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1. Introduction

In the following we are concerned with associative rings which have a tor-
sion-free abelian group as additive group. Such rings are called torsion-free
rings. The rank of a torsion-free ring is the rank of its additive group, which
is the cardinality of a maximal independent set of elements.

The tensor product R ® A [6], where R is the field of rational numbers and
A is a torsion-free ring, can be made into an associative algebra over R by de-
finingr(s ® a) = rs ® aforr,seR, ae A. Wewill denote R ® A by A*.
It can be readily verified that A* has the following properties:

(1) Every element of A* can be written in the formr ® a, 7 e R, a € A.

(2) A isimbedded as a subring in A*. Since A4 is torsion-free, the mapping
a — 1 ® ais an imbedding [6, p. 130].

(3) For every a e A*, there exists an integer n = 1 such that nd e A. This
follows from (1) and (2).

(4) The dimension of A* over R is equal to the rank of A.

(5) A* is a unique smallest associative algebra over R containing 4 as a
subring.

Because of (1), we simplify the notation by writing ra instead of r ® a for
the elements of A*. It should be noted that as an additive group A* is just
the minimal divisible torsion-free group containing A [9, p. 66], and that when
A* is regarded as the set of formal products ra, r ¢ R, a ¢ A, certain identifica-
tions which we make in the sequel are clear. We introduce the following
terminology.

DeriniTioN 1.1. The algebra A* = R ® A is called the algebra type of the
ring A, and torsion-free rings Ay and A, are said to have the same algebra type
if thewr algebra types AY and A% are isomorphic algebras.

DeriNtTION 1.2, Let G be a torsion-free abelian group, and let T be an asso-
ciative algebra over R.  Then G admits a multiplication of algebra type T of there
exists a ring A with additive group A" isomorphic to G such that A* and T are
isomorphic algebras.
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1 The second author was supported by the National Science Foundation while work-
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We pose the following problems:
I. Find all torsion-free rings with a given algebra type T.

II. Find all torsion-free groups which admit multiplication of a given algebra
type 7.

Section 2 is concerned with the elementary properties of quasi-isomorphism
of groups and rings.

Drerinrrion 1.3, Let A and B be abelian groups (rings). Then A and B
are quasi-tsomorphic if there exist subgroups (subrings) A’ & A and B’ € B
such that

(i) A’ and B’ are tsomorphic groups (rings);

(ii) there are integers m = 1 and n = 1 such that mA C A’ and nB S B'.
We write A ~ B if A and B are quasi-isomorphic as groups and A =~ B if A
and B are quasi-tsomorphic as rings.

1t is shown that quasi-isomorphic rings have the same algebra type (Theo-
rem 2.5) and that quasi-isomorphic groups admit multiplication of the same
type (Corollary 2.7). The concept of quasi-isomorphism is basic for the re-
mainder of the paper.

In Sections 3 and 4 the structure theorems of Wedderburn are generalized
to torsion-free rings of finite rank. These classical theorems extend to torsion-
free rings, provided isomorphisms are weakened to quasi-isomorphisms. The
main result is a generalization of the Wedderburn principal theorem.

TurEoREM 1.4. Let A be a torsion-free ring of finite rank. Let A* = S@ N,
where N is the radical of A* and S is a semisimple subring of A*, and let
S=8nA,N= NnA. Then Sisa subring of A such that S* = S, N 1is
the maximum nilpotent ideal of A, N* = N, and S ® N is a subring of A such
that S ® N has finite index in A.

A by-product of Section 4 (Corollary 4.9) is the fact that any torsion-free
group of finite rank which admits a multiplication of semisimple algebra type
is an extension of a free group by a divisible torsion group. This motivates
the following definitions.

DeriNiTION 1.5. Let A be a torsion-free group. A subgroup B of A is called
a full subgroup of A if A/B is a torsion group.

DeriNiTION 1.6. Let A be a torsion-free group. Then A is called a quotient-
divisible or q.d. group if A contains a full subgroup B such that B is free and A/B
is a direct sum of a divisible group and a group of bounded order. A torsion-free
ring A 1s called a q.d. ring if the additive group of A is a q.d. group.

In Section 5, q.d. groups are analyzed, and a reasonably simple system of
invariants is obtained for the quasi-isomorphism classes of q.d. groups of
finite rank. These invariants are patterned after those of Kurosh, Malcev,
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and Derry for the isomorphism classes of arbitrary torsion-free groups of finite
rank, and are based on the following considerations.

Since any torsion-free group A of finite rank is a full subgroup of the finite-
dimensional vector space R ® A, we restrict our attention to full subgroups
of a fixed rational vector space V of finite dimension. Denote by Z'” and
R” the p-adic completions of the rings of integers and rationals respectively.
For every rational prime p, form the R”-space V™ = V ® R™, and regard
V® as an extension of V. Now for a subgroup 4 of V, we consider the Z®-
module,

AP = ZP4 = D ziwi| 2 e 2P, wie A},

and denote by 8,(4), the maximal divisible subgroup of 4®. Then 5,(A4)
is the maximal divisible submodule of A regarded as a Z®-module, and
hence is an R®-subspace of V.

Following Jénsson [11], we introduce an equivalence relation on the sub-
groups of V.

DeriNITION 1.7. If A and B are subgroups of the R-space V, define A & B
ynAd C A nBforsomen = 1. Define A = BifA CBand B C A.

It is clear that the equivalence = is a refinement of quasi-isomorphism, so
that A = B implies A ~ B.

DeriniTiON 1.8. For each prime p, let £, be the lattice of subspaces of the
R'P-space VP, Let £ = [], £, bethe direct product of these lattices. For any
0 € £, denote by &, the pth component of 8. The clements of £ are called the q.d.
nvariants associated with V. If A is a subgroup of V, define 6(A) € £ by the
condition that the pth component of 8(A) s 6,(A). We call 6(4) the q.d. in-
variant of A.

We are now able to state the main result of Section 5.

TueorEM 1.9. Let A and B be full q.d. subgroups of V.

(1) A = Bifand only if 6(A) = §(B);

(2) ifd €L, then there exists a full q.d. subgroup A of V such that 6 = §(A);

(3) A ~ B if and only if there is a nonsingular linear transformation ¢ of
V such that (¢ ® idzw ) 6,(A) = 8,(B) for all p.

In Section 6, the q.d. invariants are used to reduce the study of torsion-free
rings of simple algebra type to rings of field type. These results are based
on the correspondence given in the following theorem.

TaeorEM 1.10. Let T be a rational algebra of finite order, and let A be a full
subring of T. Then for each prime p, 8,(A) is a two-sided ideal of the R -
algebra T® = T ® R™. Conversely, if 6 is a q.d. invariant such that each
8, 18 a two-sided ideal of TP, then there is a full q.d. subring A of T such that
8 =06(A). If A and B are full q.d. subrings of T, then A = B if and only if
there 1is an automorphism ¢ of T such that (¢ ® idrw) 6,(A) = 8,(B) for
all p.
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It is convenient to state the principal applications of this result in terms of
the notation introduced in the following definition.

DerintrioN 1.11.  Let T be a rational algebra of finite order with an identity,
and let K be a subfield of the center of T which contains the identity. If C is a
subring of K and X = {x;, --- , x,} s a basts of T relative to K such that

Xy X5 = Zk Qijk Tk with Qi ji; GC,

we call X a C-basts of T over K. If C is a full subring of K, denote by C[X] the
subring of T consisting of all elements of the form ¢t 21 + - -+ + ¢ &, with ¢; € C,
where X = {x;, -+, x} 15 any C-basts of T over K.

TaeoreM 1.12. Let T be a stmple rational algebra of finite order with center
F. Let A be a full subring of T, and let C = A n F. Then C s the center of
A and if X is a C-basis of T over F with X C A, the subring C[X] has finite
index in A.

TarOREM 1.13. Let T be a simple rational algebra of finite order with center
F. Suppose T is r-dimensional over F. Then a torsion-free group A admits a
multiplication of algebra type T if and only if A is quasi-isomorphic to a direct
sum Y @51 Ci, where C; 22 C for all ¢ and C admits a multiplication of algebra
type I

In Section 7, the automorphisms of rings of field type are considered. In
Section 8 some examples of rings of field type are constructed. In particular,
the groups which admit multiplication of quadratic field type are charac-
terized. Section 9 is in the form of an appendix. It is shown here that under
very special conditions, quasi-isomorphisms can be replaced by isomorphisms.
These conditions are satisfied, however, by rings of certain algebra types.

Notation. By a group we always mean an abelian group. Generally, 4,
B, C, and D stand for torsion-free groups or rings. The rings of integers and
rationals are denoted by Z and R respectively; the p-adic completions of these
rings are represented by Z ® and R™ (a slight departure from standard nota-
tion). If G'is a group and H a subgroup, the factor group of G by H is G/H.
The standard isomorphism theorems will be used repeatedly and without men-
tion. Certain notation of the theory of abelian groups will be convenient.
If G is a group, then: d(@) is the maximal divisible subgroup of G; G[m] is the
m-layer of G, that is, {z ¢ G | me = 0}; G, = Ui, G[p'] is the p-primary com-
ponent of G; d,(G) = (d(@)), ; vk G is the rank of G as a Z-module. If M
is a Z®-module, its Z®-rank is denoted rkyy M. Similarly dim V is the
R-dimension of the rational space V and dimz» V is the dimension over R®
when V is an R®-space. Isomorphisms, either in the ring or group sense,
are symbolized by . The distinction between ring and group isomorphisms
will either be clear from context or will be explicitly noted. We will distin-
guish between group direct sums and ring direct sums by use of the symbols
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@ and 4 respectively. For addition and multiplication of complexes in a
group the usual 4+ and juxtaposition notation is used. The symbol ® stands
for tensor product which in all applications will be taken over the ring of in-
tegers. We use A" to denote the additive group of the ring A, when this dis-
tinction has to be made explicit. The symbols of set theory C, C, D, O,
n, u, {-|-} and of number theory m | n, (m, n), mod n, etc., have their usual
meanings.

We wish to extend our thanks to our algebraic colleagues at the University
of Washington and elsewhere for valuable suggestions and for the encourage-
ment derived from their interest. Particular thanks are due to Professor
J. P. Jans whose ideas and suggestions guided and improved our work in many
places.

2. Quasi-isomorphism of groups and rings

In this section we study the relations introduced in Definition 1.3. It is
shown that quasi-isomorphic rings have the same algebra type and that quasi-
isomorphic groups admit multiplication of the same type.

Lemma 2.1, The relations ~ and X are equivalences.

Proof. These relations are clearly symmetric and reflexive. Let A’ € A,
BCBB'"CB(CCC,A=B,B"=2(C,nAC A, mBC B, B S B,
m'C & C'. Suppose ¢:A" — B, y:B”" — C’ are the given isomorphisms.
Let

A" = ¢ (B'n B"), C" = y(B' ' nB").

Then A” and (' are subgroups (subrings) of A and C respectively. Also
Yo maps A’ isomorphically on C”/. Finally (as groups)

AI/A// % B//(Bl n BII) g (B/ _I_ Bl/)/]gll g B/BII,

son’A" C A" and n’'nA C n'A’ CTA”. Similarly, m'mC < C”.

It is evident that if A and B are rings such that A &~ B, then as groups,
A ~ B.

The following lemma is an easy consequence of Definition 1.3.

LemMA 22 If A~Band C ~D,thend ® C~B® D. IfAXB
and C =~ D, then A 4 C =~ B 4 D.

We now specialize our considerations to torsion-free groups. Henceforth,
A, B, C, and D are torsion-free abelian groups or torsion-free rings.

