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Introduction

Let X be topological spce with bse-point, X its loop spce, EX its
(reduced) suspension. The ordinary multiplication and inversion of loops
convert aX into an H-space. Eckmann and Hilton [6] have shown that,
dually, the identification map resulting by pinching to a point the equatorial
X EX and the reflection of EX in X may be used to convert the suspen-
sion into an H’-space, the dual of an H-space. Just as in group theory, for
every n 1 a commutator map of weight n is available in any H-space; ac-
cordingly, we define the nilpotency class of an H-space as the least integer
n 0 (if any) with the property that the commutator map of weight n + 1
is nullhomotopic. The concepts of a commutator map and of nilpotency class
may readily be dualized to H’-spaces" for every n there results a co-
commutator map of weight n and the co-nilpotency class of an H’-space is
the least integer n 0 (if any) with the property that the co-commuttor
map of weigh/ n + 1 is nullholnotopic. We now revert to the topological
space X and introduce two integers, which may be finite or not" the nilpotency
class nil aX and the co-nilpotency class conil EX. They are uniquely de-
tin’mined by the based homotopy type of X.
The paper is divided into six parts. The first contains basic definitions

concerning H- and H’-spaees, commutator and co-commutator maps,
nilpoteney and co-nilpoteney classes. In the second part, we present results
relating the nilpoteney and eo-nilpotency classes of H- and H’-spaces to the
nilpoteney class of certain groups of homotopy classes of maps; some of these
results prvide further motivation for our concept of co-nilpotency of an
H’-space.
Given a base-points-preserving map f’X Y, the nilpotcncy class nil

is the least integer n 0 for which the composition

X X X X +1_, X

is nullhomoopic; here, .+ is the comnutaor map of weigh n-k 1, and
Sf is induced by f in the obvious way. In the third section we prove that
if ,’Q + Y is the inclusion map of the fibre Q in the total space Y, then
nilQ l+niln. DuMly, if ,’X+P is the projection of X onto the
"cofibre" P, i.e., n is the identification map resulting by pinching to a point
a subset which is smoothly imbedded in X, hen eonil GI" 1 + eonil Z,;
he definition we give of conil sands in eviden duality to that of nil .
In particular, nil Q G 1 + nil Y and eonil ZP 1 + conil X. The first
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theorem was suggested to us by a result of E. H. Spanier and J. H. C. White-
head [19] according to which, if n is nullhomotopic, then Q is a generalized
H-space, i.e., a space having a continuous multiplication with two-sided
homotopy unit element. The loop space 2Q of such a space is well known
to be homotopy-commutative, that is, nil ftQ _-< 1. However, there are
polyhedra with a homotopy-commutative loop space which fail to be general-
ized H-spaces; such an example is presented at the end oi’ the third section.
The fourth section gives lower and upper bounds for nil ftX in terms of the

usual homotopy invariants of X. Evidently, the nilpotency class of the
group rl(X) is __< nil ftX; the inequality becomes an equality if X is a con-
nected aspherical CW-complex. We then prove that nil ftX >__ W-long X,
the latter invariant representing the maximum length of nonvanishing multi-
ple Whitehead products in .X. Next, it is shown that, if X is a l-connected
CW-complex, an upper bound for nil ftX- 1 is provided by tile number of
nontrivial Postnikov invariants of X; in particular, nil ftX does not exceed
the number of nonvanishing homotopy groups of the l-connected
CW-complex X.
The fifth section is entirely devoted to proving that, if X is ()-connected,

conil 2:X -> v-long X. The latter invariant represents the largest number
of singular cohomology classes of positive dimension with nonvanishing cup
product in X; the coetiicients are taken in an arbitrary commutative field.
It should be noted that, within the framework of the Eckmann-Hilton duality
theory, W-long and ,-long are dual invariants.
The final section is mainly concerned with some estimations of the nil-

potency class of function spaces. If (G, e) is an H-space, then the i’unctiot-
space (G, e) (x’a) also is an H-space, and the sets r(X; G), r(X, a; G, e), of
free, respectively based, homotopy classes of maps X -- G are groups. We
introduce the weak category, w cat X, a based h(;motopy type invariant re-
cently discovered by Hilton (see also [1]), and prove under very mild as-
sumptions that

conil 2X __< sup nil r(X, a; (I, c) =< sup nil (G, e) (x’’) =_< w cat X 1.

The result of the fifth section adds significance to the lower bound obtained.
The upper bound improves a result due to G. W. Whitehead [20] according
to which, for any 0-connected H-space (G, e), one has

nil (X; G) =< cat X 1,

where cat X is the Lusternik-Schnirelmann category of X. For, if G is
0-connected, the groups r(X; G) and r(X, a; G, e) are isomorphic and, if
X is a 0-connected normal space, w cat X __< cat X; as shown by the exam-
ples at the end of the paper, tile strict inequality may i’requently occur.
Notice that comparison of the first and last member in the string of inequali-
ties above yields an upper bound for the co-nilpotency class of a suspension.
Finally, a further result involving the weak category is provided by the
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inequality
W-long Y, b) (X.a) =< W eat X 1,

which will be proved for a large class of spaces X (see [7] for related results).
In conclusion, the authors wish to express their hearty thanks to P. J.

Hilton for his interest and many valuable suggestions.

1. Nilpotency and co-nilpotency
Let X. and Y be arbitrary topological spaces with base-points as: X:,

bi Y let f" (X,,:, as:) -+ (Y, b) be continuous maps. The map

f, x x.f,, .(x, x x x,,, (a, ,...,a,,))
(Y, x x y., (b, ,..., ,,))

sends the point (x z,,) into (f(x), f(x)). We shall frequently
need the "wedge", i.e., the subspace

X v v X,,. U,i-.a X Xa,-. XX.Xa,+X Xa,,.

c II =, x,, x, x x x,,,
and write

j’X v v X,,---X X X X,,
f, v v f" (X, v v X,, (a a,,)

(Y, v v rn, (b,,’’", b)),
for ghe inclusion map and ghe map defined by f X X f,.. If (X,:, a)
(X, a), (Y, b.) (Y, b),f f, we write X" XX XX,,ff
f X’" X f,,, "X Xt v v X,, and "f fl v vf,. The
diagonal map A’X --e X is defined by Z (z) (z, z) and ghe folding
map V’’XXby V(a,.", a, z, a,..., a) z. The composition of

f’X -- Y and g’Y -- Z is denoted by of:X Z. The idenigy map of
all spaces involved will consistently be denoted by 0. We consider H-spaces
and H’-spaces in the sense of Eckmann and Hilton"

1.1. DEfiNITIOn. A ,system (Y, b, t*, v) consistino of a topological ,space Y
with base-point b and two base-points-preserving maps

t’Y X Y-- Y, ’Y--- Y,
is an H-space if

(i) the composition Y v Y -’, Y X Y - Y is homotopic rel. base-point
to the folding map;

(ii) the compositions

y_A_ y x Y O X v y__&_,,YX Y
and

Y -YX Y 0

are both nullhomotopic rel. base-point;
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(iii)

and

the compositions

Y X Y X Y O X . y X Y--&- Y

are horn,oto.c tel. base-point.

We often abbreviate u(yl, y) t,o yl y,., and v(y) to

1..2. DEFINITION. A system (X, a, , r) consisting q( a topological space X
’with hase-point a and two base-points-preserving maps

a:X-+ X v X, r:X-+ X,
is an H’-space if

(i) the composition X X X -’--X v X +.-- X is homotopic rel. base-
point to the diagonal map;

(ii)

and

the compositions

X +_V= X v X +_O__Z_ X v X +-X

X+_ V X v.X rvO

are both nullhomotopic rel. base-point;
(iii) th,e compositions

XvX+-X

.X v X v X X v X X

are homotopic rel. base-point.

We now int,roduee commut,l;or and eo-eommutn,l;or maps.

1_.3. DEFINITION. Let Y, b, , v) be an H-space. The basic commutator
map is the composition

Y.+ Y X Y 0 X v y x Y---=, Y X Y - Y.

The commutator map of weight 1 is the identity ma,p qf Y; the commutator
map ,,._. of weight n + 1 is the composition

YX Y Y

in which, ,, is th,e commutator map of weight n 1.

