V. The field of all rationals will be denoted by @,
and as we consider only fields of characteristic zero, all fields will be assumed
to contain Q.

Let {V,} be a complete set of representation spaces (possible over different
fields) of G and of degree < n. Each representation determines a homo-
morphism ¢.:Q[G] — &(V,.), and if B, = kernel of ¢, , then Q[G]/B. is iso-
morphic with a subring of &(V,). The latter by the preceding remarks
satisfies the identity [x;, - - - , Z2] = 0 ([4]), and thus also Q[G]/B. satisfies
the same relation. The fact that {V,} is complete is equivalent to N P, = 0;
consequently (A) implies that Q[Q] satisfies the relation [z, - -, #3.] = 0.
Now for arbitrary F, F[G] = Q[GF] ®, F, and thus it follows that (A) = (B).

The result (B) = (C) is a simple consequence of the fact that every primi-
tive image of F[G] satisfies the same identity, and therefore, by a result of
Kaplansky, it is of the form described in (C) (e.g., [2], Theorem 1, p. 226).

Clearly (D) = (A), so it remains to show that (C) = (D). To this end
we show how in our case all absolutely irreducible representations of G are
obtained.

Let V be a primitive representation of Q[G] (i.e., @[G] is homomorphic with
an irreducible ring of endomorphisms of the abelian group V). If A is the
centralizer of @G in the ring of endomorphisms of V, then it follows in view of
(C) that Q[G]/B = A,, where P is the kernel of this representation and A
is a central simple algebra of order s° over its center C = Ca withrs = m < n.
Actually, it is known that 7, when considered as a vector space over A, is a
space of dimension r and Q[G]/PB = &a(V). Since C is the center of A, V
can be considered as a vector space over C, and A will remain the centralizer
of C[G] in the ring of endomorphisms of V. Consequently, the above repre-
sentation can be extended to a primitive representation of C[G], and we still
have

C[G]/%l = SA(V) = Ar ’
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with the new kernel B,. Now let C be the algebraic closure of C; then
A®C=Ch,and VR®:C =V,® --- ® V,, where each V, is an rs=m-
dimensional vector space over C. The preceding decomposition is actually a
decomposition of V to s isomorphic absolutely-G-irreducible representations.
We prefer to attack this question in a different way: Since A, ® ¢ ~ C,, =~
&(W), where W is any C-space of dimension m, the homomorphism 7:G — A,
can be extended to a representation of G into the ring of linear transforma-
tions §(W). Thus W becomes a G-representation space, and, in fact, it is
an absolutely irreducible G-space. Indeed, let F 2 C; then

EW ®cF)=2&(W) ® F = A, ®cF.

Since the set of elements w(G) contains a C-base of A, , it follows that it con-
tains also a base of §(W ® F); hence W ® F is G-irreducible as required,
and (W:C) = m < n. Note also that the kernel of the homomorphism of
Q[G] into (W) is the same ideal P we have started from, since the restriction
of the representation to Q[G] is actually the homomorphism Q[G] — A, whose
kernel is B.

It follows from [1], Theorem 1 that in our case Q[G] is semisimple; hence the
intersection of all primitive ideals in Q[G] is zero, and, consequently, the set
of all absolutely irreducible representations obtained in the previous manner
constitute a complete set. Obviously, all absolutely irreducible representa-
tions of G will constitute a complete set, and the second part of (D) is proved.

To prove the first part of (D), we consider an arbitrary vector space V of
a field C which is an absolutely irreducible representation of G. Clearly V
can be considered as a primitive representation of the group ring C[G], and
if P is the primitive ideal which is the kernel of the homomorphism = of C[G]
into the ring of endomorphisms of V, then as before it follows by (C) that
C[G]/PB = A, , where A is the centralizer of G (and of C[G]) in the ring of
endomorphisms of V. Furthermore, (V:A) = r and (A:F) = &, F the
center of A, and rs = m < n. We wish to show that A = C. Indeed, let K
be any subfield of A containing F ( 2C). Since K & A, the homomorphism
0V ®¢ K — Vdefined by p(v ® k) = vk (note that k ¢ 8(V) so that vk ¢ V)
is actually a G-homomorphism, where gfv ® k) = gv ® k for g e G. Since
V is absolutely irreducible, p must be an isomorphism onto, and since K is
C-free, this holds only if K = C. This implies that actually we have
A = F = (, and consequently V is an r-dimensional C-space, and r < n as
required in (D). This completes the proof of our theorem.