Lemma 2.3.  The following conditions are equivalent for torston-free groups:
(1) there exist subgroups A’ © A and B’ C B and an integer n = 1 such
that A =~ B', B~ A',nA C A’, and nB C B’;
(ii) there exist a subgroup A’ C A and an integer n = 1 such that A’ = B
and nA & A’;
(iii) A ~ B.
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Proof. 1t is clear that (i) implies (ii), and we see that (ii) implies (iii)
by choosing B’ = B. To show (iii) implies (i), let A’ € A, B & B be sub-
groups, A an isomorphism of A" onto B’, andm = 1, n = 1 integers such that
mA © A’, nB € B’. Then ¢:a — ma — A(ma) is an isomorphism of A into
B’, and ¢:b — nb — X\ '(nb) is an isomorphism of B into A’. Moreover,
mnB C© mB = mA(A') = A(mA') € A(mA) = ¢(4). Similarly,
mnd C ¢(B).

The analogous properties (i), (ii), and (iii) for torsion-free rings are not
equivalent. Evidently (i) implies (ii), and (ii) implies (iii). However, the
ring Z of integers is quasi-isomorphic to the ring 2Z of even integers, but
clearly Z is not isomorphic to any subring of 2Z.

LemMa 2.4, Let A and B be torsion-free groups (rings), and let ¢ be a homo-
morphism of A into B. Then ¢ has a unique extension ¢* to a linear mapping
(algebra homomorphism) of A* into B* considered as R-spaces (R-algebras).
If ¢ 7s one-to-one, then so is p*. If ¢(A) is a full subgroup (see Definition 1.5)
of B, then ¢* is onto. Finally, if ¢:B — C is another homomorphism, then
(¥p)* = PFo*.

Proof. 1If x e A*, then there exist a ¢ A and r ¢ R such that @ = ra. Define
¢*(x) = r¢(a). A routine check shows that ¢* is well defined and has the
stated properties.

Remark. Two consequences of 2.4 are worth noting. First, if ¢ maps 4
onto B, then ¢(A) = B is full in B, so that ¢* maps A* onto B*. Second, if
A ~ B, then tk A = rk B = dim A* = dim B*. These facts will be used
in Section 5.

The motive for introducing the concepts of quasi-isomorphism for torsion-
free groups and rings is provided by the next two theorems.

TurorEM 2.5. If A & B, then A and B have the same algebra type.

Proof. Let mA © A’ C A, nBC B’ C B, where A’ and B’ are iso-
morphic, m = 1and n = 1. Then

A®RDA®RD (mA) ® R =4 ® R,

so (A')* = A* Similarly (B')* = B*. By 24, (A")* = (B’)*, that is,
A and B have the same algebra type.

TurorEM 2.6. Let A ~ B, and let A be a ring. Then there exists a ring
multiplication on B such that B is isomorphic to a subring A’ of A and mA & A’
for some m = 1.

Proof. By 2.3 there are an isomorphism ¢:B — A and an integer n = 1
such that nA € ¢(B). Define the multiplication in B by

vy = ¢ (nlg(x) - S(y)), x,y e B,
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where - denotes the multiplication in A. The mapping \:B — A defined by
Mx) = ne¢(x) is then a ring isomorphism, and since A(B) = n¢(B), we have
n’A C né(B) = \(B).

CoroLLARY 2.7. If A admits a multiplication of algebra type T and A ~ B,
then B admats a multiplicatron of algebra type T.

Proof. By Theorem 2.6, B admits a multiplication such that B &~ A and
consequently, by 2.5, of algebra type T'.

This corollary shows that the problem of determining the groups which ad-
mit multiplication of given algebra type 7' can be separated into the problem
of finding representatives of the quasi-isomorphism classes of groups admitting
multiplication of type T and the problem of finding all groups which are quasi-
isomorphic to a given group. When the quasi-isomorphism classes are studied
rather than the isomorphism classes, many of the subtle difficulties connected
with torsion-free groups disappear. The results of Jénsson [11] on the de-
composition arithmetic of groups of finite rank is evidence of this fact.”> If 4
is a torsion-free group of finite rank, then itisclearthat A ~ B, @ --- @ B, ,
where the B; are “strongly indecomposable” torsion-free groups, that is, if
B; ~ C & D, where C and D are torsion-free, then C = Oor D = 0. Jénsson
shows that this decomposition is unique. Although we will not make essential
use of Jénsson’s theorem, it is an important foundation for our work, since it
adds stature to the decomposition theorems of Sections 3 to 6 below.

3. Reduction theorems

In this section we will use the classical reduction theorems for rational al-
gebras to reduce the question of classifying groups which admit multiplication
of certain algebra types 7' to that of classifying groups which admit multiplica-
tion of more special types.

LeEmMA 3.1. Let A be a torsion-free ring such that
A*:AleaAQ@ tet @Am

is a vector space decomposition, where A;, 7 = 1,2, -+ | m, are subrings of A*.
Then the A; = A; n A are independent subrings of A, and

(i) A¥ = A, (making the usual identifications);

(i) A/(A1 ® A; @ -+ @ An) 1s a torsion group. If A* contains ele-
ments e;, 1 = 1,2, -+, m, such that e; acts as a right (left) identity on A; and
as a right (left) annihilator on A; | j 5= i, then A/(A; @ A2 @ -+ @ A,) has
bounded order.

Proof. 1t is clear that the A; are independent subrings of A. Also
A; € A,;,and for G;eA;, 7 = 1,2, --- , m, there exists an integer n = 1

2 We are grateful to Professor Jénsson for pointing out his results and for sending us
a preliminary version of the manuscript of [11].
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such that nd; e A;. Thus A4, is isomorphic to a subalgebra of AT | and since
A¥ is a minimal subalgebra containing A,, A; = A¥, proving (i). For

aeA,a =aG + a + -+ + dn, where @; e A;. Choose n = 1 such that
ndieAi,i=1,2,~--,m. Then
ne = nd +nde + - F ndned; ® A ® - @ A,

and this proves (ii). Finally, suppose A* contains elements e;,
i = 1,2, -+, m, such that e; acts as a right identity on A, and a right an-
nihilator on A, j # 7. Choose n = 1 such that ne;ed, s = 1,2, --- , m.
Foraed,a = a + G + -+ + dn with @ e A;, Then A contains

a(ne;) = (@ + @ + -+ + an)(ne;) = nd;.
Thus nd; e A; n A = A;fori =1,2, ---, m. Hence
na =nd +nd;+ -+ ndned @ 4, @ -0 @ A,

Since a was an arbitrary element of A, this proves the final statement of the
lemma.

COROLLARY 3.2. Let A be a torsion-free ring such that A* has an identity e
which s the sum of m mutually orthogonal idempotents, e = e, + es + -+ + en .
Let A;; = e; A*e;n A. Then the A;; are independent subrings of A, AT, =
e; A*e;  and A/ @ ; Aj has bounded order.

Proof. The decomposition
A* = A%, @ A*e, ® --- @ A¥*ey,

satisfies the conditions of Lemma 3.1. Hence A/(4A; @ A @ --- ® A,n)
has bounded order, where A; = A*e; n A and AT = A*e,. Now apply 3.1
to the decompositions

A*e; = ¢y A¥e; @ ex A¥e; @ -+ @ en A¥e;,

i=1,2---,m. Then 4;/(A; ® A2; @ -+ ® A.;) has bounded order,
where A;; = e¢; A*e; n A and AY; = e; A*,;. Combining these results, we
conclude that 4/ @ ; A:; has bounded order.

TurorEM 3.3. Let T be an algebra over R with an identity such that
T=T4+Te+ -+ 4+ Tan (ring direct sum).

Let A be a torsion-free ring of algebra type T. Then there exists a subring C of
A such that
C=4A+ 44 -+ 4a,

where A; is a ring of algebra type T , and A/C has bounded order.

Proof. The decomposition 7' = Ty + T + -+ 4 T, yields a decomposi-
tione = ¢; + e + -+ + e, of the identity e of T into mutually orthogonal
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central idempotents. By hypothesis, A* = T, and by applying 3.2, A;; =
e, Tej nA=0if+ #],A“ = €; Te,‘ nA = T,,‘ nA,and A;kz = T, ThGA,*q‘,
t=1,2 .- m, are independent subrings of A. Let

C=A4A1 @ Ap ® --- ® Apn  (group direct sum).
Since A;; A;; = 0if ¢ = j, it follows that C is a subring of A and

(/VZA.]l—-i—Am—i—"‘—i—Amm-
By 3.2,
A_/Z@,‘,j 1’117]‘ = A/(An @ A22 @ vt @ Amm) = A/C

has bounded order.
TarorEM 3.4. Let T be an algebra over R with an identity such that
T=T+TsF - + Tn.
Then a torsion-free group A admats multiplication of algebra type T if and only if
A~A®A® - - @A,
where A; admats multiplication of algebra type T .

Proof. If A admits multiplication of algebra type 7', then A is a torsion-
free ring satisfying the hypotheses of Theorem 3.3. Hence by 3.3,

A/ @ 4@ - @ A,)

has bounded order, where A¥ = 7;. ThusA ~A4; ® A, ® --- ® A,, where
A; admits multiplication of algebra type T';. Conversely, if

A~A @A ® - @ A,
where 4, admits multiplication of algebra type T, then
(At - FA) =ATF A+ AL =T F T - F Ta,
Thus A; @ 4, @ --- @ A, admits multiplication of algebra type 7. By
Corollary 2.7, A admits multiplication of type 7'

CoOROLLARY 3.5. Let A be a torsion-free ring of finite rank with semisimple
algebra type S.  Then A contains a subring C of finite index such that

¢ = Sl+‘SZ+ "i"Sm)
where each S; s a ring of simple algebra type.

Proof. This is an immediate consequence of Theorem 3.3, the decomposi-
tion of the semisimple algebra S into its simple constituents, and the observa-
tion that if A has finite rank, then A4/C has finite rank and bounded order,
and hence A/C is finite.

CoRrROLLARY 3.6. A torsion-free group A of finite rank admits mulliplication
of semissmple algebra type if and only f
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A~A®A® - @ A,
where each A; admits multiplication of simple algebra type.
Proof. This is an immediate consequence of Theorem 3.4.

THEOREM 3.7. Let T = B, be a full m by m matrix ring over an R-algebra
B with an identity. Let A be a torsion-free ring of algebra type T. Then there
cxists a subring C of A such that C = D,,, a full m by m matrix ring over a
torsion-free ring D, where D has algebra type B, and A/C has bounded order.

Proof. Let ey, 7,7 = 1,2, -+, m, be the matrix unitsin 7" = A*. Let
B = ey Tery. Then B is a subalgebra of T and is algebra-isomorphic to B.
Further B n A is a subring of A such that (8 n A)* = B. Choose n = 1
such that ne;; € A for all 7, j, and consider the subset of A,

2
Dy = (new)A(nen) = ey Aejr .
Since D,; = en Dyjen,D;; € BnA. Also,D;;isasubringof B n A because
2 2 2 2
(ney;aren)(ney;azen) = we(an'ej;an)e

for a; and a; in A.
Let D =N;; D;;,and let x e Bn A. Then

X = en Xeun = €15 €ehq Teéyj €1,
and
n'r = n261i[(n6i1)x(n611)]€ﬂ .

Since x € A, (neq)x(nei;) e A, so that n'z e D;; for all ¢, j. Hence
n'(BnA) CD,

and D* = (Bn A)* = B~ B.
Nowletd;; e D, 4,7 = 1,---,m. Thend;eD.;, sod;; = (ney)a;j(ney)
for some a;; e A. Hence

€1 d“ 6 = (neii)a“(ne”) eA.
Therefore ) ;. ;eq dijei; e A. By definition of the matrix units, the mapping
[dij) = 205 ea dij e,
is an isomorphism of D,, onto a subring C € A. 1If x ¢ A, then
n'r = nﬁzi,j €y Xej; = ZL] ea(n'(ne;)x(nen) e € C,

since n'(ney)x(ne;) en'D; C n*(B n A) € D. Thus, 4/C has bounded
order.

THeOREM 3.8 Let T' = B, be a full m by m matriz ring over a rational al-
gebra B with an identity. Then a lorston-free group A admits a multiplication
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of algebra type T if and only if A ~ D> @7 Dij where for all i, j,
D;; = D and D admits multiplication of algebra type B.