1.4. I)EFNmN. Let (X, a, , ) be an H’-spaee. The basic co-commu-

tator map is the compogtion

and

OvoXvXvX. XvX X
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0 v r X X o" v o-XV--X v X v , X v XX.
The co-commutator map of weight 1 is the identity map of X; the co-c)m,mu-
tarot map p,,+ of weight n + is the composition

"+X="X v X, v 0 X v X(--X
in which , is the co-commutator map of weight n l.

It is well known [20; 2.4] that

1.5. ImMMA. In an H-space Y, b, t*, u) the composition

is nullhomotopic tel. base-point.

The dual is

1.6. LEMMA. In an H’-space (X, a, or, r) the composition

x x x
is nullhomotopic rel. base-point.

l)roof. In the diagram

X ,_V_ X v 2X( 20 V T 2 V X

02

XvX

the triangle is homotopy-commutative tel. base-point according to 1.2 (i);
he two other parts are strictly commutative. Therefore, j is homotopic

tel. base-point to A V (0 v r) . Finally, by 1.2 (ii), the composition
V (0 v r) is nullhomotopic tel. base-point.
We now introduce the nilp()l,(cy class ()f n,//-space and the co-nilpotency

class of an H’-space.

1.7. DEFINITION. The nilpotency class nil Y, b, u, v) of an H-space is the
least integer n >- 0 .for which the map ,,,+ is nullhomotopic tel. base-point; if
no such, integer exists, we put nil (Y, b, it, v) .
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Thus, nil (Y, b, , ) 0 if and only if Y is contractible rel. b, and, as
is easily seen, nil (Y, b, be, ) =< 1 if and only if (Y, b, , ) is homotopy-
commutative.

1.8. DEFINITION. The co-nilpotency class conil (X, a, r, r) of an H’-space
is the least integer n >= 0 for which the map b,.+. is nullhomotopic rel. base-point;
f no such integer exists, we put conil (X, a, , r)

We shall need homomorphisms in a strict sense of H-spaces and H’-spaces.

_l.9. DEFINITION. Let (B, bo, It, ,) and (Y, yo, be, ,) be H-spaces. A func-
tion f:B--- Y is an H-homomorphism if: f is continuous, f(bo) yo,

f2(bl b.) and/ ,(b) , f(b) forallbl 52 b eB.f #(bl, b2) be

1.10. DFINITION. Let (A, ao, r, r) and (X, Xo, , r) be H’-spaces. A
function g’X A is an H’-homomorphism if: g is continuous, g(zo) ao,

g(x) 2g (x) and tog(x) g r(x) for all x X.

The definitions of nilpotency and co-nilpotency classes may be extended to
homomorphisms.

1.11. DEFINITION. The nilpotency class nil f of an H-homomorphism
Bn+lf" B--> Y is the least integer n >- 0 for which the map f n+l ---> Y is

nullhomotopic rel. base-point; if no such integer exists, we put nil f
1.12. DEFINITION. The co-nilpotency class conil g of an H’-homomorphism

g’X --+ A is the least integer n >= 0 for which the map Cnq-1 g’X ---> n+ll is
nullhomotopic rel. base-point; {f no such integer exists, we put conil g o.

The following propositions are easy to prove"

1.13. If Y, b, be, ) is an H-space and 0 id’Y--Y, then

nil (Y, b, t, v) nil 0.

1.14. If f’B-- Q and g’Q--+ Y are H-homomorphisms, then

nil g f __< rain {nil f, nil g}.

1.15. If f B, b, be, ,) --> (Y, y, , ,) is an H-homomorphism, then

nil f _-< min {nil (B, b, t, ), nil (Y, y, be, v)}.
1.16. If ft" (B, b) ---> Y, y) is a homotopy and if fo and fi are H-homo-

morphisms, then nil f0 nil fl
1.17. If f:(B, b) ---> (Y, y) and g’(Y, y) -- (B, b) are H-homomorphisms

and if g f is homotopic rel. b (as a map) to the identity map of B, then

nil (B, b, , ) =< nil (Y, y, , ).
The duals are automatic.
Finally, let 7r be an abstract group. The classical definitions of commu-

tator maps ,,, of weight n _>- l and of the nilpotency class nil r may be oh-
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tained from those given above upon considering r as an H-space with discrete
topology. We have nil r 0 if and only if r is trivial, and nil r 1 if and
only if r is a nontrivial Abelian group. We shall also need the concept of
nilpotency class of a homomorphism, which is defined in strict analogy to 1.11.
The set r0(Y) of all path-components of an H-space (Y, b,/, v) is known

to be a group. The folh)wing result is easy to prove

1.18. LEMMa. If the path component of b in Y is contractible tel. b, then
nil ro(Y) nil Y, b, u, u).

2. Function spaces

Let X nd Y be arbitrary topological spaces. We write yX for the space
of all continuous maps X-+ Y taken with the usual compact-open topology;
this is defined by selecting as a subbase the collection of all sets

(C, V) {fe yZ ,]’( C) c V}

where Cisa compact subset of Xand Van open subset of Y. If A cX
aM B c Y, we write (Y, B)(X’A) for the subspace of yX consisting of those
maps which send A into B. For any two continuous maps

c: (Z, C) -- (X, A), /: (Y, B) :-+ (W, D),
the map

:(Y, B) <’> (W, D)

given by (f) of a is continuous.
The set of all path-components of (Y, B) (x’) will be denoted by

r(X, A; Y, B); if A B 0, we simply write r(X; Y). The path-com-
ponent of f in (Y, B) (x’’) will be denoted by Ill; we have If01 Ill/ if and
only if there is a homotopy ht: (X, A) --9 Y, B) such that h0 f0, h f.
Composition with either of the previous maps a and 5 induces functions

*:(x, A; , B) -. (Z, C; , B),
,:,(x, A; , B) --+ ,(x, A; W, D).

2.1. LEMMA. Le X, Y, Z be arbitrary topological spaces. Composition with
any homotopy h X X I -- Y induces homotopies s Z" )< I - Zx and
d:Xz X I--, yZ.

Proof. Let denote the identity map of Z.
First, consider the sequence

Zr 0, zx -+ (Z)
in which the second arrow sends any mapfinto the map g defined by g(t) (x)
f(x, t). This arrow is continuous since I is Hausdorff (see the proof of
Theorem 1 in [14]). The first arrow also is continuous so that the composi-
tion is continuous. Since I is locally compact Hausdorff, the resulting map s

is continuous.
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Next,, not.i(’e hat the map d equals the composition

x x (x x v
in which the first arrow sends any pair (f, t) into the map g defined by g(z)
(f(z), ). If ge(C, W) with CcZ compact md WcXXI open, then
there exist, open subsets U c X and ,l c I such that

g(C) f(C) X c U X,l c W.

Therefore, (C, U) X J is a neighborhood of (f, t) which, clearly, is sent into
(C, W) so that the firs arrow is continuous. The second arrow nlso is con-
l,inuous so that the entire composition is continuous.
For future purpose we stnte t}he easily proved

2.2. PROPOSITION. If X are Hausdorff spaces and Y are arbitrary spaces,
then the function

l): Yx X X YnXn (Yi X X

d(fined by P(fl .f,) .f X X .L is continuous.

From 2.2 and 2.1 we obtain the well-known

2.3. COOLLAY. If (X, a) is a Hausdorff space with diagonal map
:X- X X X and if (Y, b, , ) is an H-space, setting

ftf go(fl X f) and (f)--’ of

converts yX and (Y, b) (x’’) into H-spaces with the constant map X- b a.
base-point.

2.4. Remark. Evidently, under the assumptions of 2.3, w(X; Y) and
w(X, a; Y, b) re groups; however, this hohls even if X fails io be a Hausdorff
space.

In the dual case we only si;nte [6] the

2.5. PnOPOSTON. If (Y, b) is an arbitrary space with fl)lding map
V Y v Y Y and if (X, a, a, r) is an H-space, setting

{f, lif} {Vo (L vJ’)oa} and {f}-’ {for}

converts (X, a; Y, b) into a group with the class oj’ the constant map as unit
element.

In order to ,qvoid complicn,ted i’orml,ne, we shall frequently use the
breviat,ions

a (a, ,a) and b (b, ..,b)

for any m >= and any based_ topological spaces (X, a) and (Y, b).



HOMOTOPICAL NILPOTENCY 07

2.6. THEOREM. For any H’-space (X, a, r, r) one has

conil (X, a, , r) sup nil r(X, a; reX, *’a) sup nil 7r(X, a; Y, b),

where m ranges over all integers >- 1 and Y over all based topological spaces.

