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I. Introduction

Suppose certain set of entries in n n-squre array re prescribed. We
consider the following question" to determine some nontrivial necessary con-
ditions under which the rest of the entries my be constructed so that the re-
sulting matrix is unitary. For example, trivial necessary condition is that
the sum of the squres of the bsolute vlues of the prescribed entries in ny
particular row or column is t most 1. Define diagonal of n n-squre rry
to be set of positions (i, z(i)), i 1, n, where z is permutation of
1, n. Two diagonals will overlap in k places if the corresponding permu-
tations gree on k integers in 1,-.., n, nd we shM1 refer to two such di-
gonMs s being k-oerlapping. Our results will show for example that if A
is 9-squre mtrix whose entries in fixed pir of nonoverlapping diagonals
are all ] -- , > 0, then A cnnot be completed to unitary mtrix. On
the other hand if the absolute value of the sum of the elements in two non-
overlapping diagonals is to be no greter than 10, there exists 9-squre
unitary matrix for which this vlue of the sum is tken on. This last stte-
ment becomes false however if 10 is replaced by 10 -t- , > 0.
For the group of n-squre unitary mtrices we obtain the maximum nd

minimum over 11 pirs of/-overlapping diagonals d nd d. of the mximum
absolute vlue of the sum of the entries in d nd d. Our main results re
contained in the

THEOREM. Consider a fixed pair of k-overlapping diagonals of an n-square
array, 1 <__ k <= n. Let s be the maximum taken oer all n-square unitary
matrices of the absolute alue of the sum of the elements in the given pair of di-
agonals. Then

(i) s <__ n
(ii) s __< n-- 4 --2cot/8 if n k--4,
(iii) s <= n-- a if n k- 3a,

s =< n -- a- 5 -- 2cscr/10 if n k -- 3a -- 5,
s __< n -- a-- 7 -- 2cscr/14 if n k + 3a-- 7,

(iv)
s _>- n + 1 ?" n /c + 2c+ 3.

Moreover for each of the bounds in (i)-(iv) there exist a pair of k-overlapping
diagonals and a unitary matrix for which the absolute value of the sum of the
elements in these diagonals is the appropriate bound.
In addition if 0 <= <- s then there exists a unitary matrix such that the

absolute value of the sum of the elements in the fixed pair of diagonals is
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We first introduce some preliminary definitions and results. Then in Sec-
tion II we shall consider the case of the two k-overlapping diagonals. In
Sections III and IV we state and prove the necessary trigonometric inequali-
ties to complete the proof of the above result. In Section V we indicate a
further application of our methods.

Let 0n be the group of n-square unitary matrices over the complex num-
bers. Let S be any set of pairs (i, j), 1 =< i, j -< n, and define the real valued
function on 0

(1.1)

The general problem is to determine the maximum value of gs(A) as A varies
over 0,. Let Ha be the n-square matrix whose (i, j) element is the number
of integers such that (i, t) and (j, t) both belong to S. We have

LEMMA 1. The matrix Ha is positive semidefinite, and

(1.2) 0 __< gs(A) __< tr (//--) for A.e On
where ’- indicates the positive semidefinite determination of the square root.
Every value between the two bounds is achievable by gs(A) for an appropriate
unitary A.

Proof. Let Ps be the n-square matrix whose (i, j) element is 1 if (j, i) S
and 0 otherwise. Then

(1.3) gs(A)

This equality (1.3) follows immediately upon noting that the (t, t) element
of PsA is the sum sast for (s, t)e S. We next apply a result of
von Neumann [2, 3] to conclude that