The proof is similar to 3.4, and we omit it.

COROLLARY 3.9. Lel A be a torsion-free ring of finite rank whose algebra
type is stmple.  Then A contains a subring C of finite index such that C = D,, ,
where D 1s a torsion-free ring whose algebra type is a rational division algebra.

CoRrROLLARY 3.10. A lorsion-free group A of finite rank admits a multiplica-
tion of simple algebra type if and only if A ~ Y ®F ;o Dyj, where D;; = D
forall 7, 7 and D admats a multeplication whose algebra type ts a ratronal diviston
algebra.

These corollaries are consequences of 3.7 and 3.8 and the Wedderburn struc-
ture theorem for simple algebras of finite order. They can also be obtained
from Theorems 6.9 and 1.12.

4. The principal decomposition

This section is devoted to the proof of Theorem 1.4. This result implies
that a torsion-free group A of finite rank is a finite extension of a subgroup
S @ N, where S admits a multiplication of semisimple type and N admits a
multiplication of nilpotent type.

Let A be a torsion-free ring of finite rank. Then A* is a finite-dimensional
algebra over R, and by the Wedderburn principal theorem, 4* = § @ N,
where N is the radical of A4* and S is a semisimple subring of A*. Let
S=8nAdand N =N nA. Then S and N are subrings of 4, and, since
N is an ideal, S @ N is also a subring of A. In this section we show that as
groups, S @ N has finite index in A, and consequently 4 ~ S @ N. By
making the obvious identifications, S* = §, N* = N, so that

A* =8 ® N =8S*@® N*= (S® N)*

Thus A has the same algebra type as the subring S @ N. [t should be noted
that N is the maximum nilpotent ideal in 4 [9, p. 271].

Lemma 4.1, Let S, = {xeS|x + yeA for some yeN}. Then Sy is a
subring of S and St = S.
Proof. It follows from the fact that N is an ideal in A* that Sy is a subring

of S. Clearly SC 8, € 8. Hence § = §* < S¥ < §.
Lumma 4.2. A/(S & N) = Si/8 (as additive groups).

Proof. LetzeA. Thenz = a4 y, 2 €S,y e N, uniquely. The mapping
defined by z — x 4+ S is clearly a homomorphism of A onto S,/S. The kernel
of the mapping consists of all z ¢ 4 such that z = x 4+ y with x ¢ S. But then
y=2z—xednN = N,sothatze¢eS @ N.
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Since A has finite rank, A* and consequently S, are finite-dimensional al-
gehras.

Lemma 4.3, There exists a basis {x1, X2, -+, Xm} of S such that the sub-
group B of S generated by {xy , 2o, -+ - , X} is a subring of S.

Proof. Since S* = §, a maximal independent set z; , 2,, -+, 2, in Sis a
basisof S. Wehave z;2, = Zk i 2k , where v, € R, Choosen = 1 sothat
Ny = viir is an integer for all ¢,7, k. Set z; = nz;, 4 = 1,2, --- ,m. Then
the subgroup B generated by 21, @z, -+ -, &, is a subring of S.

Let p be a fixed rational prime. We define for k¥ = 0
Iy = {xeB| (1/p")a eSS, Jp={xeB| (1/p")xeSi.

Lemma 44 WehaweB=102L20L2 - ;B=J,212J,2 -+
I € Ji; I and Jy are two-sided ideals in B; It C I ; Ji C Ju 3 Ji S I,
where N* = 0.

Proof. The first four of these assertions follow at once from the definitions
of Irand J,. Ifa,yel,,then (1/p")x eS8, (1/p")y €S, s0that (1/p™)xy e S.
Hence xy € Iy and I C I, . Similarly, J; € Ju . To prove the last asser-
tion, note that if 2y, x5 € J; , then there exist y, , 42 ¢ N such that

(1/p"ar — yred,  (1/p)as — e A
and

(1/p")r 22 — pryrye = a((1/p" s — y2)
+ ((1/p)a — y)a — p (/P — y) ((1/p") e — 1)
isin A. Thus, if 2, 2, - -+, 2, € J , there exist y; ¢ N such that

(1/p")a; — yi e A, i=1,2 -,
and by induction we have

(l/pk)xl Xy o0 Xy — Z)(twnklh Yo Y eA.
Since N' = 0, (1/p)a122 -~ 2. ¢S n A S 8Sn A Hence

Xy X - X €l
12
and J; € I .

LemMA 4.5, 1fk = 0,02 0,then Iy np'B = p'ly ,and Jrnp'B = p'J, .

Proof. If xep'l,, then @ = p'y, where y el.. Thus, (1/p")y €S and
(1/p"Hz = (1/p")y e S. Hence x e [14,. Since z e p'B,
pllk Q Ik+l n plB.

On the other hand, if @ e I;4; n p'B, x = p'y with y e B and (1/p"™)a € S.
Hence (1/p")y e S, and y e I, . Therefore z € p'I. . The proof of the second
assertion is similar.
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Since rank B = rank S = rank S;, S/B and S;/B are torsion groups. Let
T = T,and Ty = T, be the p-primary components of S/B and S,/B respec-
tively.

LemMMa 4.6. Ifk = 0,1 = 0, then

(P"T)[p"l = Livt/D'B 0 iy,
and

(P*TOIP') = Jit/P'B A Jig .

Proof. Let xzel,,. Then xzeB and (1/p"™)zeS. Define
¢: I — S/Bby¢(x) = (1/p)a + B. Since p'¢(z) = 0 and

o(z) = p((1/9")a + B) e p'T,

we have ¢(z) e (p*T)[p']. Thus ¢(Irs)) S P TIPY. I T e (p"T)[p'], then
& = p'y + B, yesS, where p'™y e B. Then

v =p My ep™'SnB =1,

and ¢(x) = & Thus ¢(Iry) = (PT)[p']. Finally x e ker ¢ if and only if
(1/p")x ¢ B, and this is so if and only if 2 e p'B n L1y .

A similar argument gives the second isomorphism.

Lemma 4.7.  If the ring B/pB vs semistmple, then Ty = T, and T is a divis-
wble p-primary group of rank my £ m = rank S.

Proof. Since T and T, are homomorphic images of the rank-m groups S
and S, respectively, they are groups of rank < m [15]. By the definitions of
T and Ty, T € T,. Let ¢ be the natural ring homomorphism of B ontg

B/pB. Then since B/pB is semisimple and [, J, are ideals in B, Lemmy,
4.4 yields

V() ST = W) = $(Jk) S (1),

and
V(L) = WO = $(I0) S $(Iw) S (L),
forall k = 0.
Thus we have by Lemma 4.6
(P"T)[P) = Lis/PB 0 Ly Y (Lia) = ¥(Ji)
> Je/pB n Jin = (9°T0) [p),

for all £ = 0. In particular, T{p] = Tilp], so that T and 7T have the same
finite rank. By a similar argument, ¢(I;) = ¢ (ls) for all k = 0 implies that

Tlpl = (»T)lpl = P*T)lp) = -+,

so that 7' is a divisible p-primary group. Since rank 7' = rank 7, we have
T = T, which completes the proof.

Lemma 4.8. T, = Ty, is divisible for almost all primes p.
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Proof. By Lemma 4.7, it is sufficient to show that B/pB is semisimple for
almost all primes p. Let B be a maximal order of S containing B. (The
subring of S generated by B and the identity e e S is an order of S, and this
subring is contained in a maximal order [8, p. 70].) Then B/pB is semisimple
if and only if p does not divide the discriminant d of S [8, p. 88]. Since S is
separable over R, d # 0 [10, p. 116], so that B/pB is semisimple for almost all
primes p. The proof is completed by showing that B/pB = B/pB for almost
all primes p. Consider the natural homomorphism of B onto B/pB. The
induced homomorphism of B into B/pB is onto for almost all p. For there
exists an n = 1 such that nl8 € B C B, which implies that

E—l—pE:nB-l-pEgB—l—p]}gE—}—pE

for those primes p which do not divide n. Moreover, for such primes p,
pB = pB n B, the kernel of the induced homomorphism.

CoRroLLARY 4.9. Let A be a torsion-free group of finite rank which admits a
multiplication of semisimple algebra type. Then A is a q.d. group (see Defini-
tion 1.6).

Proof. Let A have rank n. Since A admits a multiplication of semisimple
type, as a ring, the algebra type A* of A is semisimple. As in Lemma 4.3,
select a basis a1, 22, -+, @, of A* such that the subgroup B generated by
X1, Tg, -, &, 18 a subring of A. Then B is finitely generated, and B is a
full subgroup of A. Now it follows from Lemmas 4.7 and 4.8 that the p-
primary component of A/B is divisible for almost all primes p. Since A/B
has finite rank, the p-primary component of A/B is a direct sum of a divisible
group and a finite group for all primes p. Hence A/B is a direct sum of a
divisible group and a finite group. Thus 4 is a q.d. group.

In case the algebra type of 4 is a quadratic field, Corollary 4.9 can be proved
by direct computation. The result is obtained by such a procedure in [4].

To complete the proof of Theorem 1.4, it remains to examine the finite num-
ber of exceptional primes p which are not covered by Lemma 4.8. The result
which we need is Lemma 4.13 which states that T, has finite index in T, for
all primes p.

Let B be a maximal order of S containing B, and let n = 1 be such that
nB C B. We define

I, =BI.B, J. = BJ B.

Lemma 4.10. n2fk g I/c 5 ank Q Jk 3 jk+1 Q j/; ; «7/(.{,1 g ]k, I}c g jk 5
i C Iy s ndi © Ju ;0 Ji © I, where N' = 0; 2*(Lips 0 p'B) € p'I.

Proof. 'These relations follow from Lemmas 4.4 and 4.5 and the fact that
nB C B.

Since B is a maximal order in the semisimple algebra S, we can use the well-
developed arithmetic of ideals in B [8, pp. 72-78].

Let Py, Py, ---, P, be all prime ideals in B which are factors of pB, nB,
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I,,or Ji. Tt follows from the relations nI; C I and nJi < Jy of Lemma
4.10 that these prime ideals are all of the prime factors of any of the ideals I
of J,. Hence we can write

pB = PIP3t - PU

nB = Pflhpgz . Piu,

YE1 DYk PYk
I/(' = Pl 1)2 2 ... [)u u,
¥ 8 ) 8
Jp = [)1k11)2k2 . I)uku‘
Lemma 4.11. Fori = 1,2, -+, u we have

(1) (¢ = 1)B:i + ti = ai;
(i1)  28: + max {la;, viyr,d = la + vis ;
(iii) there exists an integer K (1) such that if k = K(1),

min {yi;, le} < 28; + 6:

Proof. The inequalities (i) and (i1) follow from the last two inclusions of
Lemma 4.10. We note first that (iii) holds if a; = 0 orif v4; < 28, forall k.
Hence assume that o; # 0 and that for some ko , yeor > 28; . Since Iy & Iy,
vi: does not decrease as k increases, so that vy.; > 28, for k = ky. Thus, (i)
must have the form

26¢ + Yivri 2 lay + i for k = k.

Since a; # 0, this implies that y,; — « as k — «. Then by (i), 6 — © as
k — . Thus for sufficiently large & (depending on [), we have la; = & .
This inequality implies (iii).

Lemma 4.12.  For any [ there exists an integer K (1) such that if k = K(1),
then )
I + p' B2 n'J,.
Proof. This statement is equivalent to (iii), Lemma 4.11.

Lemma 4.13.  For every prime p, T, has finite index in T, .

Proof. Since T, and T, are p-primary groups of finite rank, it is sufficient
to prove that these groups have the same maximal divisible subgroup.
From Lemma 4.12 and Lemma 4.10 we obtain

n'Jy © ' Sl 4+ p'n’B S I, 4+ p'B, fork = K(I).
Let ¥, be the natural homomorphism of B onto B/p'B. Then
') S L), for k = K(l).