Proof. The n-fold commutator of ny elements If.i} 7r(X, a; Y, b) is
easily seen to equal the bsed homotopy class of the composition

X- /’’>X flv v f,y y.

If conil X n 1, then Cn is nullhomotopic rel. a, and the same holds for
the above composition, so that nil (X, a; Y, b) N n 1 for any Y. Sup-
pose now that nil (X, a; mX, mR) n 1 for any m 1, and let j’X X
denote the map which imbeds X as the i summand in nx, i n.
With Y "X and f j:, the above composition is nullhomotopic tel. a,
and, since

V (j v v j,,) id" nx +
so is . therefore, conil X n 1, 8nd 2.6 is proved.

2.7. THEOREM. For any H-space Y, b, , u) one has

nil(Y, b, , ) sup nil(ym, b; y, b) sup nile(X, a; Y, b),

where m ranges over all integers and X over all based topological spaces.

Proof. Replace the composition in the proof of 2.6 by

y,,, y,,.f X Xfn X
,_

X,

repla,ce the msps j.,: by the projections p,,:" Y" Y, and notice tha,t

(plX Xp,,)oA id’Y"-+Yn.
I the sequel, extensive use will be made of the following well-known [6]

examples"

2.8. The loop jznctor associates to every space (X, a) its compact-open
topologized loop space t(X, a) with the constant loop ]a as base-point. We
often abbreviate ((X, a), a) to (X, a) or simply to 2X. The maps

’gX X X -- 9X and v"X --+ X,
deftned by

u(,, )(*) ,(2,) for 0 s ,
(2s- 1) for - s 1,

()(s) =(, -s) for 0, ,
provide n H-space structure in X. For any continuous map

f’(X,a).(Y,b),
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the map
ftf: (gt(X, a), [’ta) --) (2( Y, b), Ftb),

defined by 2f(0) (s) f 0(s), is an H-homomorphism as in 1.9.

2.9. The suspension functor associates to every space (X, a) its sus-
pension 2(X, a) which results from the Cartesian product X X I by pinching
the subset X X0u XX lu a XI to a point Za which serves as base-
point in Y, (X, a). We often abbreviate (Z (X, a), 2a) to 2 (X, a) or simply
to :X; the image in 2X of (x, s) X X I will be denoted by (x, s). The
maps

’2:X-+2X v 2X and r"
defined by

(x,s} ((x, 2s},2a) for 0 =< s __< 1/2,

(2a, (x, 2s-- 1}) for =< s =< 1,

for 0 s =< 1,

provide an H’-space structure in 2X. For any continuous map

the map
f’(X, a) --) (Y, b),

:2f’(E(X, a), Y,a) -- (E(Y, b), ?2,b),

defined by El(x, s} (f(x), s}, is an H’-homomorphism as in 1.10.

2.10. With any based space (X, a) we associate the integers

and
nil (X, a) nil ((X, a), a, t, v)

conil 2;(X, a) conil (Z(X, a), Za, , r)

which are defined according to 2.8, 1.7, and 2.9, 1.8.

2.11. If (X, a) and Y, b) have the same based homotopy type, then

nil (X, a) nil ft(Y, b) and conil 2:(X, a) conil 2(Y, b).

If X is a connected CW-complex, then for any a, b X, (X, a) and (X, b)
have the same based homotopy type [16; p. 333]. Therefore,

2.12. If X is a connected CW-complex, then nil (X, a) and conil 2;(X, a)
do not depend on the base-point a X and will be abbreviated to nil X and
conil

2.13. Let (X, a) and (Y, b) be arbitrary topological spaces. According
to 2.4 and 2.5, (X, a; tY, b) and (ZX, Za; Y, b) have group structures;
they are related [6] by a natural isomorphism

:v(ZX, Ea; Y, b) ’ v(X, a; frY, 2b)

which is defined by
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elf} {g} with g(x)(s) f(x,

Since m(2;X) and (2Y) may obviously be identified with 2;(reX) and
2(Ym), from 2.6 and 2.7 we now obtain

2.14. COROLLARY. For any space (X, a) one has

conil 2(X, a) sup nil (X, a; %(X), (a) sup nil r(X, a; Y, b),

where m ranges over all integers 1 and Y over all based topological spaces.

2.15. COROLLARY. For any space (Y, b) one has

nil (Y, b) sup nil r(Z(Y), %(b); Y, b) sup nil r(X, Za; Y, b),

where m ranges over all integers 1 and X over all based topological spaces.

2.16. For any (Z, c), the natural imbedding e’Z %Z is the continuous
and univalent map defined by e(z)(s) (z, s). The natural projection
p" %Z Z is the continuous map defined by p(, s) (s); p is onto if
and only if Z is 0-connected.
The following result will play a fundamental role later.

2.17. PROPOSITION. Let (X, a) be an arbitrary space and n 1 an arbi-
trary integer. The co-commutator map

’Z(X,a)Z(X,a)

of weight n in the H’-space ZX is nullhomotopic rel. base-point if and only if
so is the composition

x z kx... xj z) z(x)

in which k is the diagonal map, j’X "X imbeds X as the ih summand in
X, e is the natural imbedding of nx in z(nx), and is the commutator map
of weight n in this H-space.

Proof. Let f j" ZX + (X). The natural isomorphism

.(zx, Za; z(x), Z(a)) (X, a; ez(nx), eZ("a))

sends {f} into {gd, where g(x)(s) f(x, s). Clearly, the n-fold com-
mutators

[{k},..., {fd] nd () [{g,},..., {an}]

re simultaneously trivial or not. As is easily seen, is represented by the
composition

"zx ("x) z(x),

in which V is the folding map. Since the composition of the last two rrows
is a homeomorphism, is trivial if and only if is nullhomotopic tel. base-



110 I. BERSTEIN AND T. GANEA

point. Also, is represented by the composition

X &X" gl )< )< g (122(’X))

snd, as is easily seen, g{ e j{. Therefore, is trivial if and only if the
composition in the statement is nullhomotopic rel. a.

Dually, we have

2.18. PIOPOSlTION. Let (Y, b) be an arbitrary space and n >- 1 an arbitrary
integer. The commutator map

’(e(Y, b)) (Y, b)

of weight n in the H-space fly is nullhomotopic tel. base-point if and only if so
is the composition

"p n yy .7 ny pl v v p, y,) (X( y,) (

in which V is the folding map, p: Y ---) Y projects Y’ on its ih factor, p is
the natural projection of ( Y’) on yn, and n i8 the co-commutator map of
weight n in this H’-space.

3. Fibrations and cofibrations
We consider fibrations as given by the

3.1. DEFINITION. A sequence (Q, qo) Y, yo) (B, bo) of spaces and
maps is a fibration if

(i) y defines a homeomorphism of the fibre Q onto the subspace -(bo) of
Y, and if

(ii) for any space (E, eo), any homotopy ht" (E, eo) (B, bo) and any
map ]c’(E, eo) ----> (Y, yo) satisfying o k ho, tere is a homotopy
Ht" (E, eo) --. Y, yo) such that Ho k and o Ht hr.

We do not require that be onto. A familiar example is provided by the

sequence tB v. B - B in which 8B is the space of all paths h in B emanat-
ing from the base-point, n is the inclusion map of the loop space,
and (,) (1).

Fibrations are dual to cofibrations which are given [6] by the

3.2. DEFINITION. A sequence (P, po) (X, Xo) a_ (A, ao) of spaces and
maps is a cofibration if

(i) induces a homeomorphism of the cofibre P onto the identification space
obtained by pinching the subset a(A of X to a point, and if

(ii) for any space (E, eo), any homotopy ht" (A, ao) -- (E, eo) and any
map It’(X, Xo) (E, eo) satisfying lc o a h0, there is a homotopy
H X Xo --> E eo such that Ho k and H o o hr.
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We do not require that a be univalent.

3.3. THEOREM. If (Q, qo) (Y, yo) (B, bo) is a fibration, then
nil gt(Q, q0) =< 1 + nil tr/.

Proof. Letrn(D, R) r(ZD, 2 d; R, r), where (D, d) and (R, r) are
arbitrary spaces and 2; denotes n-fold suspension (n -> 1). As a generaliza-
tion of the familiar homotopy sequence of a fibration, for any space (X, a)
there is [11; p. 24] an exact sequence of groups and homomorphisms

r=(X, B) I(X, Q)-: ;l(X, Y)-* l(X, B)

with the property [11; p. 22] that Or.(X, B) lies in the center of vl(X, Q).
As is easily seen, this implies that

nill(X,Q) =< 1 +nilr/.