(1.4) gs (A) tr (Ps A --< tr (/Ps P) tr (%/H)
where A is any unitary matrix. For the (i, j) element of Ps P’s is precisely
the number of columns in which rows i and j of Ps have a 1 in common, and
thus Ps P Ha. We include a short proof of (1.4) for completeness. By
the polar factorization theorem it is clear that we may assume

gs(A) ]tr(KsA)

where Ks //Hs. Letting xl, xn be an orthonormal basis and setting
y. Axi, i 1, n, we have

gs(A) tr (Ks A) --’it (Ks Axe, x)[
In_-(y,Ksxi) =< I(Yi,gsx)[

i%1 (Ks x, xi)l/2(gs yi, y)i/

{tr (gs)}l/{tr (Ks)} 1/: tr ().
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To see that gs(O,) is precisely the closed interval [0, tr (/)] we note the
following facts. First, gs(A) is clearly continuous with respect to the usual
distance function in 0,, d( U, V) (i.._-1 ui. vi I) 1/2. Second, if U
and V are in 0n, there exists a continuous one-parameter family A (t) e 0n,
0 -< -< 1, suchthatA(0) UandA(1) V;forlet S e On be chosen so
that S-I(u-1v)s diag (eil, e), and set

A US diag eiol

Finally, gs(A) 0 for an appropriate A On for gs(A)
and by selecting xl, x. to be an orthonormal set of eigenvectors of Ks
and choosing A e 0 such that Axi xi+ (mod n), we have

gs(A) ", (Ks A.x, xi) --,:, ),i(x+ x.) O.

II. Sums down pairs of diagonals
Let S be a set of pairs (i, j), 1 __< i, j =< n, determined by two k-overlapping

diagonals, 0 =< k -< n. In this case Ps has precisely one entry 1 in each of
exactly k rows and columns and precisely two entries 1 in each of the remain-
ing n k rows and columns. Then

(2.1) Ha Ps P’s (I (P + Q))(I (P’ + Q’)),

where in (2.1) A
___
B means RAR’ B for some permutation matrix R,

indicates direct sum, P and Q are both (n k)-square permutation
matrices, and I is the/-square identity matrix. Hence from (2.1) we see
that

(2.2) Ha Ik 4 (2In--k + PQ’ -+- (PQ’)’).

Thus from (2.2) we conclude that the eigenvalues of //-- are 1 with multi-
plicity ] and (2 + + ),7)/2, i 1, ..., n ], where the hi are the
eigenvalues of the permutation matrix PQ. Let a and , be the permutations
on n ] symbols corresponding to P and Q respectively. Then a-i holds.
no symbol fixed; otherwise the two diagonals would be at least (] + 1)-over-
lapping. Thus a/-1 has a decomposition into the product of disjoint cycles
each of which has length at least 2. et m, ..., m be the cycle lengths
in this decomposition,

i=1m n- ], m => 2.

Then it is well known that the characteristic polynomial of PQ is

=1 (x’ 1). Hence PQ’ -t (PQ’)’ has as eigenvalues the numbers
2rik/m e--2rik/me + 2 cos (2n-k/mr),

(2.3)

Since (2 + 2 cos 20)/ 2 cos 0 and

1
2 - __

cos tO
sin (n + 1/2)0
2 sin (0/2)
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we conclude from (2.3) that

(2.4) tr (/-) k + 2

where

(2.5) f, ’= cos (rlc/) tct (/2) for even
csc (r/2a) for a odd.

From (2.4) we see that the proof of the theorem depends upon finding the
maximum and minimum values of

(2.6) h(’)-- Z-lf,
where , varies over all partitions of the form

,’ml +m n-
(2.7)

m => 2foreachi 1, ...,p.

In the next section we state and prove the inequalities necessary to evaluate
the extreme values of @(,).

III. Some inequalities
The necessary inequalities are contained in the following lemmas.

LEMMA 2. If and are even, then

(3.1) f, + f _-< f,+.
LEMMA 3. If a and are odd, then

(3.2) .f, + fa ->- f,+a.

LEMMA 4. If a >--_ 13, then

(3.3) f +f,- ->

LEMMA 5. If a is odd, then

(3.4) f + f, _-< f,+2.

We prove Lemma 2 first. Let g(x) cot (r/x), and note that

g’(x) =-ese eOtx--- 1

and since (r/x) cot (r/x) < 1 for x > 2, we conclude that g(x) is a concave
function for x >= 2. Thus

2g(a + B) => g(2a) + g(2),

2 cot
r -> cot _+a+ - ct

2,
and finally

r > 2cot
r >_- cot

r r
cot

23 + 2 a + + cot 2-’
f+a _-> f + fa.

