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The purpose of this note is to supplement the results obtained in [2] con-
cerning the structure of the algebr of the representative functions on the
universal enveloping algebra of a Lie algebra. Theorems 1, 2, and 3 are ana-
logues of results obtained iointly with G. D. Mostow for Lie groups (to appear
elsewhere), and the proofs are based on the same ideas, although the techni-
calities involved are rather different.
In order not to disrupt the continuity later, we begin with a simple fact

concerning the universal enveloping algebra of a nilpotent Lie algebra.

LEMMA 1. Let P be a nilpotent Lie algebra of finite dimension o)er an arbi-
trary field F, and choose a basis xl x,, for P such that each commutator
[xi, xj] is an F-linear combination of xk’s with t < min (i, j). Let U denote
the universal enveloping algebra of P, and let UIq stand for the subspace of U that

elis spanned by the ordered monomials xeZ xl vih e - e,, > q. Then,
for each , there is an exponent ql sch that PqlU c UI.

Proof. We define a, weight function w on the set of the ordered monomials
in our basis elements such that 2 and the weight of an
ordered monomial is the sum of the weights of its factors. Every element
u e U can be written uniquely as an F-linear combination of ordered mono-
mials. For u 0, we define w(u) to be the minimum taken by w on the set
of ordered monomials occurring with a nonzero coefficient in the standard
expression for u.. Then we shall have u e UI whenever w(u) >= 2n-q. NOW
we claim that, if u O, w(xi u) > w(u). Evidently, it suffices to establish
this in the case where u is an ordered monomial. In that case, one easily
shows by induction on the degree of u that w(x.u) >- w(x) - w(u). This
establishes our claim, and the conclusion of Lemma 1 follows immediately.

Now we must recall some of the notation and results of [2, Section 6]. Let
L be a finite-dimensional Lie algebra over a field F of characteristic 0. Let A
denote the radical of L, and set T [L, A]. Let S be a maximal semisimple
subalgebra of L. R(L) denotes the algebra of the representative functions on
the universal enveloping algebra U(L) of L. We have defined a subalgebra
RZ(L) of R(L) (’as the canonical image of R(L/A) in R(L)), such that the
restriction to U(S) maps R(L) isomorphically onto I(S), and a subalgebra
R (L), such that the restriction to U(A) maps 1 (L) isomorphically onto
the restriction image R(L) of R(L) in R(A). Then

R(L) R(L)R(L) R(L) (R) R(L).
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We selected a basis xl, x of T such that [x, x.] is a linear combina-
tion of xk’s with k < rain (i, j), and we completed this to a basis xl, x
of A. The elements of U(L) can then be written uniquely as sums of prod-
ucts ux x1, with u e U(S). Let u0 denote the component of u in F, in
the standard decomposition U(S) F -P SU(S). We defined a linear
function gi on U(L) such that gi(uxi) uo, while gi vanishes on all the other
products of the above form. Then g+, g span the space of the ele-
.mentary functions, i.e., the functions vanishing on F and on LU(L). Let F*
denote the algebraic closure of F. The trigonometric functions were defined as
those F*-linear combinations of the unitary homomorphisms of U(L) into F*
which take their values in F. The unitary homomorphisms of U(L) into F*
are actually the exponentials of the F*-linear combinations of the elementary
functions. The trigonometric functions constitute a subalgebra C of R(L).
We have shown that the functions g, g are algebraically independent
over C, and that IA (L) C[g, g,]. Thus 1A (L) C (R) V, where V
is the algebra generated by the constants and g, g.

It is seen directly from the definitions that

where the i’s are the Kronecker symbols. Hence we see that a representative
function belongs to V if and only if it vanishes on SU(L) and on some U(A)
where the last is defined as in Lemma 1. We shall use this characterization
in order to show that, with a suitable choice of the basis xl, x, the
algebra V is stable under the left translations.