Since the isomorphism in 2.13 is natural, we have the commutative diagram

r(ZX, Za; Q, qo) r/, r(zX, Za; Y, yo)

r(X, a; ftQ, 2q0) (at/). r(X, a; aY, ay0)

so that nil r/. nil (2r/).. Evidently, nil (fir/). __< nil ftr/. Finally, by 2.15,

nil ft(Q, q0) sup nil n(X, Q)

with X ranging over all based topological spaces, and 3.3 is proved.
Dually, we have

3.4. THEOREM. If (P, Po) (X, Xo) (A, ao) is a cofibration, then
conil 2;(P, p0) _-< 1 -t- conil 2;r/.

Proof. With the above notations, for any space (Y, b) we now have
[11; p. 25] the exact sequence

(z )* o (,)* (z)*r2(A, Y) n(P, Y) n(X, Y) n(A, Y)

with Or(A, Y) lying in the center of rl(P, Y). Therefore,

nil n(P, Y) _-< 1 -t- nil (2:r/)*.

One has nil (2;r/)* -< coniI 2;r/, and 2.6 yields the desired result.
Application of 1.15 and of its dual now yields

3.5. COnOLL_RX. If (Q, qo) ---> (Y, Yo) --> (B, bo) is a fibration, then
nil ft (Q, q0) -< 1 + nil ft Y, y0).
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3.6. COIOLLAIY. If (P, Po) (-- (X, Xo) (-- (A, ao) is a cofibration, then
conil 2(P, p0) _-< 1 + conil 2(X, x0).

3.7. Now let ft’(Q, q0) v_ (y, y0) -* (B, b0) be a fibration and
f: (C, co) -- (B, b0) a continuous map. Let

Z l(c,y)If(c) /(y)} C X Y and Zo-- (co,yo).

The sequence (Q, q0) (Z, z0) (C, co), in which

(q) (co, v(q)) and ,(c, y) c,

is the well-known fibration induced by f via f.
We shall need the following consequence of 3.5"

3.8. COIOLLA’IY. Let f’(C, Co) -- (B, bo) be a continuous map and
(B, bo) --. (Z, Zo) -. C, Co) the fibration induced by B ---, B--- B via f.
Then nil t(Z, z0) _-< 1 + nil t(C, co).

Introduce the space

Y {(c, )If(c) ),(1)} C X B, yo (Co, bo).
One has (Z, z0) c Y, y0) and the sequence

(Z, zo) Y (Y, yo) ., (B, bo),

in which (c, ) X(0) and v is the inclusion map, is a fibration. The result
now follows from 3.5 upon noticing that (Y, y0) has the based homotopy type
of (C, Co).

3.9 Remark. Condition 3.1 (ii) is more restrictive than Serre’s classical
definition of a fibre space in which it is required that the covering homotopy
theorem hold only for maps of polyhedra. Nevertheless, there are two im-
portant cases in which 3.1 (ii) is fulfilled: the first is that of a fibre space ob-
tained upon transforming by means of spaces of paths any map into a fibre
map; the second is that of a locally trivial fibre space in which both the base
and the total space are metrizable (the proof given in [4] may readily be ad-
justed so aS to provide homotopies keeping base-points fixed).

3.10. We conclude by giving an example of a space Y which fails to be a
generMized H-space although its loop space is homotopy-commutative.
The space Y results by adding cells to the complex projective plane M so

as to kill its homotopy groups in dimensions _-> 6. Let S denote the 5-
sphere, and recall that rq(i) rq(S) if q >- 3. Since (S5) is a finite
group for q _>_ 6, it follows from [18] that Y has the rational cohomology
groups of M. Application of the Hopf [2] theorem then implies that Y can-
not have a continuous multiplication with two-sided homotopy unit element.
We now prove that nil tY -< 1. Notice first that, without altering the
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homotopy type of Y, we may assume that there is a fibration

(Q, qo) " (Y, yo) - (B, bo)

with fibre Q of type (Z, 5) and base B of type (Z, 2); here and below, Z
stands for the integers. Introduce the diagram

in which denotes the basic commutator map and j imbeds 2Y tY in the
space obtained by attaching to the latter the reduced cone over the subset
gtY v 2Y (see [16; p. 329]). It follows from 1.5 that may be extended to
12Y tY yielding a map for which the lower triangle in the left square is
commutative. Since t is an H-homomorphism, the square on the right
commutes. Evidently, B is an H-space so that the map on the right is
nullhomotopic rel. base-point. By commutativity, so is also the composition
t j, and, by [16; Satz 14], it follows that gt already is nullhomotopic
rel. base-point. Therefore, 3.1 yields a map for which the upper triangle
in the left is homotopy-commutative rel. base-point.
We have rl(2Y) Z and "n’q(Y) 0 for q 2, 3, so that

Hq(Y; Z) , Hq(Z, 1;Z) 0 for q 2, 3,

and the Kiinneth formula now yields Hq(12Y - gtY; Z) 0 for q 3, 4.
As a result,

H4(2Y -X" Y; Z) O.

Since gtQ is of type (Z, 4) and, as is implied by [12; Theorems 3 and 2],
tY - 2Y has the based homotopy type of a CW-complex, the map is null-
homotopic tel. base-point. It follows now easily that the map in the center
also is nullhomotopic tel. base-point so that nil 2Y__< 1 as asserted.

Let us finally mention that it is easy to prove that any "Mn-Raum", in
the sense of [5], has a homotopy commutative loop space;however, we ignore
whether such a space necessarily is an H-space.

4. The nilpotency class of a loop space
For any topological spaces (Y, b) and (Z, c), let Y ^ Z and

p Y X Z --> Y ^ Z denote the identificution space and identification map
resulting by pinching the subset Y v Z of Y X Z to a point. We write
y ^ z for p(y, z) and take b ^ c as base-point in Y ^ Z.

Let (Ki, ai), i _-> 1, be pairs, each consisting of a countable CW-complex
and one of its vertices. Let
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(W1, dl) (K, a) and p : (K1, a) -- (Wl, d);

also, for every n => 1, define

and
(Wn-l, dn+l) as (Wn ^ Kn+l, d ^ a+)

p+:(K1 X Kn+, (a ,..., an+l))-- (Wn+l,

as the composition

(K X X Kn) X Kn+
p" X O p

Wn X K,+I Wn+l,

where 0 stands for the identity map of any space. We write xl ^ ^ xn
forp,(x, ...,x,) so thatd a ^ ^ am. For anyn__> 1, Wnisa
countable CW-complex having d as a vertex [16; p. 339].

Let (G, e) be a fixed H-space with commutator maps and .
4.1. LEMMA. For any n >= 1,

Pn "7(Wn dn G, e) --. r(K X X Kn (a ,a);G,e)

is a monomorphism.

Proof. According to [16; p. 300], a map f: Y, b) -- (Z, c) is called mono-
morphic if, whatever be the space (V, v), a map g: (Z, c) -- (V, v) is null-
homotopic rel. base-point whenever so is g f.
Now, as is easily seen, p+ equals the composition

(K1 X X Kn) X Kn+l P (KI X X Kn) ^ Kn+t

)(K1 ^ ^ Kn) ^ Kn+i,

in which pn ^ 0((Xl, ’’", Xn) ^ Xn+l) (Xl ^ A Xn) ^ Xn+l for all
xi e Ki. According to [16; Siitze 14 and 16], p is monomorphic; according
to [16; Satz 22] so is also p ^ provided p is monomorphic, and 4.1 fol-
lows by induction upon noticing that, anyhow, p* is a homomorphism.

4.2. LEMMA. For any two countable CW-complexes (Y, b) and (Z, c), in
which b and c are vertices, there is a function

r r(Y, z):v(Y, b; G, e) X (Z, c; G, e) (Y ^ Z, b ^ c; G, e)

such that the diagram

YXZ -fXg
)GXG

h
Y^Z G

is homotopy-commutative rel. base-point for any base-points-preserving maps
f, g, and he F({f}, {g}).
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Proof. One hasf X g(Y v Z) G v G so that, by 1.5, the map
o (f X g) lY v Z is nullhomotopic rel. base-point. The CW-pair
Y X Z, Y v Z) has the homotopy extension property, and there results a

homotopy kt: Y X Z --. G such that

k0 o (fXg) and kl(Y v Z) let(b,c) e.