We are now in position to prove

TuroreM 2. Let H be a subgroup of G of finite index. If H has a complete
set of representations of degree = m, then G has a complete set of representations
of degree = m(G:H).

Proof. Let {W,} be a complete set of representations of H. Consider the
spaces V, = Q[G] ®r W, , where the tensor product is taken with respect to
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Q[H]. Each V, is a vector space over the field C, over which W, is a space
of dimension < m, by defining ¢(a¢ ® w) = ¢ ® cw for all ¢ e C., a € Q[G]
and weW, ;and if @ = Ui, g; H where r = (G:H), then

Va=gl®Wa@"’®gr®Wa,

and thus (V.:C.) < rm. V. is also a G-representation space by setting
gla ® w) = ga ® w.

This set {V,.} constitute a complete set of representations of G. Indeed,
every element D n, g ¢ Z[G] can be written in the form Y g; z; with z; e Z[H];
let z; > 0; then by assumption z; W, = 0 for some W,, and thus

(X gz)Ve2 (X giz)(1®W,) = 2. g:i @2 Wa %0

since the sum is direct.
An immediate consequence of Theorems 1 and 2 is the following generaliza-
tion of a result of Kaplansky ([3], Theorem 1):

CoroLLARY 1. Let H be a maximal abelian subgroup of G; if (G:H) < o,
then all absolutely irreducible representations of G are = (G:H).

Indeed, Q[H] is semisimple (by [1]) and commutative; hence all its primi-
tive images constitute a complete set of 1-dimensional representations. The
corollary follows now from Theorem 2 and (D) of Theorem 1.

The converse of this corollary is not true as will be shown in the next sec-
tion.

The following simple observation is of interest:

CoROLLARY 2. If G has a complete set of representations of degree < n, then
G has a faithful representation as a group of linear transformations of an n-di-
menstonal space over a commutative ring.

For let {V,} be a complete set of representations of G, and V, a vector
space over a field C, ; then set R = Y C, the direct sum, and let V be an
n-dimensional R-module. If e, is the projection of R onto C., one can re-
place V. by e, V in an obvious way (with a possibility of increasing the
dimension) and clearly turn V into a G-module on which G acts faithfully.

2. Groups with representations of degree =< 2
The object of this section is to prove the following.

TaEOREM 3. A group G has all its absolutely irreductble representations of
degree = 2 if and only if it is one of the following types:

(A) @G 1s abelian,

(B) G has an abelian subgroup H, and (G:H) = 2,

(C) @ has a center N, and G/N is an abelian 2-group of order 8.

Proof. 1If G is abelian, all of its absolutely irreducible representations are
of degree 1; for groups of type (B) this result is a special case of Theorem 2.
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To prove the third case we shall show that these groups satisfy (B) of
Theorem 1, namely, that [z;, 22, 23, 4 = 0 holds in Q[G].

Since N is the center of @G, it suffices to show that the preceding relation
holds for x; constituting different representatives of classes modulo N and
not in N, since if two of the x; represent the same class, the above relation
evidently holds. Now let all x; N be different. As G/N is a 2-group, it
follows that the group of classes generated by x, and x, consists of N and the
three classes x; N, 22 N, 21 22 N ; hence z; and x, cannot both belong to these
classes, and so G/N is generated by x; , x2 , and one of the other ;. We have,
therefore, to consider only the following two cases:

(1) zi=a, 22=0b, x3=¢, and x, = ab, a, b, ced,
(2) mm=4a, z2=0b, x3=¢, and x, = abe.

First we observe that since G/N is commutative and a 2-group, we have
the following relations:

() d=a b'=8 ¢ =v ba=abu, ca=acw, cb= bew,

with e, 8, v, %, v, and w belonging to N. Note also that since a’, b*, ¢ ¢ N
and N is in the center, we must have «* = v* = w’ = e.

