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1. Introduction
The present paper is concerned with the extension of the concepts of ad-

jointness, .normality, symmetrizability, and definiteness of Bliss [1], [2] and
Reid [4], [6] to linear differential systems, written in vector form

y’- A(x)y kB(x)y,

(Mo + kM1)y(a) -t-- (No + kN)y(b)

a_x<__b,

In addition, the hypotheses imposed on the coefficients of the boundary con-
ditions are analyzed, and necessary and sufficient conditions for testing these
assumptions for individual problems (1.1) are developed. For real-valued
coefficients, Bobonis [3] has extended the class of definite problems intro-
duced by Bliss [1] and [2] to problems (1.1) in which corresponding assump-
tions on the boundary conditions are postulated. As for problems with
boundary conditions not involving the parameter, the extension of the definite
classes of Reid [4] to problems (1.1) also yields further results for the definite
problems of Bobonis.

Section 2 introduces the basic assumptions made on the coefficients of (1.1),
and a simple necessary and sufficient test for the conditions imposed on the
boundary conditions both in this paper and by Bobonis [3] to hold is given.
Adjoint boundary problems and their basic interrelations with the original
problem are also discussed. In Section 3 the equivalence of two boundary
problems of the form (1.1) under a nonsingular transformation is discussed;
in particular, the equivalence of a problem with its adjoinS. A problem (1.1)
will be termed abnormal if there exist nontrivial vectors y(x) satisfying

y’ A(x)y=- O and B(x)y O onab,

Mo y(a) + No y(b) 0 and M y(a) + N y(b) O,

and otherwise normal. For abnormal problems (1.1) equiv.alent to their
adjoint under a nonsingular skew-hermitian transformation, Theorem 6.1 of
Reid [6] is extended in Section 4 to establish the existence of an equivalent
normal problem also equivalent to its adjoint under the same transformation
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and satisfying the boundary assumptions of Section 2. The extension of the
concept of symmetrizability to problems (1.1) is discussed in Section 5, and
the results of Reid [6] are generalized to show that for an abnormal problem
(1.1) equivalent to its adioint under a nonsingular transformation, there exist
an associated nonsingular skew-hermitian transformation and an equivalent
normal problem symmetrizable under the associated transformation.
The extension of the classes of definite problems of Bobonis [3] and Reid

[4] to problems (1.1) with complex-valued coefficients is developed in Sec-
tion 6. In particular, for normal definite problems (1.1) we have the reality
and the equality of index and multiplicity of proper values, existence theorems,
and completeness and extremizing properties of the proper values and solu-
tions. Moreover, for abnormal definite problems (1.1) there are shown to
exist corresponding equivalent normal definite problems. Consequently, re-
sults for abnormal definite problems (1.1) follow from the application of the
above results to the associated normal definite problem.
Matrix notation will be employed throughout this paper. The n n

identity matrix will be designated by E, while M* shall denote the coniugate
transpose of the matrix M. Vectors are treated as n X 1 matrices, with
(y, z) denoting the inner product z*y of two n-dimensional vectors. In addi-
tion, let (y, z} denote j’ (y, z) dx for a pair of vectors y(x), z(x) for which
(y, z) is integrable on ab.

2. Adjoint boundary problems
In the following it will be assumed that the elements of the n X n matrices

A (x) and B(x) are complex-valued continuous functions of the real variable
x on a <- x <- b, B(x) 0 on the interval, and the n X 2n matrix
M0 ),M1 No N1 has rank n for every complex value of . The

elements of the n X n coefficient matrices M0, No, M, and N may be com-
plex-valued. The boundary problem under consideration is

L[y] =-.y’ A(x)y B(x)y, a <= x <= b,
(2.1)

s[y; ] M()y(a) + N()y(b) O,

with M() --- Mo -k M, N() No + N.
If n X n matrices P(),), Q(),) are such that the n 2n matrix

[I P*() Q*() [[, where P*() [P(X)]*, Q*(X) [Q(X)]*, is of rank n for
all , and if, furthermore, they satisfy

(2.2) M(,)P(X) N(,)Q(,) - 0 for all ,
then the problem

(2.3)
L*[z] z’ + A*(x)z -hB*(x)z,

t[z; X] =-- P*()z(a) + Q*()z(b) 0

will be termed the boundary problem adjoint to (2.1).

a<x<b
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Concerning the boundary conditions s[y; X] 0 it will be assumed through-
out that there exist constant matrices Ms, N, P, and Q. such that for all
values of }, the 2n )< 2n matrices

are reciprocals. It is to be noted that this matrix hypothesis is also employed
in [3]. The following result shows that P(h) and Q(h) must then necessarily
be linear in

THEOREM 2.1. A necessary and sujcient condition that there exist matrices
P(), Q() and constant matrices Ms, N., P, Q such that the matrices (2.4)
are reciprocals is that the 2n X 2n matrix

(2.5) IIMNM1N1
have ranlc n + p, where p is the rantc of the n )< 2n matrix M N !]. More-
over, in this case P(h) and Q() must be linear in ).