Since p is an identification, there is a map h: (Y ^ Z, b ^ c) --. (G, e) such
that h o p kl ;also, {hi is uniquely determined by the pair ({f}, {g} since,
by 4.1, p* is a monomorphism. The required function F is now defined by
setting F({f}, {g} {h}.

Reverting to the countable CW-complexes (K, a), we define a sequence
of functions

Fn:lI_ r(Ki ai G, e) r(W, d, G, e)

as follows: F is the identity map and rn+l equals the composition

ii _+ l
r, xe

r (K G) 7r(Wn G) X r(Kn+ G) r(Wn+ ;G),
in which O is the appropriate identity map and F F(Wn, Kn+l) is given
by 4.2; base-points have been discarded to simplify notation.
An immediate induction argument yields

4.3. LEMMA. Whatever be n

_
1, the diagram

xAKIX-’" XK )GX X G

W
h

G

is homotopy-commutative rel. base-point for any base-points-preserving maps
f ,f and he Fn({f}, {fn} ).

NOW let (X, x0) be an arbitrary space. Evidently,

4.4. THEOIEM. nil r(X, x0) -< nil i2(X, x0).

We shall give an extension of this result involving Whitehead products,
generally denoted by

[ .] rq+q_(X, Xo) if rq,(X, Xo), q >- 1.

We define (n A- 1)-fold Whitehead products

as ...,
agreeing that, for n 0, [a]

4.5. DEFINITION. W-long (X, Xo) is the least integer n >= 0 such that
[al, an+,] 0 for all ai e rq(X, x0), qi -> 1; if no such integer exists, we
put W-long (X, x0)
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Next, consider the natural isomorphism

T:rr+I(X, Xo) r((X, Xo), xo) (r >= O)

arising from the fibration of the space of paths in X emanating from x0.
Since S ^ S S+ (S m-sphere), a well-known result by Samelson
[17] may be stated as

T[a a] eF Ta Ta. e -- 1),where F F (Sq-, Sq-l) is given by 4.2 with (G, e) (f2X, x0). Al-
though not explicitly stated in [17], Samelson’s result is also valid if q 1
or q. 1 (see [13; Proposition 1]); the actual value of e is irrelevant for the
sequel. The inductive definition of the functions Fn, with the K replaced
by spheres of suitable dimensions, now yields

(1) T[a an] Fn( Ta Tan).

If nil 2(X, x0) n 1, then the commutator map qgn in 2(X, x0) is null-
homotopic rel. base-point so that, by 4.3 and 4.1,

ln(’’l ’’n) 0 for all 1 "n

Since T is an isomorphism, (1) finally implies

4.6. THnOnEM. W-long (X, x0) -<_ nil 12(X, x0).

4.7. Remark. The sequences (Ki, a) and (Wn, d) may also be used to
obtain results similar to 4.6 concerning more general homotopy products

II=, r(2A ;X) - H=i 7(Ai ’X)-- r(A ^ A ;2X) --o r(B; 2X) -o r(2B; X)

where, as Hilton suggested, B and A ^ A are related by a fixed
map :B -- A1 ^ A. base-points have been discarded to simplify notation.
Now let P(E) denote the singular polytope of an arbitrary space E, and

let p:P(E) -- E denote the canonical map inducing homotopy isomorphisms
[9]. The following result, which will be used below, may be of independent
interest (compare with [8; 2.4 and 4.7]).

4.8. PnOl,OSlTION. If X is a O-connected space then, for any Xo e X,
nil fP(X) =< nil 2 (X, x0).

Proof. Let P P(X). Since px is onto, we may select a base-point
a e P with px(a) xo, and, since P is a connected CW-complex, 2.12 yields
nil 2P nil 2(P, a). Suppose nil 2(X, x0) n 1. Then the commutator
map in 2X is nullhomotopic rel. base-point so that its values all lie in the
path-component (2X)0 of the constant loop in 2X. Therefore, qgn defines a
map f as indicated in the diagram
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Px X X pz
P X X P

l g

(P)o
(Px)o

\
h\

P( (gtX)o)

)XX XX

p(ax)

Next, px induces an isomorphism of fundamental groups, and since it is an
H-homomorphism, px commutes with the commutator maps in 2P and 2X.
Therefore, the commutator map in 2P also has its values in the path-com-
ponent (2P)0 of the constant loop in P and, thus, defines a map g as indi-
cated in the diagram. With (px)o defined by px in the obvious way, the
square commutes. By [12], 2P, hence also (P)0, has the based homotopy
type of a CW-complex so that there is a map h yielding homotopical com-
mutativity rel. base-point in the triangle. Let h(a) serve as base-point in
P((2X)0). Since (px)o and p(ux)o both induce homotopy isomorphisms, so
does also h; since its domain and range have the based homotopy type of
connected CW-complexes, it follows that

(2) h is a based homotopy equivalence.

Since f is nullhomotopic rel. base-point, homotopical commutativity implies
that so is also the composition p(x)oohog. By [12; Theorem 2],
2P X X P has the based homotopy type of a CW-complex so that the
map h o g already is nullhomotopic rel. base-point, and (2) finally implies the
desired result" g, hence also n in 2P, is nullhomotopic rel. base-point.
We now proceed to find upper bounds for nil (X, x0).
First, let (X, xo) be a connected aspherical CW-complex. Then

rq((X, x0), 2x0) 0 for all q >__ 1; also, by [12], (X, x0) has the based
homotopy type of a CW-complex. Therefore, the path-component of the
constant loop in 2(X, x0) is contractible rel. x0, .and 1.18 yields

4.9. THEOREM. If X is a connected aspherical CW-complex, then
nil (X) nil 12X.

For further reference we state the easily proved

4.10. LEMMA. nil 2(X X Y, (a, b) max nil 12 (X, a), nil 2 Y, b) }.

We now prove the

4.11. THEOREM. Let X be a 1-connected, i.e., a connected and simply con-

nected, CW-complex. Suppose the invariants k+ of a Postnikov system flr X
are trivial for all but r values of n. Then nil 2X __< r + 1.
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Proof. Select a base-point a e X and let "/l’n n(X, a). Let (Xn, Pn/l,fn)
be a Postnikov [15] system for X consisting of spaces (Xn, an), each having
the based homotopy type of a CW-complex, and base-points-preserving maps
P,,+i, fn, such that

(i) Pn+:Xn+ --. Xn is a fibre map in the sense of Serre with fibre Fn+
of type K(rn+, n W 1) and characteristic class

(ii) fn :X --* Xn induces homotopy isomorphisms in dimensions __< n;
(iii) f. pn+of.+;
(iv) X0 a0.

Let (Yn, b,) be of type K(rn+, n-4-2), and introduce a map
9: (Xn, a,) (Yn, bn) such that 9"() kn+, where is the fundamental
class in H"+(Yn rn+); if kn+ 0, we take for g the constant map. Let
further

(aYn, 2bn) (Zn/l, Cn/l) -- (Xn, an)

be the fibration induced by Yn ---+ Yn "- Yn vi g. Since Xn is 1-connected
and Fn+l e K(rn+l, n -+- 1 ), there is a map

hn+l: (Xn+l, an+l) --> (Zn+l, On+l)

satisfying t3 hn+l Pn+ and inducing homotopy isomorphisms in all dimen-
sions (see for instance [11; Theorem 7.1, p. 43]). As a result, Xn+ has the
based homotopy type of the singular polytope of Zn+. Therefore, con-
secutive application of 4.8 and 3.8 yields

(3) nil t(Xn+, a,+) <-- nil gt(Zn+, Cn+) __--< 1 -t- nil 2(Xn, an)

for arbitrary kn+. If kn+ 0, then g(Xn) bn so that

(4) Zn+ Xn X gtYn with projection pn’Zn+l --. tYn,

and consecutive application of 4.8 and 4.10 now yields

(5) nil t(Xn+l, an+) <- nil gt(Zn+, C,+) <-- max {nil 2(Xn, an), 1}.

Let q be such that k"+ 0 for n >_- q. An easy computation using (3)
and (5) yields

(6) nil t(Xq aq) r + 1.

Notice next that (4) certainly holds if n -> q. We may therefore define a
base-points-preserving map

by setting

(x) (fq(X), (pq hq+ fq+(x), On h,+a o f,+(x), )).