Let A s denote the Lie algebra consisting of all x e A for which IS, x] (0).
Since A is semisimple as an S-module, A is the sum of A s and IS, A]. Since
IS, A] c T, we have therefore A A s _p T. For x e A s, denote by Z the
subalgebra of A s consisting of all elements of A s that are annihilated by
power of the inner derivation effected by x. If we choose x so that Z is of
the smallest possible dimension, then, by the elementary theory of Cartan
subalgebras of a Lie algebra, Z is a nilpotent Lie algebra. By Fitting’s
Lemma, we have A s Z, -t- B, where B is a subspace such that Ix, B] B.
Hence B c T, so that A Z, -]- T. Thus we conclude that there is a nil-
potent subalgebra P of A such that IS, P] (0) and A P -}- T.
Now we choose our basis of A such that x+l, x lie in P. It is clear

from our above characterization of V that, in order to conclude that V is stable
under the left translations, it suffices to prove the following statement: given
x e L and q, there is an r such that U(A)trx U(S) U(A)tq.

If we apply Lemma 1 to T we see immediately that this statement is true
for every x e T. Now let x e S. Then we have

X Xl X XXn Xl Xn ,’m-t-1 X].Xl,

Let a e -t- -t- e and b e+ -t- -t- e. Let a’ be the largest ex-
ponent/ such that TU(T) U(T)Ik. Then the second term on the right



LIE ALGEBRAS AND REPRESENTATIVE FUNCTIONS 611

of the above equation belongs to U(A)tb+’j. By Lemma 1, applied to T, a’
becomes arbitrarily large with a. Hence it is clear that our statement is true
also for every x e S.
There remains only to verify our statement for x e P. We have

xenn el en ,,,em+l em en ’em/l[xemm el X]Xl X Xn ,,t’mT1 XXm X "[- Xn m-.bl Xl

As in the last case, the second term on the right belongs to U(A)ib+a’. The
first term belongs to P’+IT. For every c, let c* denote the largest k such that
PcU(P) c U(P)tk. By Lemma 1, applied to P, c* becomes arbitrarily large
with c. Clearly, every element of U(P) q is a sum of products u8 vs, where
u, is an ordered monomial of degree s in x,, xm+l, and v, e Tq-’U(T).
We have

P+ITa U(P)I(+I)*IT
which is contained in the sum of the spaces u,T(’+)*+-’U(T). Hence we
see that the first term on the right of the above equation belongs to the sum
of the spaces U(A)l+((b+l)*+-8)’. For each s, this exponent is at least equal
to the maximum of a and ((b W 1)*)’. Hence it is clear that the statement
we set out to prove is true also in the case where x e P. Thus we may now
conclude that V is stable under the left translations.

Since lS(L) is stable under the left (and right) translations, the subalgebra
Rs(L)V of I(L) is stable under the left translations. We have
R(L) C (R) (IS(L)V). Let u --. u* denote the anti-automorphism of
U(L) such that x* -x, for every x e L. This induces an involution f -- f*of I(L), wheref*(u) f(u*). We havef*.u (u*.f)*. Clearly, the space
of the elementary functions, the algebra C of the trigonometric functions, and
RS(L) are stable under this involution. Hence we have I(L) C (R) B,
where B lS(L)V*, so that B is finitely generated and stable under the right
translations. Moreover, B contains the constants and the elementary func-
tions. Thus we have the following result.

THEOREM 1. Let L be a finite-dimensional Lie algebra over a field of charac-
teristic O. Then I(L is a tensor product C (R) B, where C is the algebra of the
trigonometric functions, and B is a finitely generated algebra which contains the
constants and the elementary functions, and which is stable under the right trans-
lations.

Let i be any differentiation of B into F. Since the elementary functions
are determined by their restrictions to L, we can find an element x e L such
that (f) f(x), for every elementary function f. Let 1 denote the differen-
tiation h -- h(x) of C into F. Clearly, there is a differentiation of R(L) into
F that coincides with on B and with on C.
Now let D be any derivation of B into I(L) that annihilates the constants

and commutes with the right translations. Let i be the differentiation of B
into F defined by i(f) D(f) (1), for every f e B. Extend to a differentia-
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tion of R(L) into F by the method just explained. Denoting this extended
differentiation still by , let D1 be the proper derivation of R(L) defined by
D1 (f) (u) t (f. u), for every f e R(L) and every u e U(L) (cf. [2, Proposi-
tion 1]). Then D coincides with D .on B. Moreover, our construction of
D amounted simply to enforcing the condition of [2, Theorem 6]. Hence it
follows from that theorem that D is the left translation by an element of L.
Thus we have shown that every derivation of B into R(L) that annihilates
the constants and commutes with the right translations is the restriction to
B of the left translation by an element of L.