\Y

Since
vi(J) = J/p'BaJ, and ¥, (L) = [/p'Bn I,
we have for & = [ by Lemma 4.6,

W) = (p'T)IP'l and (1) = (0T



76 R. A. BEAUMONT AND R. S. PIERCE

If j is the highest power of p dividing n*, then
n' (P )P = (P77 [p"]

is isomorphic to a subgroup of (p*'T)[p'l. Let I = j + 1. Then for
k = max {K{), j + 1}, (7'T)[p] is isomorphic to a subgroup of
(P71 [p”*"], which implies that the rank of p* T} does not exceed the rank
of p"777'T. By taking k so large that p*" and p*~7 " exceed the orders of the
finite cyelic summands of T, and 7 respectively, we conclude that the rank of
the maximal divisible subgroup of 7', does not exceed the rank of the maximal
divisible subgroup of 7. On the other hand, T" € T, and hence these maxi-
mal divisible subgroups coincide.

Proof of Theorem 1.4. The only statement left to prove is that S @ N has
finite index in A. By Lemma 4.2,

A/(S @ N) = 8/S == (8/B)/(S/B) = >.®, T/ Ty .

By Lemma 4.8, T,/T, = 0 for almost all p, and by Lemma 4.13, T,/ is
finite for all p. Hence A/(S @ N) is finite.

5. Quotient-divisible groups

In this section we study quotient-divisible, or ¢.d., groups (see Definition
1.6).

Denote by © the class of all torsion groups 7' such that 7' = U @ V, where
{J is of bounded order and V is divisible. It is not hard to show that a torsion
group 7" belongs to © if and only if 7' is quasi-isomorphic to a divisible group.
We collect a few useful properties of the groups T in D.

Lemma 5.1, A torsion group T is in D ¢f and only if there s an integer
n = 1 such that nT' is divistble.

Proof. Assume nT is divisible. Then 7" = nT @ 77, and

nT = n'T @ n1" = nT @ nl".
Hence n7” = 0. The converse is clear.

LeMmMa 5.2, Let S and T be in .  Suppose W is an extension of S by T.
Then W is in ©.

Proof. Choose m and n = 1 so that mS and n7 are divisible. We show
mnW is divisible. Let x e W, and suppose k£ = 1 is arbitrary. Then
ne + Sen(W/S) = nT is divisible, so y e nW exists such that ne — ky € S.
Then nmx — mky emS. Since mS is divisible, there exists zemS =
nmS € nmW such that nma — mky = kz. Thus, nmx = k(z + my), where
z emnW and my emnW. Since x and k are arbitrary, mnW is divisible.

LremMa 5.3, If T is a homomorphic image of a group S in D, then T is in D.

Proof. 1f ¢ is a homomorphism of S on 7" and nS is divisible, then nT =
ne(S) = ¢(nS) is the homomorphic image of a divisible group, and hence is
divisible.
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We turn now to g.d. groups. Unless the contrary is stated, all groups con-
sidered are torsion-free.

Lemma 5.4. If the torsion-free group A is an extension of a q.d. group B by
a torsion group T in D, then A is a q.d. group.

Proof. Let C be a full subgroup of B such that C is free and B/C is in ©.
Then A /C is an extension of B/C by T, and hence, by 5.2, belongs to ©. Thus,
A is a q.d. group.

CoROLLARY 5.5. If A ~ B and B s a q.d. group, then A is a q.d. group.

Proof. By definition of ~, B is isomorphic to a subgroup B’ of 4 such that
A/B’ has bounded order.

Lemma 5.6, Suppose A is a q.d. group. Then A contains a full subgroup
B which is free and such that A/B is divisible.

Proof. Let F € A be free and such that A/F = C @ D, with C bounded
and D divisible. Let B = {x eA |z 4+ F ¢C}. Then B is a subgroup of A
containing F, A/B =< D is divisible, and B/F = C satisfies n(B/F) = 0 for
some n = 1. Consequently B = nB C F, so B is free.

It is clear that any free group is a q.d. group, and so is any divisible group.
Among the groups of rank one, the q.d. groups are precisely those of non-nil
type, that is, of type (a1, as, ---) with all a, either 0 or o« (see [13]). It
follows from 5.6 that an arbitrary direct sum of q.d. groups is a q.d. group.
The class of q.d. groups is not closed under homomorphisms since every group
is the homomorphic image of a free group. However, a torsion-free homo-
morphic image of a q.d. group of finite rank is a ¢.d. group, a fact which can
easily be deduced from the next lemma.

Lemma 5.7.  Suppose A is a q.d. group of finite rank and B is any full sub-
group of A. Then A/B is in D.

Proof. Let F be a full subgroup of A such that F is free and A/F is in D.
Since F is finitely generated and B is full, there is an n = 1 such that nl' € B.
Since n(F/nF) = 0, F/nF isin D. By 5.2, A/nF isin D. ButnF C Bim-
plies A/B is a homomorphic image of A/nF. Therefore, A/B isin D by 5.3.

CoroLLARY 5.8. A torsion-free homomorphic image of a q.d. group A of
Jinite rank s a q.d. group.

Proof. We prove an equivalent statement, namely, if B is a pure subgroup
of a q.d. group A of finite rank, then A/B is a q.d. group. Let C/B be a full
free subgroup of the torsion-free group A/B. Then C is a full subgroup of A.
By Lemma 5.7, A/C = (A/B)/(C/B) isin ©. Hence A/B is a q.d. group.

LemMmA 5.9. Lel A be a torsion-free group of finite rank, and suppose B and
C are full subgroups of A which are free. Then d(A/B) = d(A/C).
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Proof. Suppose first that B € C. Since B is full and C is finitely gen-
erated, there is an n = 1 such that nC € B. Because A is torsion-free,
A/C = nA/nC = n(A/nC), so that d(A/C) = d(A/nC). Since the rank
of A is finite, the homomorphisms 4 /nC — A/B — A/C induce homomor-
phisms d(A/nC) — d(A/B) — d(A/C). Thus, rk d,(4/C) =
rk d,(A/nC) = rk d,(A/B) = rk d,(A/C) for all p. Therefore, d(A/B) =
d(A/C). To remove the restriction B C (, note that B n C is full and free
and d(A/B) = d(A/B n () = d(4/C).

Our next objective is to construct a system of invariants for the quasi-iso-
morphism classes of finite-rank q.d. groups.

It is important to establish our notation carefully. Let R, be the subring
of R consisting of all m/n with (n, p) = 1. We have the inclusions

VA g Rp g R g R(P)’ Rp g Z(P) g R(P),

provided the obvious identifications are made.

As mentioned in the Introduction, we may restrict our attention to groups
which are full subgroups of a fixed rational vector space V of finite dimension.
For every rational prime p, form the R”-space V?” = V ® R”. We con-
sider V? as an extension of V and assume that if p > ¢, the spaces V* and
V@ have only V in common. Since R” contains Z, R,, R, and Z as
subrings, V” can be regarded as a module over each of these rings. From
the inclusions Z € R, € R < R™ we get, for any subgroup 4 of V,

ACR,ACRACYV,

where, for any ring S € R, S4 is {Z sixi|sieS, x;e A} (which in fact
reduces to {sz|seS, xed} if SC R). Also, if we denote A? = 724,
then the inclusions R, € Z® C R™ yield R, A € A” C V?. Note that
ZPV = V® since V is divisible. Also, V¥ = R”V = RPRA = R4
if A isfullin V. Moreover in this case

tk A = dim V = dimg V? = rkym AP,
Lemma 5.10. A4 = N, R, A.

Proof. (See [12].) Let J, = {neZ|nxeA for a fixed x e V}. Then J,
is an ideal in Z which, if x ¢ R, A, contains an integer prime to p. Thus, if
zeN, Ry, A, then J, = (1) and x e 4.

It X = {a, -+, )} is a subset of V, denote by Z[X] the subgroup of V
generated by X. Let Z®[X] be the Z”-module in V'” generated by X.
Clearly Z®P[X] = ZPZ[X]. Since Z[X] is finitely generated, it is free. If
also X spans V (over R), then Z[X] is a full subgroup of V. Conversely, any
free full subgroup 4 of V is of the form Z[X], where X can be taken as a
maximal independent subset of A.

Lemma 5.11. Let A and B be subgroups of V. Suppose B is a full sub-
group of A. Then (A/B), =< R, A/R, B.
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Proof. Consider the commutative diagram

0B — A4 -2 4/B>0

i v
0 —->R,,B—>R1,AJL> R,A/R,B—0
where ¢ and the unlabeled maps are inclusions, ¢ and ¢’ are the natural pro-
jections making the rows exact, and ¢ is defined uniquely by the requirement
of commutativity. First note that ker ¢ = . (4/B),. Indeed, if
x e A, then Yo = 0 if and only if ¢"iz = 0, or, by exactness, if and only if
iz e R, B. Hence ¢x eker y if and only if = (1/m)y, where y ¢ B and
(m, p) = 1. Thisis clearly equivalent to m¢ax = 0, or ¢z € > uwp (A/B), .
We next prove that ¢ is onto. For this, it suffices to show ¢z is onto, or,
equivalently, R, A = A + R, B. Letr = m/neR,,(n,p) = 1,and z ¢ A.
Since B is full in 4, there is an integer & = 1 such that kx e B. Let k = p'l,

where (I, p) = 1. Choose « and v in Z to satisfy un + vp’ = 1. Then
re = (m/n)x = mux + (mv/nl)(kx) e A + R, B.

It follows that ¢ induces an isomorphism of (A4/B)/ (2 4p (A/B),) (which
is isomorphic to (A/B),) onto R, A/R, B.

LemmA 5.12. Let X = {z;, - -+, @) be a maximal independent subset of A-
Let B = Z|X] and B® = ZP[X). Then

A _|_ B(p) — RpA + B(p) — A(P)
and
B”nV=B"nR,A =R,B.
Hence,
A?/B” ~ R, A/R, B = (A/B),.

Proof. Clearly A + B® € R, A + B™ < A®. Suppose zeA”.
Thenz = a1 41 + -+ + am Ym, wherey; e A and a; € Z”’.  Choose t so that
pyieR, B for i = 1, --- m. Thisis possible since B is full in 4. Select
ki, -, knin Z and Bi, -+, Bm in Z? so that a; = k; + p'B;. Then
x o= 2 kiy: + 2 Bi(p'y:) eA + B®. Clearly R, BC B”n R, 4 C
BP”aV. IfzeB™”n V, thena = 2 a;a; = 2,7 a:, where a; e Z7,
r. e R. Since X isindependent, a; = r; e RnZ” = R, . Thereforex e R, B.

DermniTionN 5.13. Let A be a subgroup of V. Define 6,(A) to be the maxi-
mal divisible subgroup of A™.

Since R,  Z?, it follows that 5,(4) = Ni—y p*T4? andsince the quotient
field of Z" is R™ = RZ™, §,(A) is the maximal divisible submodule of 4"
regarded as a Z”-module. Thus 6,(4) is an R”-subspace of V” and it
will always be so considered.
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Lemma 5.14. Suppose A is a q.d. group in V. Let X = {x1, -+, z.} be
a maximal independent subset of A such that A/Z|X] s divisible. Then
A" = 5,(4) + Z7[X].

Proof. LetyeA. Since A/Z[X] is divisible, we can find y1, 2, --- in 4
and 2o, 21, -+ in Z[X] such that y = pys + 20, 9 = pye + 21, --- . Let
2= D tamga;. Putay;, = D ioms;p. Then

ej = rpr,; mod p*t
so limy, ax; = o exists in Z%. Moreover, p*™ divides a; — ai; , say
a; = a; + p By,

where B; € Z”. Define w = Y71 a;z; e Z”[X]. Then we have
y=2+pa+ -+ pau+ pMyn

= 2ima x4 P e = w P (e — 2051 B @),
Thus y — weNiy p" AP = §,(4) and y €6,(4) + ZP[X]. This shows
that 4 C 8,(A) + Z?[X], and hence

AP = ZP4 C 5. (A) + Z7IX].

The opposite inclusion is obvious.