Consider first case (2): [a, b, ¢, abc] will consist of 24 terms which we
divide into six groups each of 4 terms obtained from a product abc-yi-y2-y;
by cyclic permutation, and the six groups are obtained when yi , ¥2, ys range
over all six permutations of a, b, ¢. Next note that in each class the cyclic
permutation ys-abc-y:-y. ete. changes the parity of the corresponding per-
mutation; hence each class will contain two even and two odd permutations,
but not considering the sign they are the same element, e.g.,

abc-c-b-a = a-abc-c:b = -+ = afy.

Consequently one readily observes that [a, b, ¢, abc] = 0.
To compute the first case we observe that

la, b, ¢, ab] = [a, bll¢, ab] — [a, c][b, ab] + [a, ab][be]
+ [b, clla, ab] — [b, abl[a, c] + [c, ablla, ab]
= abcab(1l — u)(1 — vw) — acbab(l — v)(1 — u)
+ @®e(1 — u)(1 — w) + bea’d(1 — w)(1 — u)
— babac(1l — u)(1 — v) + caba’(1 — vw)(1 — u)
= aBe(l — w){uwv(l — ow) — w(l —v) + (1 — w)
4+ w(l — w) — u(l —v) + u(l — vw)}
= 0.

The proof of the converse of our theorem involves using a different identity
which should hold in Q[G] if all representations of G are of degree < 2. In
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this case, since Q[G] is semisimple, it must satisfy also all identities of the
ring of all 2 X 2 matrices over Q, and in particular, the Wagner-Hall identity
8 = [[zyl’, 2] = 0; or in other words, for arbitrary z, y e Q[G],
[z, yI = (ay — y)*
must belong to the center of G.
Another fact which will be used later is that an element Y 7, ¢ e Z[G]
belongs to the center if and only if n, = nue—1 for all A, g € G.
We linearize & by considering [z + ty, 2]’ — [z, 2" — £[y, 2], and we ob-
tain that in Q[G] the element
= [, 2lly, 2] + [y, 2llz, 2]
xzyz + zazy + yewz + zyex — a2’y — sxye — yle — 2yxz
belongs to the center of Q[G].
Putin (2.1) z = ab™'¢ ™,y = be 'and z = ¢ (a, b, ¢ € G); then (2.1) takes
the form
8 = a4 cac” + bab™" + (cb)a(ch)™ — afb”!, ¢} — cac e, b7}
— {b, ¢} (cb)a(ch)™ — {c, bjbab~,
where {u, v} = wvw v for u, v ¢ G. Let N, denote the centralizer of u ¢ G
in G. We choose first b ¢ N, (i.e., ba = ab); then (2.2) takes the form

(2.2a) & = 2a + 2cac* — a{b”’, ¢} — cac ¢, b} — {b, cjeac™ — {c, b}a,
and if also ¢ € N, , then we get
(2.2b) 8 = 4a — a{b”’, ¢} — alc, b} — {b, c}a — {c, bla.

Now if 8 0 for some b and ¢, and since 8, belongs to the center of Q[G]’
it follows that ¢ must belong to the center N of G. If 6 = Oforallb,c e N,,
then @ must be equal to the elements with negative sign, from which one
readily deduces that bc = ca. Summarizing, we have shown

(2.1)

(2.2)

Lemma 1. Under the condition of Theorem 3, if a ¢ N-center of G, then its
centralizer N, 1s abelian.

Next we want to show under the same condition
LemMA 2. If a ¢ N, then either (G:N,) = 2, or N, = N u Na.

Here we utilize (2.2a). Let c ¢ N,. If 8 5 0 for some ¢, then again from
the form of the elements of the center of Z[G] and from the fact that & be-
longs to this center, it follows that either a ¢ N, or a has exactly two conju-
gates, and hence (G:N,) = 2. If this is not the case, then § = 0 for all
c¢N,. It follows now from (2.2a) that one of the following holds:

(1) a=afb,¢f or a={c ba,

(2) a=cacMe, b} or a = {b,clcac™.
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The first case yields bc = c¢b, but since ba = ab (i.e., a, ¢ ¢ Ny), and ac # ca,
it follows by Lemma 1 that b e V.

In the second case we get a = cab 'c™'b or a = beb ac™’, which yield
ab”'c = cab™ or (b7'a)c = ¢(b"'a). There both b'a and ¢’ commute
with a since b € N, , 80 ¢, @ € Np-1, or N,-13 ; but as ac 5 ca, it follows again
by Lemma 1 that ¢™'b or b'a ¢ N, and in any case b e Na. The above argu-
ment being true for all b ¢ N, shows that N, = N u Na, which concludes the
proof of the lemma.