Let H denote the Lie algebra of all proper derivations of R(L), and let
denote the canonical monomorphism of L into H. We had already seen in
[2, Section 6] that t(L) is an ideal in H, and that HIt(L) is abelian. Let J
denote the subalgebra of all elements of H that annihilate B. Then our above
extension result shows that H J - t(L), and this sum is evidently semi-
direct. Hence we have the following result.

THEOREM 2. Let L be a finite-dimensional Lie algebra over a field of charac-
teristic O. Then the Lie algebra H of all proper derivations of R(L) is a semi-
direct sum J t(L), where t(L) is the canonical image of L in H, which is an
ideal of H, and J is an abelian Lie algebra which is isomorphic, by restriction,
with the Lie algebra of all proper derivations of the algebra of the trigonometric
functions.

Next, we give a characterization, in terms of the structure of H, of the Lie
algebras L that are faithfully representable as algebraic Lie algebras.

THEOREM 3. The Lie algebra L has a faithful representation as an algebraic
Lie algebra if and only if every proper derivation of R(L) can be written as the
sum of a left translation and a proper derivation that commztes with every left
translation.

Proof. Let M be a finite-dimensional subspace of R(L) such that M is
stable under the right and left translations and that the representation z of L
by left translations on M is faithful. Then M coincides with the space R()
of all representative functions associated with z. Let M* be the algebra
generated by the constants and the elements of M. As we have shown in
[2, Section 3], the algebraic Lie algebra hull of z(L) in the algebra E(M) of
all linear endomorphisms of M consists of the restrictions to M of the proper
derivations of M*. By [2, Theorem 4], every proper derivation of M* extends
to a proper derivation of R(L). Hence we conclude that the restriction image
Hu of H in E(M) is the algebraic Lie algebra hull of z(L).
Now let a denote the adjoint representation of L by derivations of L. We

identify L with r(L). Accordingly, a(L) becomes identified with the image
of z(L) in the algebra E(z(L)) of all linear endomorphisms of z(L), i.e., for
x L, a(x) is identified with the derivation y ----> r(x)y yr(x) of z(L). Since
Hu is the algebraic Lie algebra hull of z(L), z(L) is stable also under the com-
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mutations with the elements of H. Thus we have a representation of H
in E(z(L)). Since this is a subrepresentation of the adjoint representation
of the algebraic Lie algebra H, it is the differential of a rational group repre-
sentation. Hence we conclude that the image of H in E(z(L)) is the alge-
braic Lie algebra hull of a(L).
Now suppose that L has a faithful representation as an algebraic Lie algebra.

Then a(L) is an algebraic Lie algebra, so that a(L) coincides with the image
of H in E(z(L)). This means that, for every D e H, there is an element
x e L such that (D t(x)) commutes with every left translation on M.
Since t(L) is an ideal in H, and since is faithful, this implies that D t(x)
commutes with every left translation on R(L). Thus we have shown that the
condition of Theorem 3 is necessary.

Conversely, suppose that the condition of Theorem 3 is satisfied. Then
the image of H in E((L) coincides with a(L), and we conclude that a(L)
is an algebraic Lie algebra. By [1, p. 156, Proposition 3], this implies that L
has a faithful representation p such that p(L) is an algebraic Lie algebra.
This completes the proof of Theorem 3.

We have shown in [2, Section 7] that, if the radical A of L is nilpotent, then
R(L) C (R) N, where N is the algebra of all representative functions asso-
ciated with representations that are nilpotent on A, and that, consequently,
the Lie algebra H of all proper derivations is the direct sum J + t(L), where
J consists of the proper derivations annihilating N. Now we shall show that,
conversely, if the algebra B of Theorem 1 can be chosen so as to be stable under
the left translations as well as under the right translations, then the radical
A of L is nilpotent.