The Cartesian product I-I 2Y, obviously is an H-space so that, according to
4.10,
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(7) nil 2(Xq X 1-I 2 Yn) max nil Xq, 1 }.

As is easily seen, induces homotopy isomorphisms in all dimensions. There
results a based homotopy equivalence of X and the singular polytope of
Xq X II 2Yn, and the desired result finally follows from 4.8, (7), and (6).

4.12. COROLLARY. Let X be a 1-connected CW-complex. If -(X) 0
for all but r values of n, then nil 2X __< r.

Proof. One has kn+ n+2(XH 71"n+l) and if 71"qq-1 is the first nonvanish-
ing homotopy group of X, then Xq still is a point so that kq+2 O.

Next, comparison of 4.6 and 4.11 yields

4.13. COROLLARY. Let X be a 1-connected CW-complex, If the Postnikov
invariants k+2(X) vanish for all but r values of n, then W-long X =< r -f- 1.

4.14. Remark. According to [21] there exists a connected CW-complex
X such that rl(X) is cyclic of order 2, r.(X) is cyclic infinite, rq(X) 0
for q -> 3, and rl(X) operates nontrivially on (X). Since

for arbitrary a r(X) and nontrivial r(X), X has nonvanishing iterated
Whitehead products of arbitrary length so that, by 4.6, nil 2X . There-
fore, the restriction that X be simply connected cannot be removed from 4.11
and 4.12. However, if X is n-simple for every n _>- 2, the relation
nil 2X =< r + max {nil I(X), 1} is a candidate to replace 4.11.

4.15. Remark. For every integer n => 1 there exists a CW-complex X
such that nil 2X n. By 4.9, it suffices to take X in class K(r, 1), where
r is an abstract group with nil r n. Simply connected CW-complexes
with loop spaces of preassigned nilpotency class are also available. Thus, let
X result by adding cells to S v S so as to kill its homotopy groups in di-
mensions -> n + 2. By [10], X will have nonvanishing (n + 1)-fold White-
head products so that, according to 4.6, n -< nil 12X; also, by 4.12, nil 2X -< n.
This example was kindly communicated to us by P. J. Hilton who used it in
a slightly different situation; also, semisimplicial versions of 4.6 and 4.12 may
be found in his papers [11] and [lla].

5. The co-nilpotency class of a suspension
Let K be a fixed commutative coefficient field whose unit element is de-

noted by 1. We consider singular homology vector spaces over K. For
any space Y we introduce the direct sums

H.(Y; K) Yq>_oHq(Y; g), H+(Y; K) Zq>oHq(Y; K).

All tensor products will be taken over K. The following natural isomorph-
isms, of which the second is given by the Kiinneth formula, will always be
regarded as identifications
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H0(Y; K) K if Y is 0-connected,

H,(Y X X Y,,K) -H,(Y;K) (R) (R) H,(Y;K).

The nt diagonal map /n’Y--- yn, with / identity and / /k,
induces a homomorphism

D,’H,( Y; K) ----> H,( Y; K) (R) (R) H,( Y; K)
such that, whatever be the "place" of D D,

(8) Dn+ (0 (R) (R) D (R) (R) O)o D
here 0 is the identity map of H H,(Y; K) and

0(R) (R)D(R)-.. (R)O’H(R) (R)H(R) (R)H

-H(R) (R)H(R)H(R) (R)H.

For any n >_- 1 we have the direct sum decomposition

H,(Y; K) (R) (R) H,(Y; K) Pn + Zn
in which, with q qn denoting the ordinary product of integers,

Pn Z{Hq, Hq,lqi O,q... qn > 0},
gn {H, (R) (R) gq.]q >= O,q q, 0}.

There result homomorphisms

p,’H,-- H, (R) (R) H, and Zn’H, H, @ @ H,

such that, for any n _>- 1 and a H,

(9) p,(a) e P,, z,(a) e Zn, D,(a) p,(a) + z,(a).
For any n -> 1, (8) implies that, whatever be the "place" of p

(10) Pn+l (0 (R) (R) p (R) (R) 0)o Pn.
Finally, an element a H,(Y; K) will be called "primitive" if it is homo-

geneous, of positive dimension, and if p.(a) O.
Now let (X, x0) be a 0-connected spae. Suppose

(11) u e H+(X; K) is a homogeneous element and n >= 1 an integer such that
p,(u) 0 and p,+(u) O.

Our main purpose is to prove that (11) implies the nontriviality of the
homology homomorphism induced by the composition

e
(12) X A

)X
jl j

(’Z) ;(t2(’Z)) Z
in which j, e, and n are as in 2.17. We first prove the

5.1. LEMMA. There exist primitive elements u H, X K) such that
pn(U) --r Url ( ( UrnS. H,(X; K) (R) (R) H,(X; K).
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Proof. Let Hi H+(X; K) and 0i id’H, -- H,. Since we are deal-
ing with vector spaces, we have a direct sum decomposition

Hi Ri + Q where Qi H Ker p..

As a result, for any k with 0 _-< k n 1, we have the direct sum decompo-
sition T+I S t_ T involving the n-fold tensor products

Sk HI () (R) H (R) R+I (R) Qk+2 (R) (R) Qn,

T H (R) (R) H (R) Q+ (R) Q+ (R) (R) Qn.

We have pn(u) e H1 (R) (R) Hn Tn. Suppose pn(u) Tk+ for some
k with 0 < k < n- 1 Then pn(u) b + c, where beSk and ceT
Since p.]R+ is monomorphic and p2(Q+) 0, the map

01 (R) (R) 0k (R) p2 (R) 0+2 (R) (R) 0n

is monomorphic on S and vanishes on T. By (10) and (11) we have

Ck(b) Ck(b) + Ck(c) pn(U) pn+l(U) 0

so that b 0 and pn(u) T. Thus, we finally obtain

p,(u) e To Q (R) (R) Q,.

The desired result now follows upon noticing that any a e Q is a finite sum of
homogeneous elements aq satisfying dim aq q > 0 and p2(aq) 0.
Our next step consists in deriving certain homological properties of

t 22; (nX) and of n Since X is 0-connected, 2 (nX) is 1-connected and
gt is 0-connected; the identifications introduced at the beginning of the section
are valid and will be used without further reference. Let A H,(; K).
Also, let

’2 2 -- 2 and v’2 -- 12

be the usual multiplication and inversion of loops which convert 2 into an
H-space. The homomorphism

M’A (R) A---A

induced by converts the vector space A into the (associative) Pontrjagin
algebra of 2" its unit element is 1 e H0(gt; K). We abbreviate M(a (R) b) to
ab. Let

N’A --- A
be the vector spce homomorphism induced by .
The Cartesian product 12 X t also is an H-space in the obvious way. Its

Pontrjagin algebra is naturally isomorphic to the skew tensor product A (R) A
of the graded algebras A and A, in which the product is defined by setting

(a (R) a2) (b (R) b) (- 1)Pq(al b (R) a. b_)
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for any homogeneous elements with dim b p, dim a. q. Since
A:2 --. X f is an H-homomorphism, D:A -- A (R) A is an algebra homo-
morphism. Notice that

(13) D(a) a (R) 1 1 (R) a if aeA is primitive.

5.2. LEMMA. If a A is primitive, then N(a) -a.

Proof. By (13) and since N(1) 1, the composition

D O(R)N M
A A(R)A ;A(R)A A

sends a into a + N(a). By 1.1 (ii) this composition is trivial so that
a -k- N(a) O.

Evidently, the basic commutator map equals the composition

9X2
/ X A> ffs,.X..___>f.X 0 X . . uXM,

in which the second arrow sends ((t, 0.), (a, w)) into the element
((0t, o), (, )). Therefore, the vector space homomorphism F in-
duced by q equals the composition

D(R)D
A(R)A )B(R)B-oB(R)B

(14)
(O(R)O) (R) (N(R)N) M(R) i i

>B(R)B )A(R)A ’>A

in which B stands for A (R) A and the second arrow is defined by

(a (R) a.) (R) (a (R) a) -- (--1)Vq(a (R) a) (R) (a (R) a)

for any homogeneous elements with dim aa p, dim a: q. Direct corn-
putation using 5.2, (13), and (14) now yields (compare with [17]):

5.3. LEMMA. If a, b e A are primitive elements with dim a =p and
dimb q, thenF(a (R) b) ab- (-1)%a.

5.4. LEMMA. If a, b A are primitive, then c F(a (R) b) also is a primi-
tire element.

Proof. Direct computation using 5.3, (13), and the fact that D is an
algebra homomorphism yields D(c) c (R) 1 + 1 (R) c.