An immediate consequence of Lemma 2 is

Lemma 3. If G satisfies the condition of Theorem 3 and it is not of the type
(A) or (B), then G/N 1is an abelian 2-group.

Indeed, in this case for a ¢ N, N, = N u Na, and as o’ ¢ N, we must have
o’ ¢ N. Furthermore, since

aba b = (ab)’b a7t = (ab)’ %Y,

it follows that G/N is abelian.

To complete the proof of Theorem 3 we have to show that G/N has at
most three generators, and to this end we linearize (2.1) one step more and
obtain that the following element belongs to the center:

(23) 8 = [z, ully, v] + [z, vlly, ul + [y, ullz, v] + [y, vlz, ul.
Seta =ab™,u=0b,y =c,v=c " wherea,b,ceG;then
8 = a 4+ ¢ lac + bab™ + (cb)a(cb) ™t — ab”'¢ "be
— ¢ lab b — cbelab™t — beab ¢

Assume that G is not of the type (A) or (B); then clearly in view of Lemma
3, G/N cannot be generated by two elements a, b since then G/N is of order
4 and (G:N,) = 2. So let us choose a, b two elements (not in N') represent-
ing different classes in G/N (so that b ¢ N,), and choose

¢c¢N u aN u DN u abN.

In this case we want to show that 8; of (2.3a) is never zero.

Indeed, if 83 = 0, then we must have one of the following cases:

(1) @ = ab'¢ 'be, which yields bc = cb; but then in view of Lemma 2,
¢ ¢ N u bN, a contradiction.

(2) a = ¢ 'ab~'ch; then ab~'c = cab™' which implies by Lemma 2 that
ceNuab”'N = N u abN since b~ ¢ bN. Contradiction!

(3) a = cbc'ab™' which implies ¢"'ab™' = b"'¢"'a; thus for the same
reason ¢ 'a ¢ N u bN, and therefore ¢ e aN u abN as ¢ 'a eca™N. Impos-
sible!

(4) @ = beab'¢”’. This gives acb = bca. Multiplying both sides on
the right by @ and noting that o’ belongs to the center, we get

(ac) (ba) = bea® = (ba)(ac),

1

(2.32)
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so that for the same reason we obtain ac e N u baN, and consequently
¢ ¢ aN u bN, which is again impossible.

Now if 83 % 0 for all ¢ not in the above class, it follows from the fact that
85 € center of Q[G] that all conjugates of a are bab™, ¢ ‘ac, and (cb)a(ch) ™" for
the b, ¢ chosen in the preceding argument. Take now d € G; then dad™" must
be one of the preceding conjugates. Thus if dad™ = @, it follows that
d € NuaN; if dad™ = bab™", then b d ¢ N u aN, so that d e bN u abN; if
dad™ = ¢ 'ac, we get cd ¢ N u aN, and thus d e cN U acN. In the last case
where dad™ = cba(ch)™, we get (¢b)™ d e N u aN, so that d e bcN u abeN.
Consequently a, b, and ¢ generate the classes of G/N, and the proof of Theorem
3 is completed.

We conclude with a remark that one can construct groups of the type (C)
which are not of type (A) and (B), and thus the converse of Theorem 2 does
not hold. These groups are constructed by taking abelian groups N possess-
ing three elements u, v, w such that +* = v* = w* = e but none of the prod-
ucts u, v, w, w, uw, vw, uvw equals e, and constructing G by the relations
given in (*) for arbitrary o, 8, v € N.

BIBLIOGRAPHY

1. S. A. AMiTsUR, On the semi-simplicity of group algebras, Michigan Math. J., vol. 6
(1959), pp. 251-253.

2. N. JacossoN, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37,
1956.

3. I. KapLANSKY, Groups with representations of bounded degree, Canadian J. Math.,
vol. 1 (1949), pp. 105-112.

4. A. S. AmiTsur aND J. LeviTZKI, Minimal identities for algebras, Proc. Amer. Math.
Soc., vol. 1 (1950), pp. 449-463.

Tue HeBREW UNIVERSITY
JERUSALEM, ISRAEL

YaLE UNIVERSITY
New Haven, CONNECTICUT