Let F* denote the algebraic closure of F, and consider the Lie algebra
L (R)F* over F*. Evidently, R(L (R)rF*) R(L) (R)rF*. Moreover,
the algebra of the trigonometric functions for L (R) F* is C (R) F*. Hence
it is clear that we may assume, without loss of generality, that F is alge-
braically closed.
Now let M be a finite-dimensional subspace of P,(L) such that M is stable

under the right and left translations and that the constants and the elements
of M generate B, where P,(L) C (R) B. Consider the representation z of
L by left translations on M. Our proof of Theorem 2 has shown that every
proper derivation of B is a left translation by an element of L. Since B is the
algebra generated by the constants and the representative functions associated
with , we conclude from [2, Theorem 2] that z(L) is an algebraic Lie algebra.
Since is faithful, we may identify L with z(L). Now it follows from [1, p.
144, Proposition 5] that L is a semidirect sum Q - K, where K is the kernel
of the semisimple representation z’ associated with z (defined as the repre-
sentation in the direct sum of the factor spaces of a composition series for M
with respect to L), and Q is a reductive subalgebra of L such that the repre-
sentation of Q on M is semisimple. If P is the center of Q, we have therefore



614 o. HOCHSCHILD

A P K, and M is semisimple as a P-module. It suffices to show that
P (0).

Let V denote the representation space for . For every linear function ,
on P, denote by V the subspace of all v e V such that p.v .),(p)v, for all
p e P. Then, assuming F algebraically closed, V is a direct sum of V’s, and
each V is L-stable. Let W denote the highest nonvanishing homogeneous
component of the exterior algebra built over V. ThenW is a. 1-dimensional
representation space for L and defines a representative function f such that,
for every u U(L), the action of u on W is the scalar multiplication byrd(u).
It is clear from this construction that f belongs to the algebra generated by
the representative functions associated with a and the constants. Since the
representative functions associated with a are associated also with , it follows
that f e B. On the other hand, f is a unitary homomorphism of U(L) into
F, so that f e C. Since C n B consists only of the constants, we conclude
that f is a constant. Thus we have (p) f(p) 0, for every p e P, so
that 0. Hence ’(P) (0), which means that P c K, whence P (0).
This completes the proof of our assertion.
We shall strengthen this result by examining the subalgebras S of P,(L)

such that R(L) C (R) S. We know that there is a finitely generated algebra
B such that the elements of B and C generate R(L). Let bl, bn be a set
of generators of B, and write b c s., with c e C and s-e S. Let
So denote the subalgebra of S that is generated by these elements s. and the
constants. Then we have R(L) C (R) So, whence S So. Thus S is
necessarily finitely generated.
Now suppose that S is stable under the right translations. We shall show

that then every elementary function belongs to S. In order to prove this, it
evidently suffices to show that every elementary function belongs to S (R) F*,
where F* is the algebraic closure of F. Since

R(L (R)F F*) (C (R)F F*) (R)r. (S (R)r F*),

we may therefore assume without loss of generality that F is algebraically
closed. Then C is spanned over F by the multiplicative group Q of the unitary
homomorphisms of U(L) into F, and the elements of Q are linearly inde-
pendent over F, so that every element of R(L) is a unique S-linear com-
bination of the elements of Q. Let f be an elementary function, and write

f ,q sq q, with sq S. Let x L and translate from the right by x.
This gives

f(x) _,qo ((8q’X)q -- 8q q(x)q).

Equating the coefficients of the elements of Q on the two sides of this equation,
we obtain

0 Sq.X -t" sq q(x), for all 1 q e Q and all x e L.

Thus sq.x --q(x)sq q-(x)sq. This generalizes inductively to
Sq. u q-(u) sq, for every u e U(L). Evaluating this at 1 e U(L), we obtain
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s s(1)q-1. If s(1) 0, this gives q-1 e S, which is impossible, be-
cause q 1 and S n C consists only of the constants. Hence we must have
s(1) 0, andsos 0, foralll qeQ. Hencef sleS.

In particular, we may now conclude that every right stable subalgebra B
of R(L) such that I(L) C (R) B is finitely generated and contains the ele-
mentary functions. With what we have shown above, this gives the following
result.

THEOREM 4. We have R(L) C @ B, where C is the algebra of the trigono-
metric functions and B is a two-sidedly stable subalgebra containing the constants,
(if and) only if the radical of L is nilpotent.

The following example shows that t(L) may be a direct ideal summand of
the Lie algebra of all proper derivations even when R(L) cannot be factored
as in Theorem 4.