It follows from 1.3 thut the vector space homomorphism F+ induced by
the commutator map+ of weight m -+- 1 equals the composition

F(R)O F
(15) A (R) @A (R)A A (R)A -A.

An induction argument using 5.4 and 5.3 now yields

5.5. LEMMA. If a e A are primitive elements, then

Fn a @ @ an) ax an -F E -I- a(x) a(n)
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where the summation subscript s runs through a set of permutations of 1, n)
which is entirely determined by n and does not contain the identity.

5.6. LEMMA. If ai A are homogeneous elements and if dim ak 0 for some
k, then Fn(a ( ( ak (R) (R) an) O.

Proof. Since F,+ equals the composition (15), it obviously suffices to
prove that F(a (R) b) 0 if, say, dim b 0. We may then also assume that
b 1. An easy computation now yields

F(a (R) 1) Mo(O (R) Y) oD(a),

and the right side vanishes according to 1.1 (ii).
After this digression we revert to the consideration of (12). Let

Ji:H,(X; K) -- H,(nX; K) and E:H,(nX; K) -- H,(t; K)

be the homomorphisms induced by the maps j and e, where t t2;("X).
We identify (jl (R) (R) jn)* with J1 (R) (R) Jn and (e’), with
E(R)...(R)E.

Let u e H+(X; K) be given by (11). According to (9), there exist homo-
geneous elements vt e H,(X; K) such that

Zn(U) Et )tl ( ( )t.n

and
dimvt 0 for some k k(t).

Clearly, dim E J(vt) 0 so that, according to 5.6,

(16) F (E (R) (R) E) o (J (R) (R) J,) o z(u) O.

Let the primitive u correspond to u according to 5.1 and let

(17) ci Ji(ui), a E(c,i).

The naturality of the Ktinneth formula implies that every a is primitive
so that, by 5.1 and 5.5,

F, (E (R) (R) E) o (J (R) (R) J) p,(u)

where, with the dot representing Pontrjagin multiplication in A,

(19) w, a....a.n and

Now let C s+(nx; K) introduce the direct sum

T( C) oC
in which

C() K and C(q) C(R) @C if q> 0.

The natural isomorphisms C(’)(R) C(q) C(+q), where p, q >= 0, extend
linearly to a homomorphism T(C)(R) T(C) ---. T(C) which converts the



]24 I. BERSTEIN AND T. GANEA

vector space T(C) into the (associative) tensor algebra of C; its unit element
is 1 C(). We have the direct sum decomposition

C C1 + + Cn + Cn+i
in which C. Ji(H+(X; K)) for 1 __< i -< n; the presence of an extra term
(3, which is a direct summand as we work with vector spaces, is due to a+1

possibly bad behavior of the base-point. As a result, we obtain the direct
sum decomposition

(20) T(C) C(0) + Zq--.l __{Cil Ciq I1 <- i <= n+ 1,1 __< ]c __< ql.

Evidently, every Ji is a monomorphism; working with vector spaces implies
that so is also J1 (R) (R) Jn We hve p(u) 0 and dim Ur > 0. There-
fore, 5.1 und (17) yield

(21) 0 (J1 (R) (R) J,) p,(u) Crl (R) (R) Crn C1 Cn

also, for any permutation s of (1, n), by (17) we have

(22) ’r Cr,(1) (R) (R) C,(n) C(1) (R) (R) C(n).

If s is not the identity, then the right-hand vector spaces in (22) and (21)
are distinct direct summands in (20). Therefore, adding in T(C) yields

(23) Zr Crl Crn - Zs Zr "dC"Crs(1) Crs(n) O;

here, the summation subscripts r and s run precisely as in 5.1 and 5.5 respec-
tively, and the signs are taken as in (19). After interchanging, as we may,
summation on r and s in (23), we abbreviate its left member to d.
By the Bott-Samelson theorem ([3]; see also [13]) applied to the 0-con-

nected space X, there is a natural algebra isomorphism

’T(C) A such that ]C(1) E[C.
The definition of multiplication in T(C), (17), and (19) now yield

Since is an isomorphism, (23) and (18.) yield

(24) Fn (E (R) (R) E) (J1 (R) (R) Jn) p,(u) O.

By (9), (16), and (24) we finally obtain

F (E (R) (R) E)o (J1 (R) (R) Jn) Dn(u) O.

Thus, it follows from 11 that the homology homomorphism induced by (12)
is nontrivial, and 2.17 now implies that the co-commutator map Cn of weight
n in the H’-space 2;X fails to be nullhomotopic rel. base-point.

Recall now the

5.7. DEFINITION. -long X is the least integer k >= 0 such that, .for any
commutative coecient field, the cup product of any lc + 1 singular cohomology



HOMOTOPICAL NILPOTENCY 125

classes of positive dimension vanishes; if no such integer exists, we put
j-long X .
Suppose j-long X >__ m _-> 1. Then, the definition of the cup product in

terms of the diagonal map provides a commutative coefficient field K, .an ele-
ment u e H+(X; K) and an integer n >= m satisfying (11). Therefore,

5.8. THEOREM. If X is a O-connected space, then, for any base-poin xo X,
j-long X =< conil 2; (X, x0).

5.9. An upper bound for conil (X, Xo) will be given by Theorem 6.13 in
the next section. Meanwhile, we show that for any n >= 1 a space X satisfy-
ing conil 2X n exists. To this end, let X be the Cartesian product of n
copies of a q-sphere, q -> 1. With Z2 as coefficient field, there are n singular
q-dimensional cohomology classes with nonvanishing cup product in X so
that, by 5.8, we have n =< conil 2X. On the other hand, the Lusternik-
Schnirelmann category of X equals n + 1 so that, by 6.13 and 6.8 in the next
section, we have conil 2X -< n.

6. Weak category and nilpotency of function spaces
We first recall [16; Hilfssatz 14] the following

6.1. DEFINITION. The base-point b Y is nondegenerate if there are a neigh-
borhood U b which is contractible rel. b in Y, and a continuousfunction u" Y --. I
with u(b) 1 and u(Y U) O.

The advantage of this definition lies in the fact that the property of having
a nondegenerate base-point is a based homotopy type invariant [16; p. 333].
We list without proofs some properties of nondegenerate base-points.

6.2. If the base-point b Y is nondegenerate, then there exist a neighborhood
V b, a continuous function v’Y ---> I, and a homotopy pt’Y--* Y such that
v(b) 1, v(Y V) O, po(y) y, and pl(?) pt(b) b.

6.3. If the base-point a X is nondegenerate and if the map

f:(X, a) Y, b)

is freely homotopic to the constant map X-- b, then f also is homotopic rel. a
to the constant map.

6.4. If the base-point a X is nondegenerate and if Y is O-connected, then
any map X ----) Y is freely homotopic to a map (X, a) --, (Y, b).

6.5. If the base-point b Y is nondegenerate, then the base-poin fib is non-
degenerate in the loop space ( Y, b).

Now letn => 1. For any space (Y, b) let T(Y, b;n) denote the subset
of the Cartesian product yn which consists of all points (y,..., Yn) satis-
fying y b for some i. Let
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and p. yn

denote the identification space and identification map resulting by pinching
to a point the subset T( Y, b; n) of yn. This construction is related to that
introduced at the beginning of the fourth section, but we shall not need this
fact here. We owe to Hilton the following

6.6. DEFINITION. For any space (X, a), w cat (X, a) is the least integer

n >= 1 such that the composition X X P- X(n) is nullhomotopic rel. a; if no
such integer exists, w cat (X, a) .
As usual, / stands here for the diagonal map. Clearly

6.7. If (X, a) and (Y, b) have the same based homotopy type, then

w cat (X, a) w cat (Y, b).

Recall that the Lusternik-Schnirelmann category cat X .is the least integer
n => 1 such that X may be covered by n open subsets which are contractible
in X; if no such integer exists, cat X .

6.8. PROPOSITION. If X is a O-connected normal space with nondegenerate
base-point a X, then w cat (X, a) -< cat X.

Proof. Suppose cat X n, and let X be covered by n open subsets Ui,
each of which is contractible in X under a homotopy hi: Ui X I - X satisfy-
ing hi(x, O) x, hi(x, 1) ai. Since X is 0-connected, we may assume
that ai a for all i. The normality of X yields closed subsets A of X, open
subsets Vi of X, and continuous functions fi:X -- I such that

X AI.J...,JAn,

fi(Ai) 1, fi(X- Vi) O.