If the matrices (2.4) are reciprocals, there exists a matrix V of rank p such
that M1 VM, NI VN. Then, if (, ) is a 1 )< 2n vector orthogonal
to each column of matrix (2.5),

0 Mo + M Mo + VM2, 0 No + N No + VN,
and it follows that 0, V 0. Hence,M N 0, and, consequently,
(2.5) has rank n + p.

Furthermore, as

M(,) N(h) E V Mo No
(2.6)

Ms N 0 E Ms N
it follows, for the choices of Po, Q0, P:, and Q such that the matrices

i No -P. -Po
(2.7)

Ms N2 Q2 Q0

are reciprocals, that the reciprocal of (2.6) is

(2.8)
Q2 Q0 0 E Q (Q0 ),Q V)

and, thus, P(X) and Q(k) are necessarily lineur in .
On the other hand, if the rank of (2.5) is n + p, let a be a p X n matrix

such that $ii aN1 has rank p. Then there exist (n p) )< n matrices
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such that the 2n X 2n matrix

M0 No

aM aN

is nonsingular. On setting M. (rMi rNl the first matrix of

(2.7) is nonsingular, and there exists an n X n matrix V such that M1
VM., NI VN. We then have the factorization (2.6), and the matrices
(2.4) are reciprocals with the choice of the second matrix as (2.8), where the
matrices (2.7) are reciprocals.
The condition that (2.5) have rank n W p does not automatically hold when-

ever the n X 2n matrix [[ M0 - M No + N has rank n for all . This
may be seen, for example, for n 2 from the choice of

M0 No M1 N
1 0 0 1 0 0 0 0

If we now set

s[y] My(a) q- Ny(b), t[z] =- P*z(a) -k Qz(b) (i O, 1,2)’
it follows from the reciprocal character of (2.4) that

(s0[y], t[z]) -b (s[y], t0[z]) (y(b), z(b) (y(a), z(a) ),
(2.9)

(s[y], t[z]) -b (s2[y], h[z]) 0

for arbitrary values y(a), y(b), z(a), z(b). Moreover,

(2.10) (L[y], z) + (y, L*[z]) --- (y, z)’ for y, z e C’;

and, in particular, (L[y], z) -k (y, L*[z]) 0 for all vectors y(x) of class C’
satisfying sly; X] 0 for a value and z(x) of class C’ if and only if t[z; ] 0
for this value of . Consequently, with the further definitions of a proper
value of (2.1) as a complex number for which there exist nonidentically
vanishing solutions of (2.1), termed proper solutions, and the index of ?, as the
dimension i(X) of the linear space of all solutions of (2.1) for this value , we
then have the following result from relations (2.9) and (2.10).

LEMMA 2.1. A constant o is a proper value for (2.1) if and only if o is a
proper value for (2.3) of the same index.

3. Equivalent boundary problems
Problem (2.1) will be said to be equivalent to a second boundary problem

u’ A(x)u )B(x)u, a <- x <= b,
(3.1)

M(X)u(a) + N(X)u(b) O,
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with M(), N() linear in , and coefficients satisfying the same condi-
tions imposed on the corresponding coefficient matrices of (2.1), under a trans-
formation u(x) H(x)y(x), a <= x <= b, provided H(x) is a nonsingular
matrix of class C’ on ab such that, for an arbitrary value , the vector y(x)
satisfies the differential equations or the boundary conditions of (2.1) if and
only if the corresponding u(x) satisfies the respective differential equations
or boundary conditions of (3.1).