CoroLLARY 5.15. If A is a q.d. group in V and B is any free full subgroup
of A, then dimgw) 6,(A) = rk (d(4/B)), .

Proof. By 5.6 and 5.9, we can assume that A/B is divisible. By 5.12
and 5.14.

(4/B), = AV/B™ = (8,(4) + B™)/BY = 5,(4)/6,(4) n BY.

Let dimgz 8,(A) = r. Then 8,(4) n B” being full in §,(4) and a sub-
module of B”, is a free Z”-module of Z'”-rank r. Let {y1, ---, y} be a
Z™ basis of 8,(A) n B®”. Then {y,, ---, y.} is an R -basis of 8,(A4).
That is,

BP(A) = R(P)yl @ - @ R(p)yr, 5,,(1‘1) nB(p) — Z(p)yl @O Z(p)yr’

and 8,(A)/8,(A) n B? is a direct sum of r copies of R”/Z”. By 5.12,
R? /7P ~ (R/Z), = Z(p~). Hence

rk (A/B), = rk (8,(4)/8,(A) n B?) = r = dimgzw 6,(4).

The integer dim ) §,(A4 ) is what Kurosh [12] calls the reduced p rank of A.
Recall that if A and B are subgroups of the R-space V, we have defined
(see Definition 1.7) A & Bifnd € 4 n Bfor somen = 1,and A = B if
A C Band BC A. Evidently A = B if and only if nA C Band nB € A
for some n = 1. The relation = is clearly an equivalence and < defines a
partial ordering = of the set G of = equivalence classes. Since A = B ob-
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viously implies A ~ B, if ¢, 5 ¢ G, we can define 0 ~ Gif A ~ B for all 4 e
and B €.

Lemma 5.16. If A = B, then 6,(A) = 8,(B) for all primes p.

Proof. LetnA C BandnB C A withn = 1. Thennd® = Z®(nd) C
Z”B = B?. Thus

3,(B) = d(B™) 2 d(nA™) = d(A") = 5,(4).

Similarly, §,(4) D §,(B).

If ¢ is a linear transformation of V, then ¢ ® id: V ® R” — V ® R®
is an R™-linear transformation of V. We denote this mapping by ¢” and
call it the transformation induced by ¢.

COROLLARY 5.17. If A and B are quasi-isomorphic, full subgroups of V,
then there is a nonsingular linear transformation ¢ of V such that ¢”8,(4) =
8,(B) for all primes p.

Proof. Let ¢ be a monomorphism of A into B such that nB C ¢4 C B
for some n = 1 (so that ¢A = B). By 2.4, ¢ extends to an isomorphism of
A* = Von B* = V, and clearly ¢'” (5,(4)) = 86,(¢4) = 8,(B) by 5.16.

We have defined §(A), the q.d. invariant of A in Definition 1.8.

DEFINITION 5.18. If o 7s in the set G of = classes, define 6(c) = 8(4),
where A ea.  Two q.d. invariants § and & are called similar if there is a non-
singular linear transformation ¢ of V such that ¢'*'8, = §, for all p.

By 5.16, the definition of §(¢) is unambiguous. By 5.17, if A and B are
quasi-isomorphic full subgroups of V| then §(A) and §(B) are similar. The
relation of similarity is easily seen to be an equivalence. Indeed, this follows
immediately from the observation that if ¢ and ¢ are nonsingular linear
transformations of V, then (¢¢)™” = ¢™¢® and (¢)® = ()"

DerintTiON 5.19.  Let § be a q.d. tnvariant (see Definition 1.8). Suppose
X s any basts of V. Define

(1) N:oX(B) = Z(p)[X] + 85,

(i) M,"(8) = V a N,(s),

(iii)  A¥(6) = N, M, (5).

Note that X C A%(8), so Z[X] € A*(8) € V and A¥(5) is a full subgroup
of V.

Lemma 5.20. If X and Y are any two bases of V, then A*(8) = A" (8).

Proof. Choose n = 1 so that na; e Z[Y] for all ;¢ X. Then nZ®[X]
ZP[Y] for all p, and consequently nd*(8) < A¥(s). Similarly, mA”(s)
A% (8) for some m = 1.

Lemma 5.21. If § 4s simalar to §, and if X and Y are bases of V, then
AN(8) ~ AT (6).

c
c
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Proof. i Let ¢ be a nonsingular linear transformation of V such that
65, = 8, forall p. Let W = ¢(X). Then W is a basis of V, and

¢(P)z(p)[X] — Z(p)[W].

Hence ¢ maps A*(8) isomorphically on 4" (§). By 5.20, A*(8) =~ A" (8) =
AY(5). Thus, A¥(8) ~ A7 (5).

DEFINITION 5.22. Let 6 € £. Define o(8) to be the = class containing the
group AX(8), where X is any basis of V.

By 5.20, ¢(8) depends only on 8, not on X. For the remainder of this sec-
tion, we simplify our notation by writing N,*, M,”, and A™ instead of N,*(5),
M,¥(5), and A¥(5) respectively.

LemMa 5.23. (45)® = N~

Proof. By definition N,* = Z®[X] + §,, A¥ € N,*, and N,  is a Z7-
module, so ZPA¥ € N,*. On the other hand, Z[X] € A%, so Z?[X] C
ZPA*. Tt suffices to show 8, & ZPA*. If yes,, we can write y =
p anar + -+ + anz,),where X = {2, -, 2.} and a; e Z”. Choose
a;eZ and B; € Z(”), so that a; = a; + p'8; for all i. Then

y=p ' (Caiz) + 2 8.
Since X C A7, it follows that D 8; z; e Z7A*. Also,
p (i) =y — 2 Bivie(d+ Z7X]) aV = M,
Moreover, if ¢ # p, thenp ‘a; e 29, s0p™ ' (2 a, ) ¢ Z“[X]n M,*. Thus
p ' aiw) € Nywep M," 0 M5 = A¥ C 2P A%,

and finally y e Z7 A%

COROLLARY 5.24. A is a q.d. group.

Proof. Z[X]is a free full subgroup of A*. By 5.12 and 5.23,
(A Z[X)), = (A) P/ ZP1X] = (8, + Z71X]) /27 [X] =2 8,/ (5, 0 Z7[X]),

which is the homomorphic image of a divisible group and therefore divisible.
Since this is true for all p, 4% is a q.d. group.

The correspondence established in the following theorem yields Theorem 1.9,

TueoreM 5.25. The mappings ¢ — 6(o) and & — o(8) are tnverse, order-
preserving correspondences between the lattice £ of all ¢.d. invariants and the set
G of all = equivalence classes of full, q.d. subgroups of V. Moreover o ~ & if
and only if 8(a) 1s stmalar to 6(&).

Proof. By 5.24 and 5.5, the = class ¢(8) consists of full q.d. groups. If
o1 < osin G andif A eoy, Beoz,then 4 n Beo;. Consequently,

8p(01) = 8,(A n B) © 8,(B) = §,(02)
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for all p. Thus 6(oy) < 6(02). If & < & in £, then clearly A¥(8,) C A% ()
for any basis X of V. Thus ¢(8:1) = ¢(8;). We show next that ¢(8(c)) = o
when ¢ is a = class of a full q.d. subgroup A of V. By 5.6 ,there is a maximal
independent set X in A such that A/Z[X] is divisible. Since A4 is full, X is

a basis of V. By 5.14,

AT = 5,(A) + Z71X] = N,"(5(4)).
Hence

M,*(8(4)) = A7 aV = (Ry A + ZP[X])n V
=R, A+ (ZPX]nV)=R,A+R,Z[X] =R, A
by 5.12. Finally, by using 5.10,
A%((A)) =N, R, A = A.

Thus, ¢(8(c)) = o(8(A)) is the = class of A, namely . Now suppose
5e¢L. Let X beany basisof V. Thusc(8)isthe = class of A¥(8). By 5.23,

(AX)(p) = NpX = 0p + Z(p)[X]-

Hence (8(c(8))), = d(Z?[X] + 8,) = 8, . Indeed, 5, is a divisible sub-
group of ZP[X] + 5, , and

(Z71X) + 8,)/8, 2 Z7(X)/(Z7(X] 0 5,)

isa finitely generated Z®-module, and hence reduced (since any factor module
of Z™ is either Z” or a finite cyclic group). Finally ¢ ~ & if and only if 8(o)
is similar to 6(&) by 5.17, 5.21, and what we have just shown.

Remark. The proof establishes somewhat more than is stated, namely,
every full ¢.d. group in V is of the form A*(8(A)) for a suitable choice of X.

To conclude this section, we interpret the decomposability of a full sub-
group A of V in terms of the q.d. invariant 6(A4). We will say that a group
A is quasi-decomposable if A ~ B ® C, where B and C are groups, neither of
which is quasi-isomorphic to the zero group (i.e., of bounded order). If A4
is not quasi-decomposable, then we say, following Jénsson [11], that A is
strongly tndecomposable.

LumMma 5.26. Let A be a full subgroup of V. Then A s quast-decomposable
if and only if nonzero subspaces U and W exist in V such that V. = U @ W and
3p(A) = 5,(A)n U @ 6,(4) n WP

for all primes p.

Proof. Suppose A is quasi-decomposable. Then clearly A contains inde-
pendent subgroups B and C such that B @ C has finite index in A. Let
U=RB, W =RC. ThenV = U ® W. Moreover, if n = 1 is such that
nA € B @ C, then

nA(I)) c (B @ C)(l)) — B(p) ) C(p) c A(p).
Therefore
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61;(/1) — d(A(p)> ) d(B(p) @ C(p)) — d(B(p)> ) d(C(p))
= 6,(B) ® 5,(C) 2 d(nd™) = d(A?) = 5,(A).

Since U” D 6,(B) and U™ n 5,(C) = 0, the modular law gives 8,(B) =
8,(A) n UP. Similarly, 5,(C) = 5,(4) n W®. To prove the converse,
note that by Theorem 1.9, full q.d. subgroups B € U and C € W exist such
that 6,(B) = 8,(4) n U® and 6,(C) = 8,(A) n W® for all p. By the
first part of the argument and our hypothesis,

8,(B @ C) = 5,(B) ® 8,(C) = 5,(4) n UY @ 5,(4) n W = 5,(4)
for all p. Hence, by 1.9 again, A = B® C,and A ~ B @ C.

CoROLLARY 5.27. Let A be a full subgroup of V such that for some prime p,
8,(A) is one-dimensional over R'”. Assume that for this p and for some basis
{x1, -,z of V,8,(A) contains ay &1 + - -+ + o &, where the p-adic numbers
ar, c ey aa are rationally independent. Then A is strongly indecomposable.

Proof. Suppose otherwise. By 5.26, V = U @ W, where U and W are
nonzero subspaces and

0p(A) = 5,(A)n U @ 6,(A) n W™,

Since §,(A4) is one-dimensional, either §,(4) € U™, or 6,(A) € W™. Thus
there exist 4, -+, yrin V, By, -+, Brin R with » < n such that

a4+ o o =Biy 4+ o+ By

Lety: = D tacia;. Thena, = D ii¢;jB:. Since r < n,thereisa non-
trivial rational solution (dy, -, dn) of D.j1¢;d; = 0. But then
> ieid; a; = 0, contrary to the assumed rational independence.

6. Quotient-divisible rings

Now we resume the study of torsion-free rings, making use of the results
obtained in the last section. Our notation and viewpoint is a continuation of
that introduced in Section 5. Thus we will be concerned with full subrings
A of a rational algebra T. It follows that T is the algebra type of A.

Throughout this section, T is a rational algebra of finite order with an
identity element. If K is a subfield of the center of 7" and C is a subring of
K, we have defined a C-basis of T' over K (Definition 1.11). Note that if C
is a full subring of K, and if X is any baasis of T relative to K, then there is
an integer n = 1 such that nX = {nx |2 e X} is a C-basis of T over K. A
basis of T relative to R will be called a basis of T'.