For every i, define a homotopy ki’X I -- X by

ki(x, ) x if xX- ?i,
hi(x, tfi(x)) if x e U.

Let k(x, t) (k(x, t), tc,(x, t) X’; then/c(x, 0) / (x) and since
every x belongs to some Ai, k(x, 1) T(X, a; n). The composition p o A
is now freely homotopic to the constant map X-- p(a,..., a) under the
homotopy p o k. Since a e X is nondegenerate, application of 6.3 yields a
homotopy rel. a connecting the map p o/k and the constant map, so that
w cat (X, a) -< n.

6.9. LEMMA. If (G, e) is an H-space with nondegenerate base-point, then,
"efor any n >= 1, there is a homotopy ht G such that ho , and

hl( T(G e; n) ht(e, e) e.
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Proof. Let denote the basic commutator map in (G, e).
is a homotopy ct’G v G-- G such that

By 1.5, there

and 1(G v G) Ct(e, e) e.

Let the neighborhood V e, the continuous function v:G- I, and the homo-
topy p:G---, G be given by 6.2. Select a continuous function r:I X I I
such that r(0, 0) 0 and r(s, 1) r(1, t) 1. Let d(x, y) r(v(x), v(y)),
W GX Vu V X G and M GXG- W. The map ]:G XG---G
defined by

kt(x, y) q(p(x), p.t(y) for 0_ t-< 1/2, (x,y) eG X G,

-(p(x),pl(y)) for 1/2-< t-< 1, (x,y) eM,

(2_)(.)(pl(x), p(y)) for 1/2 =<t=< 1, (x,y) eW,

satisfies k0 and ](G v G) /(e, e) e. Now, if n 1, we put
h identity. Assume the homotopy h "of weight n => 1" has been defined.
The homotopy "of weight n W 1" is then given by kt(ht(x, x,), x,+).
Now let 9 denote the class of all H-spaces with nondegenerate base-point.

6.10. THEOREM. If (X, a) is a Hausdorff space with nondegenerate base-
point, then sup nil (G, e) ( ’) (G, e) e } _-< w cat (X, a) 1.

Proof. Assume that w cat (X, a) n _-> 1. Let the neighborhood V a
and the homotopy pt’X ---) X be given by 6.2. With X X and V V,
the set

W U il X1 X X Xi-1 X Vi X Xi+l X X X,

is a neighborhood of T(X, a; n) in X and the homotopy

t Pt X X Pt" xn, (a, a) ---) (X, (a, a)

satisfies 0 identity and n(W) c T(X, a; n). Introduce the space X
and the identification map p’X’--- x(n); let b p(a,..., a).

Let (G, e) e. For every mapf:(X", T(X, a;n)) --) (G, e) there is a
unique continuous map f’" (X(n), b) (G, e) satisfying f’ o p f. Setting
F(f) f’ defines a continuous map

(25) F" (G, e) (x"’w)
---) (G, e)(X(’)’);

for, if F(f) (C, U), where C X(n) is compact and U G is open, then
--1p (C) W is a compact subset of X so that

A (p-(C) W, U) n (G, e) (x’’W)

is a neighborhood of f in the domain of F and F(A) (C, U).
Let/k’X -- X be the diagonal map. Since w cat (X, a) n, there is a

homotopy ,’X---> X(n) such that 0 p A and (X) t(a) b. Let

," (G, e) (x’’) X X (G, e) (x’’) ---> (G, e) (X’")
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be the commutator map of weight n in the H-space (G, e)(X.a). Then, for
any fi (G, e) (X.a), Cn (fi fn) equals the composition

X ,,A)X fiX Xfn ,Gn ’)G,
where n is the commutator map of weight n in the H-space (G, e). By 6.9,
there is a homotopy ht’G’-- G such that

h0 and h( T(G, e; n) ht(e, e) e.
Define

by

kt(fl

kt" (G, e) (X’a) X X (G, e) (X’a) --> (G, e)

,fn) h2t (fl X X )o 2t o/ if 0 _-< < 1/2,

---F(hlO(fX Xfn)V)2t-1 if 1/2-< t-< 1.

That /t actually is a homotopy, i.e., that it depends continuously on
(f, fn, t), is easily checked by expanding it as a composition of maps
and homotopies of function spaces, each of which is continuous by 2.2, 2.1,
and (25). Moreover, k0 ?)n, and, with denoting the constant map
X-->e, k(fl ,fn) ]t(V, ) . Thus, nil (G, e) (x’a) n 1.

6.11. THEOREM. If (X, a) is an arbitrary space with nondegenerate base-
point, then conil 2;(X, a) _-< sup {nil -(X, a; G, e) (G, e) }.

Proof. Since X has a nondegenerate base-point, so does mX for any m _-> 1;
it follows from [16; Satz 17 and (33)] that z(mx) also has a nondegenerate
base-point, and 6.5 now implies that ftZ(X) belongs to for any m => 1.
The result now follows from 2.14.

6.12. COnOLLhnY. If (X, a) is a O-connected normal Hausdorff space with
nondegenerate base-point, then, with (G, e) ranging over ,

-long X _-< sup nil r(X, a; G, e) _-< sup nil (G, e)(X,a) cat X 1.

Proof. The first inequality follows from 5.8 and 6.11, the second is obvious,
and the third follows from 6.10 and 6.8.

As another consequence, we obtain the promised upper bound for the co-
nilpotency class of a suspension"

6.13. TIEOnEM. If (X, a) is a Hausdorff space with nondegenerate base-
point, then conil 2 (X, a) -< w cat (X, a) 1.

Now let 9o denote the subclass of consisting of all 0-connected H-spaces
in 9. Suppose (X, a) is a Hausdorff space with nondegenerate base-point,
and let (G, e) e 0. Then, it follows from 6.3 and 6.4 that the inclusion map
G, e) (x.a) ---. Gx induces an isomorphism

(26) r(X, a; G, e) r(X; G).
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Therefore, by 6.10, we

6.14. PROPOSITION.
base-point, then sup nil

Furthermore, if X is

have

If (X, a) is a Hausdorff space with nondegenerate
r(X; G) I(G e) 0} _-< w cat (X, a) 1.

0-connected, so is also the H-space z(mx), and, as
shown in the proof of 6.11, its base-point is nondegenerate provided so is
a e X; by 2.14 and (26) we therefore obtain

6.15. PROPOSITION. If (X, a) is a O-connected space with nondegenerate
base-point, then conil 2 (X, a) _-< sup nil r (X; G) (G, e) e 0}.
Our last result concerns Whitehead products in function spaces.

6.16. THEOREM. Let (X, a) and (Y, b) have nondegenerate base-points. If
X is a Hausdorff space, then the relation

W-long Y, b) (x.a), bX) =< w cat (X, a) 1

holds in each of the following three cases" (i) X is locally compact, (ii) X is
a CW-complex, (iii) X satisfies the first countability axiom.

Proof. By 4.6 we have

(27) W-long ((Y, b) (x’a), bx) <= nil ft((Y, b) (x’"), bX);
by 6.10 and 6.5 we have

(28) nil (((Y, b), b) (x’a), (b)x) =< w cat (X, a) 1.

According to [14; Theorem 6], in each of the three cases there is an H-struc-
ture-preserving homeomorphism

a((Y, b) (x’a), bx) (a(Y, b), ab) (X’a),
and the right-hand member of (27) now equals the left member of (28).
We conclude by giving two examples related to 6.8 (see [1]).

6.17. Let Y be the complex obtained by removing an open 3-cell from a
Poincar space, i.e., a nonsimply connected closed 3-manifold which is a
homology sphere. Since Y is not contractible, by [8; Theorem 1.1] we have
cat X >- n 1 for X yn. Nevertheless, X(2) is simply connected and
acyclic, whence contractible, so that w cat X 2.

6.18. Let Y S v S3, and let il, i2"S-- Y denote the left and right
inclusion maps. Let X result by attaching to Y an 8-cell with characteristic
map in the class [il, [il, i2]] e rT(Y), where If, g] denotes the obvious Whitehead
product. Then, X satisfiesl(X) 0, wcatX 2, catX 3.
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