This completes the proof of Lemma 2.
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To prove Lemma 3 let g(x) csc (r/x), and note that

g" (x) -3 csc csc
x -x ct2 -x 2 cot

Let 0 -/x > 0, and observe that

0(csc20-+- cot0) 2cot0 > 0
if and only if

h(0) 0 (1 -+- cos 0) sin 20 > 0.

Nowh(0) 0, andh’(0) > 0ifandonly if tan 0 > 0. This shows that
g(x) csc(r/x) is convex for x -> 2, and hence

_< 2csc =< csc +csc =f.+ff,+ cot
23 A- 2 a -4- a

A somewhat less direct argument is necessary for Lemma 4. First note
that for a even Lemma 4 follows from Lemma 3; thus our problem is to show
that. for a odd

r > csc a > 13.(3.5) 2 -4-cot 2(a- 3) a’
We write a sequence of inequalities each of which implies its predecessor;

2-1-2(a- 3) >_ 1
r sin (r/2a) cos (r/2(a 3))’

sin
r(2a 3)

sin
3r >

2a(a 3) 2a(a 3)
and from the series expansion for the sine function,

r(2a 3) r3(23 3)3 > r
-4-

3r
2a(a- 3) 4833(a 3) r 3 -t- a 2a(a 3)’

7t" 3 71"(3.6) >
( 3 + ) 6( 3),"

Now (3.6) holds if

C(a) 6(a 3) (- 3) r2a(r 3 -+- a) => 0.

Now C(23) > 0 may be checked, and it may also be directly verified that the
largest root of C’(a) is less than 23. Hence C(a) > 0 for a >= 23, and we
check separately the values a 13, 15, 17, 19, 21 to complete the proof.
We remark that to check these values requires a table containing hundredths
of a degree. We omit the similar proof of Lemma 5.

IV. The proof of the theorem
Now (i) is clear, and (ii) follows from Lemma 2 since the only partition of

4 is 4 2 A- 2. Next, every integer greater than or equal to 4 is either even
and greater than or equal to 6, or odd and at least 9 except for the integers
3, 4, 5, 7.

Therefore since.f9 _-< 3f3 and fn --<__ 2f3 -1- fs, we see by repeated applications
of (3.1), (3.2), (3.3), and (3.4) that (7) is dominated by the value of b on
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a partition of n k which involves only the integers 3, 4, 5, 7 with appropriate
multiplicities. Checking separately that

f + f <- f f, + f, <= f + f
f + f, <= 3f f, + f <= 4f
f + f <____ 2f + f, f + f <____ 3f + f,

we conclude that the value of on any partition of n k is dominated by
its value on a partition consisting of all 3’s, or all 3’s and a 5, or all 3’s and 7.
This representation is of course unique since n k 0, 5, or 7 (mod 3).
This completes the proof of (iii). The proof of (iv) proceeds in an analogous
way. The last statement in the theorem is precisely the content of Lemma 1.

V. Another application
In problem 4845 of the advanced problem section of the American Mathe-

matical Monthly [1] the following question is posed: Find the maximum of
gs(A) for A e On where S is the set of (i, j) satisfying i >_- j. We answer a
generalization of this question in which we assume i -> j + p, p a fixed non-
negative integer. In this case Pa becomes the n-square matrix whose ith row
is (0,..., 0, 1, 1,..., 1) where the first 1 appears in the i + p position; if
i + p > n, then the ith row of Ps is the zero vector. Then it is easy to check
that

Now we observe that if

then C

2 2
3 3

2 3...n--p_

0 0 0
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Thus by Lemma 1 we know that the maximum of the function gs(A) for
A e0n is -- I.lwhere .,j 1,-..n p, arethen pnonzero
eigenvalues of C8. In a private communication Professor A. C. Aitken
proved the following result:

(--1) ’- (2j- 1)r
h 2

csc
4(n- p) - 2’

j 1, ..., n- p.

These values were obtained by the very elegant observation that the inverse
of the lower right nonsingular (n p)-square block of Cs is a differencing
matrix whose eigenvectors can be readily computed.
We then can conclude finally that

1 , (2/- 1)rmail Z al-- z_., csc
o >_+ . 4(n- p) + 2
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