LemMma 6.1. If K and F are subfields of the center of T with F C K, and +f
X 15 a basis of T relatwe to K and Y s a basis of K relative to F, then

XY ={a;y;|vieX, y;eY}

is a basts of T relative to F.
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Proof. I D ;aijziy; = 0 with a;; € F, thensince all y; belong to the center
of T and the set X is independent over K, all the sums Y _; a;;y,; are zero.
Therefore all a;; are zero. Clearly XY spans T over F.

CorOLLARY 6.2 [If X = {x1, -+, x.} is a basis of T over K, then X is also
a basis of T over K” = K ® R™.

Proof. 1f Y is a basis of K, then XY is a basis of 7. By the definition of
T™ XY is also a basis of T” over R”, and Y is a basis of K® over R”.
Thus X is a basis of 77 over K®.

Proof of Theorem 1.10.  Clearly A™ = Z‘” A is a subring of T”.  Suppose
yed(A) = d(AP) and 2z e T”. Then p'z e A® for some ¢, since A is full
inTand R, € Z™. Also, forany k, p*"?y e d(A®) by divisibility. Hence
p*2y e AP for arbitrary k. Thus zyed(A®) = 5,(4). Similarly,
yz €6,(A). Therefore 6,(A) is an ideal. To prove the converse, we will
show that for any Z-basis X of T, the group A¥(8) is a subring of 7. Note
that since X is a Z-basis, Z[X] is a subring of T, and Z?[X] = Z"Z[X] is a
subring of 7. Since 3, is an ideal by assumption,

N5 (3N, (8) = (Z7[X] + 8,) (Z7[X] + 85)
— Z(D)[X]Z(P)[X] + £ Z(P)[X] + Z(p)[X]ap + 45,6,
c Z7[X] + 8, = N,*(5).

Hence, N,*(8) is a subring of 77, Consequently, M,*(8) = N,°(8) n T
is a subring of 7, and finally A*(8) = N, M, (8) is also a subringof 7. Sup-
pose A and B are full q.d. subrings of 7 such that A =~ B. Then subrings of
finite index €' € A4 and D C B exist, together with a ring isomorphism ¢ of
(' on D. The extension ¢* of ¢ to T is an automorphism by 2.4. Moreover,
by 5.16,

¢*78,(A) = ¢*78,(C) = 8,(D) = 5,(B).

Conversely, let ¢ be an automorphism of 7' such that ¢'”6,(4) = 8,(B) for
all p. Choose a Z-basis X of T and let ¥ = ¢X. Then Y is also a Z-basis
of T. Thus, A*(8(A)) and A" (8(B)) are subrings of T, and ¢ is an iso-
morphism of A¥(3(4)) on A”(8(B)). By Theorem 1.9, A = A*(5(4)),
B = A"(8(B)). Thus,

A~ AY(8(A)) = A"(8(B)) ~ B.

(Note that ¢ = D implies C & D for subrings of T, since C n D has finite
index in both €' and D.)

CororLrary 6.3. There ts a one-to-one correspondence between the = classes
of full q.d. subrings of T and the q.d. invariants & for which every &, ts an ideal
()f r]v(p)'

Proof. We use Theorem 1.10 and Theorem 5.25.
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In the remainder of this section we will use Theorem 1.10 to complete our
reduction of rings of simple algebra type to rings of field type. Recall the
definition of the subring C[X] of T given in 1.11.

Lemma 6.4. Let K be a subfield of the center of the rational algebra T which
contains the identity of T’ let C and C be full subrings of K; let X be a C-basis
and X a C-basis of T over K ; finally let A be a subring of T.

(i) If ¢ = C, then C[X] = C[X).
(i) If A = C[X], then C = A n K.
(iii) If A ~ C[X], then A = C[X] where C == C.

Proof. The verification of (i) is routine, and we omit it. To prove (ii),
let X be a C-basis of 7' over K such that a multiple of the identity element of
Tisin X,sayn - 1 ¢ X. Then by (i), 4 = C[X] = C[X],and hence A n K =
CIX]n K = nC = C. To prove (iii), note that there is an isomorphism ¢
of a subring of finite index of C[X] onto a subring of finite index of A. Thus
for some n = 1, pnC[X] is a subring of finite index of A. By Lemma 2.4, ¢
extends to an automorphism ¢* of 7', and ¢nC[X] = ¢*nC[X| = n(*C)[p*X].
Thus A = (¢*C)[¢p*X] where ¢*C == (.

It follows from 6.4 (ii) that if A = C[X], then C is uniquely determined
upto = by Aand K. By 6.4 (ii) and (iii),if4 ~ C[X],then C =~ C = An K,
so that C &~ A n K. In this case C is determined up to =~ by 4 and K. This
remark justifies the following terminology.

DeriNtTiON 6.5. A full subring A of T is said to be induced from K, where
K is a subfield of the center of T containing the identity of T,if A = (A n K)[X],
where X 1is an (A n K)-basis of T over K.

It follows from 6.4 that A is induced from K if and only if A &~ C[X], where
C is a full subring of K and X is a C-basis of 7' over K. When 4 = C[X],
we say C induces A.

If A is induced by C, then A is determined up to quasi-isomorphism by C,
and the structure of T, considered as an algebra over K. Because the theory
of simple rational algebras has been so thoroughly worked out (see [1, Chapter
XI] and [8, Teil VII]), the result contained in Theorem 1.12 represents a sub-
stantial simplication of the theory of torsion-free rings of simple algebra type.

Lemma 6.6. Let K be a subfield of the center of the rational algebra T which
contains the identity of T, and let A be a full subring of T. Then there exists an
(A n K)-basis X of T over K such that X & A and (A n K)[X] us a subring
of A. If A is induced from K, then (A n K)[X] has finite index in A.

Proof. Since A is full in T, A n K is full in K, and there is a basis X of
T over K with the stated properties. Then since A n K is contained in the
center of T and X is an (A n K)-basis, (A n K)[X] is a subring of 4. 1f
A = (A n K)[X], then nAd € (A n K)[X] for some n = 1, and since A has
finite rank, A/(A n K){X] is finite.
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Lemma 6.7. Let K be a subfield of the center of the rational algebra T which
contains the identity of T. Let A be a full q.d. subring of T, and B a full subring
of K. Then B induces A if and only if 6,(B) generates 6,(A) for all p (that
is, 8,(A) = TP5,(B)).

Proof. Let 5, = T™s,(B) for all p. Let ¥ be a Z-basis of K, and let
X ={a, -,z bea (B n Z[Y])-basis of T over K. Then XY is a Z-basis
of T'by 6.1. Moreover, by 6.2 and 1.10

8y = 8p(B)as + -+ + 85(B)a .
Again by 6.2 and 1.10,
AYT(G) =N, (5, + ZP[XY]) n T
= (N, 1(3,(B) + Z7[Y]) n KDt @ - @ (N, [(5,(B) + Z”[Y]) nK)z,
= (A7(3(B)))[X] = BIX].
Assume A = B[X]. Then A = A*7(§), and therefore (A) = 6(A*"(8)) = &

by 1.9. Conversely, if 6(4) = §, then B[X] = A*"(8(A)) = A. This
proves the lemma.

CoroLLARY 6.8. Let A be a full q.d. subring of T. Then A is induced from
K if and only if there is an ideal §, of K™ such that 6,(A) = T3, for each p.

Proof. If such an ideal exists, by 1.10, there is a full subring B of K such
that 6,(B) = &, for all primes p. By 6.7, B induces A. Conversely, if
A = (A n K)[X], then A n K induces A4, and 6,(4 n K) = §, by 6.7.

THEOREM 6.9. Let A be a full subring of the simple rational algebra T with
center F. Then for each prime p, there exists a unique idempotent e, in F®
such that 8,(A) = e, T'”. Moreover, A is induced from a subfield K of F if
and only if e, e K7 for all p.

Proof. By standard theorems on associative algebras (in particular [10, p.
115], [8, p. 7], and [2, p. 29]), T = T ® R™ is a semisimple R -algebra
with center F'”’ and the two-sided ideal 5,(A4) has a unique idempotent gen-
erator e, belonging to F'”. If e, e K'” where K is a subfield of F, then

Bp(A) — T(P)ep — T(p)(K(P)ep) — T(P)Sp’

where §, = K¢, is an ideal of K. Consequently A is induced from K by
6.8.  Conversely, if 4 is induced from K, then by 6.8, 5,(4) = T™5, , where
8, is an ideal of K. Hence, §, = K”¢, , where &, is an idempotent of K.
Therefore

6p(A) — T(p)K(p)ép — T(p)ép ,
and by uniqueness ¢, = &, e K.

The proof of Theorem 1.12 is now complete since by 6.9, A is induced from
F, and the result follows from Lemma 6.6.
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Proof of Theorem 1.13. Suppose A admits a multiplication of type 7. We
may assume that A is (the additive group of) a full subring of 7. By Theorem
1.12, A contains a subring of finite index which is of the form C; ® --- ® C,,
where C; = Cz; with C the center of A and x; ¢ 0in A. Since 7' is simple
and C is in the center, the mapping ¢ — ca; is an isomorphism of C on C;.
Moreover C* = RC = F, so C is a ring of algebra type F. Conversely, if
A~C® - @C,,C;, =, and C admits a multiplication of algebra type
F, then A admits a multiplication of algebra type 7. For if X is a C-basis of
T over F, then C[X] is a full subring of 7" which is isomorphic as a group to
Ci® - @ (.. Thus by 2.7, A admits a multiplication of algebra type 7'

Cororrary 6.10. If T s a central simple rational algebra of order r, then
a torston-free group A admits a multiplication of algebra type T if and only if A
s quast-tsomorphic to a direct sum of r tsomorphic non-nil groups of rank one.

For if T is central simple, its center is R by definition, and a torsion-free
group admits a multiplication of algebra type R if and only if it is rank one
and non-nil [5]. We will show in Section 9 that “quasi-isomorphic” can be
replaced by “isomorphic” in 6.10.

LemMa 6.11. If K and L are subfields of the center F of the simple rational
algebra T, then (K n L) = K™ a L™.

Proof. Clearly (K n L)? € K n L™, Let X = {2, -+, 2.} be a
basis of K over K n L,and YV = {y;, -+, ys} a basis of L over K n L, such
that & = o = 1. Then{x,, 22, -+, 2, Y2, -, ys is linearly independent

over K n L. Tence, this set is also linearly independent over (K n L)® by
6.2. Now suppose u ¢ K n L. Then

U = ZZ=1 2y = Zf’=1 Wi Yi Z,‘,wge(KnL)(p) .
By the independence, z; = w, = 0if 7 > 1 and 2y = w; = u. Hence

we(KnL)?™.

TaroreM 6.12. Let A be a ring of algebra type T, where T is a simple ra-
tional algebra. Then there is a unique smallest subfield of the center of T from
which A 1s induced.

Proof. We use 6.9 and 6.11.

We shall call K the smallest field of definition of A if A is induced from K,
but not from any proper subfield of K. Our results show that the search for
rings of semisimple algebra type can be narrowed down to the rings A of field
type K where K is the smallest field of definition of 4.

7. The automorphisms of rings of field type

In keeping with our point of view we extend the notion of automorphism.
The extension is based on the following.
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LemMA 7.1, Let A be a full subring of the algebraic number field K. Let ¢
be an automorphism of K. Then the following conditions are equivalent.
(i) ¢4 = A.
(ii) A contains a subring B of finite index such that the restriction of ¢ to B
18 an automorphism.
(i) ¢™8,(A) = 8,(A) for all primes p.

Proof. Suppose A = A. Then for some n = 1, n4d C ¢4, and by in-
duction, n’4 C ¢’A. Let k be the order of ¢, that is, ¢* is the identity auto-
morphism. Define

B=An¢An - - n¢"A.

Then B is a subring of 4, and n*'4 € B. Moreover,
¢B = ¢pAng’An ---n¢’A = B.

Hence ¢ defines an automorphism of B. Thus (i) implies (ii). By 1.10, (ii)
implies

¢(p)5p(A) = ¢(p)5p(B> = 51)(3) = 61»(A)~
Also by 1.10, (iii) implies (i).