Let F be an algebraically closed field of characteristic 0, and let L be a 2-di-
mensional Lie algebra over F, with a basis x, y such that [x, y] y. The space
of the elementary functions on U(L) is spanned by a single function b2 such
that b2(x) 1. If we write the elements of U(L) as linear combinations of
the ordered monomials yxp, then b2 is actually given by b(y%) o.
The algebra C of the trigonometric functions is generated by the unitary
homomorphisms exp(ab) of U(L) into F, where a ranges over F. The
homomorphism exp(abe) vanishes on yU(L) and sends x onto a. We define
the linear function b on U(L) by setting b(yx) o. Let B denote
the algebra generated by bl, b2 and the constants. Then we have
R(L) C (R) B, and B is as in Theorem 1. In fact, the translates of b and
b2 are as follows"

(ax % fly).b a b.(ax - y);

(ax -t-/y)" b fl exp b ;. b ax - y ab + .
Let H be the Lie algebra of all proper derivations of I(L), and let

H J zr t(L) be the semidirect sum decomposition of Theorem 2. As an
F-space, J is isomorphic with the space of all additive endomorphisms of F.
In fact, this isomorphism sends each additive endomorphism - of F onto the
element ,* of J, where *(B) (0), and

*(exp(ab.)) "),(a)exp(ab).

Now let us define a proper derivation ,’ of I(L) as follows’

-’(b) 0, ,’(b) -(1), /(exp(ab)) (,(a) am(l))exp(ab).

Then 7’ * 7(1)t(x). Hence, if K denotes the space of all the .’, we
still have H K - t(L).: Moreover, it is easy to check that K lies in the
center of H and that K t(L) (0). Thus t(L) is a direct ideal summand
in H. On the other hand, L is solvable and not nilpotent, so that it follows
from Theorem 4 that I(L) cannot be factored as described in Theorem 4.
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In view of the importance of the trigonometric functions with regard to the
structure of R(L), it is of interest to characterize them intrinsically within
R(L). In the case of an algebraically closed base field, this will be accom-
plished if we give an intrinsic characterization of the scalar multiples of the
unitary homomorphisms of U(L) into the base field. Hence the following
result essentially answers our question.

THEOREM 5. Let L be a finite-dimensional Lie algebra over a field F of charac-
teristic O. Then the set of the nonzero scalar multiples of the unitary homo-
morphisms of U(L) into F coincides with the set of the units of the ring R(L).

Proof. Evidently, an element f of R(L) is a nonzero multiple of a unitary
homomorphism of U(L) into F if and only if the space spanned by the left
translates of f, which we denote U(L) .f, is 1-dimensional. If f -- f* denotes
the involution of R(L) defined just before stating Theorem 1, we have ff* 1,
whenever f is a unitary homomorphism of U(L) into F. Hence every non-
zero scalar multiple of a unitary homomorphism of U(L) into F is a unit of
R(L). It suffices, therefore, to prove that if f is a unit of R(L) then U(L).f
is 1-dimensional.

First, let us consider the case where L is semisimple. In that case, the result
to be proved amounts to saying that every unit of R(L) is a constant, because
[L, L] L. In proving this, we may evidently assume, without loss of gen-
erality, that F is algebraically closed. Then we can use the theory of weights
for the representations of L, and we prove the result by adapting an argument
due to B. Kostant (used by him in a forthcoming paper on the cohomology
of homogeneous spaces). Choose a Cartan subalgebra C of L, and order the
weights, with respect to C, of the representations of L in the usual way. This
ordering is compatible with the addition of weights and is such that the highest
weight of any nontrivial representation of L is greater than 0. Let f be a unit
of R(L), so that there is an element g e R(L) such that fg 1. Let a be the
highest weight occurring in the representation of L on U(L).f, and let be
the highest weight occurring in the representation of L on U(L).g. It suffices
to show that a 0, because this means that the representation of L on U(L).f
is trivial.
We know (cf. [2, Section 5]) that R(L) is finitely generated. Hence there

is a finite-dimensional two-sidedly stable subspace of R(L) whose elements
generate R(L). We may identify L with its image under the representation
by left translations on this subspace. Then L is an algebraic Lie algebra, be-
cause it is semisimple. Let G be the irreducible algebraic group whose Lie
algebra is L. By [2, Theorem 3], every representation of L is the differential
of a rational representation of G. In this way, G acts as a group of algebra
automorphisms on R(L);see [2, Section 4].
We extend the base field from F to the field F* (say) of the rational func-