DEFINITION 7.2. Let A be a torsion-free ring of algebra type K, where K is
an algebraic number field. Let B and B’ be subrings of finite index in A, and
let ¢ and ¢’ be automorphisms of B and B’ respectively. Define ¢ =~ ¢’ if
¢|B nB =¢' | B nB. Theequivalence classes of automorphisms under the
equivalence relation =X are called quast-automorphisms of A.  The set of quasi-
isomorphisms of A will be denoted &, .

This definition, while logically sound and intrinsic, is somewhat cumber-
some. We can simplify the notion of quasi-automorphism by making the
identification suggested by the next observation.

Lemma 7.3. If ¢ and ¢’ are respectively automorphisms of B and B’, sub-
groups of finite index in A, then ¢ = ¢’ if and only if ¢* = (¢')* on A*. The
mapping ¢ — ¢* induces a one-to-one correspondence between &, and a subgroup
of the automorphism group & of K. This subgroup consists of all ¢ € & such
that pA = A.

This lemma is a simple consequence of 2.4 and 7.1. Henceforth &, will
be identified with a subgroup of 9, and we will restrict our considerations to
the full subrings of a fixed field K. By making this identification, it follows
that if A = B, then &, = &3, and if A ~ B, then &, and @; are conjugate
subgroups of & (by 7.1 and 1.10). This is the reason for considering quasi-
automorphisms rather than automorphisms.

In general, &, is a proper subgroup of &®. By 7.1, a necessary and sufficient
condition for an automorphism ¢ to belong to ®, is $”5,(4) = 8,(4) for
all primes p.  If 8,(A) = e, K'” with ¢, idempotent, then¢”s,(4) = 5,(4)
is equivalent by the uniqueness of ¢, to ¢”e, = ¢,. Hence, by 6.8
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COROLLARY 7.4. If ¢ is an automorphism of K which leaves every element
of the smallest field of definition of A fized, then ¢ induces a quasi-automorphism
of A.

The converse of this corollary is true under the assumption that K is a nor-
mal field. To prove this fact requires a simple lemma.

Lemma 7.5. Let K be a normal algebraic number field, and let F be a subfield
of K. Let O be the group of automorphisms of K which leave all elements of I’
fized. Suppose z e K'? satisfies Pz = z for all ¢ ¢ &p. Then z e F.

Proof. Let{x,, ---,x,} beabasisof K, and writez = ayt; + -+ + a, 2.,
a; e R, Then for any ¢ e &5,

2=0¢"2 = ar¢r + -+ + o pr,.
Summing over the r elements ¢ of & and dividing by r gives

2 =aw + -+ oW,
where

w; = (1/7’)Z¢>e®p b .
Clearly, if ¢ ¢ ®p, then ¢w, = w;. Hence w; ¢ I for all 7, and z e F*"".

TaEOREM 7.6. Let K be a normal algebraic number field. Let A be a full
subring of K. Let F be the smallest field of definition of A. Then the group of
quast-automorphisms of A s precisely the group of F-automorphisms of K.

Proof. Let &4 be the group of all quasi-automorphisms of 4, considered as
a subgroup of the group of automorphisms of K. Let L be the fixed field of
®,. ThenL C Fby7.4. Supposed,(A) = e, K wheree, isidempotent.
By 7.1 and the uniqueness of e, , ¢”e, = ¢, for all ¢ ¢ ®, . Hence, by 7.5,
e, e L. By 6.9, this implies that 4 is induced from L. Consequently,
L = F. Therefore ®, is the group of F-automorphisms of K.

CoroLLARY 7.7. If A is a ring of algebra type K, where K is an algebraic
number field, and if K is the smallest field of definition of A, then & 4 is the identity
group. In particular, A has no nontrivial automorphisms.

Proof. Let L be an extension of K which is normal. Let B = A[X], where
X is an A-basis of L over K. Then it is easy to show by using 6.9 that K is
the smallest field of definition of B. If ¢ is an automorphism of K which be-
longs to &4 , then ¢ extends to an automorphism of L, and the extension be-
longs to &g, since if e, is the idempotent generator of §,(A), it is also the
idempotent generator of 8,(B) = 8,(A)L™, and ¢"e, = e,. Hence, by 7.6,
the extension of ¢ is a K-automorphism of L. Thus, ¢ is the identity.

8. Examples of rings of field type

If K is an algebraic number field, the structure of K = K ® R™ can be
determined in a variety of ways.
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Lumma 8.1. Let K = R(0), where 8 is a rool of the rational polynomial f( X)
which is irreducible over K. Lel

J(X) = fiu(X) - [y(X)

where the f:(X) are distinct polynomials with coeffictents in R™ which are irre-
ducible over R™.  Then
K? = K4 - 1 K,
where
Ki = R(p)(gi)’

with 6; a root of fi(X). If & is an ideal of K, then 6 = K;;, + --- + K., ,
W< <4tG. Leth =fi, - fi, and k = f/h. Let the degree of h be s.
Then

k(8), 6k(6), ---, 6'k(8)
SJorm a basis of 6.
Proof. Letk; = fi -+ ficx fixa -+ f, . Then the greatest common divisor
of ey, -+, k,is 1, so we can write

L=bLk+ -+l k,.
Thus, for any m(8) ¢ K”, we have
(%) m(0) = m(0)L(0)ki(8) + -+ + m(8),(0)k,(8).
Note that k«(0)k;(8) = 0if i 5 j, since k; k; is divisible by f. Thus, by (%),
L(0)k:i(8) = (Li(8)k:(0))%

Hence, K is the direct sum of the ideals K, generated by the orthogonal
idempotents 1;(0)k;(0). Let 6; = 6l;(0)k:(8). Then 65 = 61;(6)k:(6), and
fi(8;) = f:(0)1:(0)ki(8) = 0. Hence K; = R™(8;). (Note that

1:(0)k:(0) = 0,

since k() = L:(8)[k.(8)] and 1, 6, ---, 6" are linearly independent over
R™.) To prove the last part of the lemma, note that k is the greatest com-
mon divisor of {k;, , -+, ki), Thus, kb = mi by + -+ + m ks, , and

k(0) = mi(8)ki, (0) (i, (0)k:(0)) + ---
+ mo(8)ki, (0) (L, (0)k:,(8)) e Kiy 4 -+ + K, .

On the other hand, every k;; is a multiple of k, so 6 is the principal ideal gen-
erated by k(6). Since h(0)k(8) = 0 and m(0)k(8) # 0 if the degree of m
is less than s, we conclude that k(9), 6k(8), --- , 8°'k(8) is a basis of 6.

Cororrary 8.2. Let A be a torsion-free ring of algebra type K, where K s
an algebraic number field. Suppose that for some prime p, 6,(A) is one-dimen-
sional over R™. Then A™ is strongly indecomposable.
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Proof. Let K = R(6), where 0 is a root of the irreducible rational poly-
nomial f(X). By 8.1 and the assumption that §,(A) is one-dimensional,
there are an a ¢ R and an R™-polynomial k(X) such that

f(X) = (X = a)k(X)
and k(6) is a basis of 6,(A4). Let
JX)=X"+aX""+ - +oe

and
RX) = X"+ X" 4 o oy
Then solving for v1, v2, - -+, vYa gives
Ni=ata, p=ad+aate, v vea=d Faad" T+ e,
It follows that {yi, v2, -+, vo_1, 1} is a linearly independent set over R.

For otherwise, @ would be a root of a nonzero rational polynomial of degree
less than n, and this polynomial would then divide f(X), contradicting irre-
ducibility. Consequently, by 5.27, A" is strongly indecomposable.

For the application of 8.1, it is useful to have a criterion for the factorization
of a rational polynomial in R”. Such criteria exist when f(X) has integral
coefficients. A fairly complete discussion of these can be found in [16, Chap-
ter ITI]. For our purposes, the following very special result will suffice.

Lemma 8.3. Let f(X) be a monic polynomial with coeffictents in Z. Let p
be a prime which does not divide the discriminant of f(X). Suppose a vs an in-
teger such that f(a) = 0 mod p. Then there exists a € R, congruent to a
mod p, such that f(a) = 0.

Proof. Since p does not divide the diseriminant of f, the roots of f(X)
modulo p are distinet. Thus, Hensel’s lemma, applies to the factorization
S(X) = (X — a)h(X) mod p and gives the conclusion.

TaroreMm 8.4. If K is an algebraic number field, then there exists a ring A
of algebra type K such that A™ is strongly indecomposable. In fact there are 2%°
such rings, no two of which are quasi-tsomorphic.

Proof. Let K = R(8), where 6 is the root of the rational monic irreducible
polynomial f(X). We can suppose 6 is an algebraic integer, so that the co-
efficients of f(X) are integers. We can also assume K # R, so f(X) is not
a constant polynomial. Then the set of prime divisors of the integers of the
form f(a), a € Z, is infinite [14, p. 82]. In particular, there are a prime p and
an integer a such that f(a) = 0 mod p and p does not divide the discriminant
of f(X). If pis such a prime, then f(X) = (X — a)k(X) in R” by 8.3.
Hence by 8.1, K has a one-dimensional ideal J. For each q.d. invariant
with the property 8, = 0 or K if ¢ # p and 6, = J, there is a full subring
A of K such that § = 6(4) by 1.10. By 8.2 such a ring is strongly indecom-
posable. Since there are 2% nonsimilar q.d. invariants satisfying these con-
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ditions, there are 2% non-quasi-isomorphic strongly indecomposable full sub-
rings of K.

Lemma 8.1 gives some information on the problem of when a torsion-free
group will admit a multiplication of field type.

CoroLLARY 8.5. Let K = R(0), where 0 is a root of the irreducible rational
polynomial f(X) of degree n.  Then a torsion-free group A admits multiplication
of algebra type K if and only if A is a q.d. group of rank n and there is a distin-

gurshed basis xy , &1, - -+, Xny of A* such that for every prime p, etther 6,(A) = 0,
or 8,(A) = A*® or there is a basis 2y, - - , 2e—1 0f 8,(A) such that

2i =Y+t N1 Tin+ o+ Yee1 Tnosit T Tosa, 1=0,--,5—1,
where

]CP(X) = Y0 + Y1 X + co + Yn—s—1 Xn—s«l + Xn———s
is a factor of f(X) with coefficients in R'".

Proof. The necessity follows from 4.9 and 8.1. Conversely, if such bases
exist, then the mapping xo— 1,y — 6, - - , 2,y — 6" induces a vector space
isomorphism ¢ of A* on K in such a way that each ¢”5,(A) is an ideal of
K. Consequently, by 1.10, 4 is quasi-isomorphic to a full subring of K.

In the case n = 2, the criterion of 8.5 can be simplified to a reasonably ef-
fective test for groups of rank two to admit a multiplication of quadratic field
type.

TueoreMm 8.6. Let A be a torsion-free group of rank two. Let {xy, x1} be
an independent pair of elements in A. Let a be a square-free integer. Then A
admats a multiplication of algebra type R(~a) if and only iof A s a q.d. group
and there exist rattonal numbers r and s with s # 0 such that for every p, either
8,(A) is zero or (A*)'", or 8,(A) is one-dimensional and if axy + Bxy is in
5,(A), then

o — 2raf + (©F — sa)8 = 0.

Proof. Suppose A admits a multiplication of algebra type R(va). Then
by 8.5, A is a q.d. group and there exists a basis {y,, 1} of 4* such that for
every prime p, either 5,(4) = 0 or §,(A4) = (A4*)™, or §,(A) is one-dimen-
sional and there is a z € 6,(A) with z = yyo + y:, where v + X is a factor of
X* — a, thatis, ¥ = a. Wecanwrite o = roxo + m 21,41 = S0 %o + 8 21,
where 75, 71, so, s1 are rational and ro s, — 7180 % 0. Then if §,(4) is one-
dimensional, its elements will be axy + Bz1, where a = ANyro + $0), 8 =
Ay + s1) with A e R”. A simple computation shows that

o — 2raf + (¥ — sa)f =0,
where

r = (sosi —arer)/(si —ari) and s = (rosi — 71 8) /(81 — ary) % 0.

Since this transformation of variables can be reversed, the argument can be
turned around to obtain the converse result.
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9. Direct decompositions

The problem considered in this section is that of determining when a quasi-
decomposition of a group can be replaced by a direct sum decomposition.
The chief tool in the investigation is 9.6 below, a generalization of a theorem
due to Baer.

We introduce some standard notation [13; Section 30]. LetA,(z, A) denote
the p-height of the element x in thegroup A. By definition0 < h,(z, A) £ .
A function x on the set of all primes with values in the set {©, 0, 1,2, ---} is
called a characteristic. The characteristic of the element z in A is the func-
tion x4(x) defined by [x4(z)](p) = h,(z, A). Addition and ordering of char-
acteristics is defined componentwise. An equivalence relation is defined on
the set of all characteristics by the condition x = ¢ if x and y differ on at most
finitely many primes and these differences, if any, are all finite. The equival-
ence class of a characteristic x is called its type and is denoted %. In particu-
lar, we write 74(2) for x,(x). When there is no danger of confusion, we omit
reference to A in the notation and write h,(x), x(x), 7(x) for h,(z, A), xa(x),
and 74(2) respectively. If U is a torsion-free group of rank one, every non-
zero element of U has the same type which is designated 7(U). It is clear
that x & x1, ¥ & ¢; implies x + ¢ =~ x; + ¢1 . This observation justifies the
definition of sums of types: x + ¢ = (x + ¢). Define x < ¢ if there exists
x1 =~ x and Y1 & ¢ with x; < ¢y . This relation is a partial ordering of the
set of types, and it has the property that x < y implies ¥ < ¢. The following
properties of the types of elements in a torsion-free group A are easily proved:
r(nz) = 7(z) if n is a nonzero integer; A C B implies 74(z) £ rp(x), and
equality holds if 4 is a pure subgroup of B. If A4 is a ring,

m(ay) = 7(x) + 7(y);
in particular, 7(2y) = 7(2) and r(zy) = 7(y).

LemmA 9.1. Let A be a torsion-free group, and let A’ be a subgroup of A
such that nA S A’ for somen = 1. Then for any x e A’, 74 (x) = 74(x).

Proof. Since A is torsion-free, a — na is an isomorphism of A onto nA
Thus,
74(x) = Ta(n2) £ T4(nx) = 740(2) = T4(2).

CoroLLARY 9.2. If U 1is a torsion-free group of rank one, then A ~ U tm-
plies A = U. (See [3].)

Lemma 9.3. Let A be a torsion-free group containing independent subgroups
B and C such that nA © B + C for somen = 1. Assume that C s pure in A
and that the rank of B is finite. Then B + C has finite index in A.

Proof. Since Cis pure in A, nA n ¢ = nC. Using this identity and the
fact that A is torsion-free gives



TORSION-FREE RINGS 95

A/(B+ C)=nA/(nB + nC) = nd/(nB + nd n C)
=nA/nmAd n (nB + C) = (nd + nB + C)/nB + C
C(B+nB+C)/(nB+ C)=B/Bn (nB + ().

Thus, A/(B 4 () is a subgroup of a homomorphic image of a group of finite
rank. Hence A/(B + C) has finite rank. But it also has bounded order and
is therefore finite.

LemMa 9.4.  Let B and C be independent subgroups of a torsion-free group A.
Suppose B’ and C' are the smallest pure subgroups of A containing B and C
respectively. Then B’ and C' are independent. If nA & B + C for some
n=1thenB= B and C = (.

Proof. Let x e B' n C’. Then for some m = 1, mx e B, mx e C; hence

mreBnC = 0,and + = 0 since A is torsion-free. Also, nB’" + nC’' <
nd © B 4 C implies

nB = nB" + (nC'nB') = (nB" 4+ nC’")n B’

CB+C)nB =B+ (CnB')=B.
Similarly, nC" < C.

TarEorREM 9.5. Let A be a torsion-free group. Let U and C be independent
subgroups of A such that A = U + C. Assume that vk U = 1 and that
(U) £ 1(y) forallyeC. Then A = U @ C" where C' 2 C, C" = C, and
U = U. Moreover, if C is pure in A, then C = (.

Proof. Lemmas 9.4 and 9.2 reduce the proof to the case that both C and
U are pure subgroups of A. By 9.3, A/(U + () is finite. Thus, the theorem
will follow by induction if we can prove it when 4 /(U + () is eyclic of prime
order p. Henceforth assume that this is the case.

(1) Ifzed,ze¢U+ C,andif pz = x + ywith z e U, y € C, then hy(x) =
h,(y) = 0. This follows immediately from the purity of U and C.

(2) There is an element w e A, w¢ U + C, such that pw = b 4 ¢, where
beU, ceC, and h,(b) = hy,(c) for all primes ¢q. To prove this, let z¢ A4,
z¢ U 4 C be arbitrary, andlet pz = 2 + y with 2 e U, y e C. Then h,(x) =
hy(y) = 0 by (1). From the assumption that +(U) = 7(y), it follows that
there is some b € U such that x(b) < x(x) and x(b) < x(y). Since the rank
of U is one, there is an integer m such that x = mb. Because h,(x) = 0, p
cannot, divide m. Choose integers u and v so that um + pv = 1. Put
w = uz + vband ¢ = uy e C. Since u is prime to p, we A and we U + C.
Also hy(b) = hy(c) forall q. Finally, pw = puz + pvb = u(mb + y) + pvb =
b+ c.

(3) Let U’ be the smallest pure subgroup of A containing w. Then
U' nC = 0. Infact, b £ 0, so the subgroup of A generated by w is inde-
pendent of C, and therefore so is U’ by 9.4.
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(4) U + C = A. To prove this, let ze A. Then z — kw e U + C for
some integer k. Hence, it suffices to prove U € U’ + C. Suppose then that
z is a nonzero element of U. Sincerk U = 1, integers m and n exist satisfying
(m,n) = 1and mz = nb. Thus, m divides b, so, since h,(b) < hy(c) for all g,
m also divides ¢ in C. That is, there is an element y e C' such that ¢ = my.
Thus, mz = nb = n(pw — ¢) = npw — mny, or npw = m(z + ny). By the
purity of U’, it follows that z 4+ ny ¢ U’, and consequently z e U’ + C.

(5) U' = U. Forby (3)and (4), A = U ® C,s0 U = A/C D
(U@ C)/C = U. Moreover p(A/C) € (U & C)/C. Hence U’ ~ U,
which implies U’ =2 U by 9.2.

CoroLLARY 9.6. Let A be torsion-free and Uy, -+, U, , C an independent
set of subgroups of A with each U, of rank oneand A = U, ® --- @ U, ® C.
Assume that

r(U) £ +(U0;) £ - 27U, £ 7(y)

forall yeC. Then A = U/ ® --- @ U, ® C",where U/ = U, ,C" =(C
(and C" = Cif C is pure in A).

The corollary is obtained from 9.5 by induction on n. In case C = 0, 9.6
follows from the results of Baer [3, Theorem 10.2 and Corollary 3.9]. Baer
also shows that the restriction 7(U:) < 7(U,) £ --- = 7(U,) is essential.

The application of 9.6 to torsion-free rings is based on two simple facts.

Lemma 9.7. If A ¢s a torsion-free ring of algebra type T, where T is simple,
then 7(x) = 7(y) for all nonzero x and y in A.

Proof. Since T is simple, there exist z and w in 7 such that zaw = y.
Choose positive integers m and n so that mzed, nweAd. Then r(y) =
r(mny) = r(meznw) = 7v(z). Similarly, 7(2) = 7(y).

Lemma 9.8. Let T be a rational algebra of finite order with a left (right)
identity and radical N such that T/N is simple. Let T = S & N be a Wedder-
burn decomposition of T with the identity of T in S. Let A be a ring of algebra
type T, and put S = A n S, N = A n N. Then for any nonzero x ¢ S and any
yeN, r(x) = 7(y).

Proof. Note that Sis purein A. Choose n = 1 so that ne ¢ A, where ¢ is
the identity of T. Then ne €S, so by 9.7 and the purity of S, 74(x) =
rs(x) = 1s(ne) = 74(ne) = 74((ne)y) = ra(ny) = 74(y).

CororrarY 9.9. If A is a finite-rank, torsion-free ring of simple algebra
type T, whose smallest field of definition is R (in particular, if T s central simple
over R), then A is isomorphic as a group to a direct sum of isomorphic non-nil
rank-one groups.

Proof. We use 9.7, 6.6, 6.10, and 9.6.
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CoroLLARY 9.10. Let T be a rational algebra with o left (right) identity and
radical N such that T/N is a central simple R-algebra. Let N = N n A, where
A is a ring of algebra type T. Then N s a group direct summand of A.

Proof. If we note that N is a pure subgroup of 4, the corollary follows from
9.8, 6.10, and 9.6.

Ezxample 9.11.  The study of torsion-free rings of rank two was initiated in
[4].  We now consider these rings in the light of our preceding theory. Among
the algebras of order two, the only simple ones are the quadratic fields. The
groups admitting a multiplication of this algebra type were characterized in
8.6. The only nonsimple, semisimple rational algebra of order two is R + &.
By 3.4, a group A admits of this algebra type if and only if A ~ U; @ U,,
where U; and U, are non-nil rank-one groups. There are four isomorphically
distinct algebras of order two with one-dimensional radical [7]. They can be
described in terms of a distinguished basis, 2; , 2, with the following multipli-
cation tables:

2 2

21 2132 2221 EH
I 21 0 0 0
1L 21 2y 0 0
11T 2 0 22 0
v Y1 22 22 0

By 1.4, a rank-two torsion-free group A which admits any one of the multipli-
cations is quasi-isomorphic to a direct sum U; @ U, of two rank-one groups.
Moreover, one of these groups, say U, , is of non-nil type. In cases II, III,
and IV, the algebra has a left, right, and two-sided identity respectively.
Therefore, by 9.8, r(U;) £ 7(U,), and A = U, & U, by 9.6. Conversely
it is clear that if U; and U, are rank-one groups and U is non-nil, then U, @ U,
admits multiplication of the algebra type I. Hence, by 2.7,if A ~ U, @ U,
then A admits multiplication of algebra type I. If also 7(U;) £ r(U.),
U; ® U, admits multiplication of types II, ITI, and IV also. Thus we have
a complete characterization of all rank-two groups which admit a multiplica-
tion of mixed algebra type. There are two isomorphically distinet nilpotent
algebras of order two, the nil algebra (and every rank-two torsion-free group
admits multiplication of this type) and the algebra with a basis 2, , 2, satisfy-
ing the multiplication rules [7]

‘ 2} 3132 2231 z5

\Y% ‘ 2 0 0 0
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We close this paper with a discussion of the groups admitting multiplication of
algebra type V. Let T be this algebra. Then T is an algebra with pre-
cisely three ideals: 0, T, Rz, . Thus, by 1.10, 5.26, and 9.6, any
q.d. group which admits multiplication of algebra type T is a direct sum
Uizy @ Uzee, Uy, Uy non-nil subgroups of R, such that 2+(U;) < «(U,) (or,
since Uy and U are non-nil, 7({/;) < 7(U,)). Conversely, any such group ad-
mits multiplication of algebra type T. Thus, we can determine the q.d. rings of
algebra type T. However, there are non-q.d. groups admitting multiplication
of algebra type 7. For example, let A be the subgroup of Rz; ® Rz, generated
by 2 and the set {(1/p)zy + (1/p)z|p = 2, 3,5, --+}. Then 4 is closed
under the multiplication V. By direct calculation it can be shown that if w,
and w, are any two independent elements in A, and if U, and U, are the
smallest pure subgroups of A containing w; and w, respectively, then the
p-primary component of A/(U; + U,) is not zero for almost all primes p.
Hence, A is strongly indecomposable and in particular not a q.d. group.
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