tions on G. Then the canonical extension of G over F* contains a generic
point of G. If we extend the base field from F to F* in a representation of
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L, the weights for the extended representation (with respect to the extended
Cartan subalgebra) are the canonical extensions of the weights of the original
representation. Let p be the rational representation of G on U(L).f whose
differential p" is the natural representation of L on U(L).f. By a standard
result of the representation theory of algebraic groups, the algebra generated
by the elements of p’(L) is contained in the algebra generated by the elements
of p(G). It follows that every point of U(L).f is a linear combination of
specializations of t(f). Hence it is clear that t(f) must have a nonzero com-
ponent in each weight subspace of the extension of U(L).f over F*. Simi-
larly, t(g) must have a nonzero component in each weight subspace of the ex-
tension of U(L).g. We still have t(f)t(g) 1. Now let t(f)p denote the
component of t(f) in the weight space for the weight p, etc. We consider the
canonical extension over F* of the representation of L in the product space
(U(L).f) (U(L).g). The product t(f)p t(g) evidently lies in the weight
subspace of this space whose weight is p z. Now we have_, t(f) t(g) t(f)t(g) 1.

If a and are used also to denote the canonical extensions of the original
weights a and , the component of the highest weight on the left is
t(f), t(g) O. The right-hand side, 1, is in the component of weight 0.
Hence we conclude that a - / 0. Since a and are highest weights of
representations of L, this implies that a and are both 0. Thus we have
shown that, if L is semisimple, every unit of P,(L) is a constant.
Now let us consider the general case. We have L S - A, where A is the

radical of L, and S is a maximal semisimple subalgebra. In the notation
we explained after Lemma 1, we have R(L) CRS(L)[gl, gn], and the
set gl, g is algebraically independent over the field of quotient of
CRS(L). Hence.it is clear that every unit of R(L) must actually be a unit
of CRY(L).

Evidently, we may assume again that F is algebraically closed. Then the
algebra C of the trigonometric functions consists of the linear combinations of
the exponentials of the elementary functions. Now letfbe a unit of CP,S(L),
and take g e CRS(L) such that fg 1. We can express f and g as finite
Rs(L)-linear combinations of functions exp(h), where h ranges over a finite
set of elementary functions. Let h, h be a free basis for the additive
group generated by this finite set of elementary functions, and put
yi exp(h). Then the monomials in the yi’s,, with negative exponents
allowed, are easily seen to be linearly independent over F. Since
CR (L) C (R) Rs(L), these monomials are therefore linearly independent
over Rs(L). The functions f and g can be written in the form

f_ yl.., yYfo(y ,’", y); g yl y g0(yl ,’’’, y),

where the ai and the bi are integers, and fo, go are polynomials with coefficients
in RS(L), such that f0(0, 0) 0, and g0(0, 0) 0. Since fg 1,
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it follows from the independence of the monomils in the y’s that we must hve
fo(y,’..,y) =f0(0,.’.,0),ndf0(0,...,0)g0(0,...,0) 1. Thus
fo(y, y) is actually unit of R(L). Since RS(L) is isomorphic with
R(S), it follows from the semisimple cse that fo(y, y) is ctully
constant. Thus f is sclr multiple of monomil in the y’s. Since the
y’s re unitary homomorphisms of U(L) into F, this shows that f is sclr
multiple of unitary homomorphism of U(L) into F. The proof of Theorem
5 is now complete.

Observe that Theorem 5 immediately implies the nalogous results for con-
nected Lie groups nd for irreducible lgebmic groups: let G be connected
real or complex Lie group, or n lgebric linear group over a field of charac-
teristic 0. Let R(G) denote the algebra of ll nlytic or rtionl, respec-
tively, representative functions on G. Then the units of R(G) are precisely
the nonzero scalar multiples of the analytic or rational, respectively, homomor-
phisms of G into the multiplicative group of the base field. This result follows
immediately by considering the cnonicl monomorphism of R(G) into R(L),
where L is the Lie lgebr of G, and pplying Theorem 5.
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