THEOREM 3.1. The boundary problem (2.1) is equivalent to (3.1) under
H(x) if and only if H(x) is a nonsingular matrix of class C’ satisfying

H’ AH W HA O, HB BH O, a <- x <= b,

M(k)H(a)P(k) N(k)H(b)Q() =- 0 for all ,
where P()), Q(X) are n X n matrices with the n X 2n matrix P*() Q*()
of rank n and M(h)P(h) N(h)Q(h) 0 for all .
As a special case of the above theorem we have the following result, the

final conclusion of which also appears in Theorem 4.1 of Reid [6].

THEOREM 3.2. A necessary and sufficient condition that the system (2.1) be
equivalent to its adjoint (2.3) under T x is that

(3.2) T - A*T - TA =- O, TB B*T O, a <- x <- b,

(3.3) M(k)T-I(a)M*() =- N(k)T-I(b)N*() for all X.

Moreover, the general solution of the matrix differential equation of (3.2) is
T(x) Y*-(x)CY-(x), where Y(x) is a nonsingular matrix solution of
L[Y] =- yr AY 0 and C is an arbitrary n X n constant matrix.

From the relation

(3.3’) P*()T(a)P(h) =- Q*()T(b)Q() for all h,

equivalent to (3.3), it follows that a system equivalent to its adjoint under
T(x) is also equivalent to its adioint under T*(x) and under Tl(x)
cIT(x) - c.T* (x), provided T1(x) is nonsingular for some x0 on ab. In addi-
tion, the Corollary to Theorem 4.2 of Reid [6] with A (x) A (x) E is also
valid for systems (2.1), (3.1) and their adioints.

COROLLARY. If the boundary conditions s[y; ] 0 are equivalent to their
adjoint conditions t[z; ] 0 under z T(x)y, then the condition that the matrix
(2.5) have rank n + p, where p is the rank of MI N II, is equivalent to the
condition that the matrix

(3.4) W -= M0 T*-1 (a)i* No T*- (b)N*
have rank p.

From relation (3.3) for 0 it follows that Wv 0 for a vector v if and
only if there exists a vector such that M*v M0*, N*v N’. In this
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case the rank of (2.5) is equal to n plus the rank of W, and, hence, (2.5) has
rank n p if and only if W has rank p.

4. Normal and abnormal boundary problems
Let Ao,o denote the linear space of vector functions y(x) for which L[y] =- 0

and By =- 0 on ab, s0[y] 0 and sl[y] 0; correspondingly, let A0*,0 denote
the totality of vectors z(x) satisfying L*[z] 0 and B*z 0 on ab, t0[z] 0
and tl[z] 0. A boundary problem (2.1) will be termed normal if A0.0 is
zero-dimensional, and abnormal with order of abnormality r if dim A0,0
r > 0. A nontrivial element of A0,0 will be designated an abnormal solution
of (2.1). As all values of h are proper values of (2.1) in case dim Ao,0 r > 0,
let in(h) i(h) r denote the normal index of h as a proper value of (2.1)
in case i(h) > r, and let a normal proper solution y(x) be a proper solution of
(2.1) for which not both By 0 on ab and s[y] 0 hold.
In addition, let Ao denote the linear space of vectors y(x) satisfying L[y] 0

and By 0 on ab; and, similarly, A0* will denote the linear space of vectors
z(x) for which L*[z] 0 and B*z =- 0 on ab. Then, from (2.2) and the re-
ciprocal character of the matrices of (2.4), it follows that a pair of end values
y(a), y(b) satisfies s0[y] 0 and s,[y] 0 if and only if there is a constant vec-
tor such that y(a) Po K$, y(b) -Qo K, where the n X n constant
matrix K is of rank n p and satisfies VK 0 with the constant n X n
matrix V of rank p for which M VMs, N VNs. Thus, if p n for
a problem (2.1) the problem is normal, while the case p 0 is the class of
problems studied in Reid [6]. Consequently, if dim A0 p > 0 and de-
notes an n X p matrix whose column vectors form a basis for A0, then
dim A0,0 r => 0 is equivalent to the condition that the 2n (n + p) matrix

Po K v(a)
-QoK v(b)

is of rankn- p+p- r.
Finally, if A denotes the linear space of vectors y(x) for which there exists

a vector g(x) with continuous components such that L[y] =- Bg on ab, it follows
from (2.10) that

(4.1) z*(a)y(a) z*(b)y(b) 0 for y(x) e At, z(x) h*o.

Now, if (2.1) is equivalent to its adjoint (2.3) under T(x), then y(x) be-
longs to Ao or Ao,o if and only if z(x) T(x)y(x) belongs to A0* or Ao*,0, re-
spectively. In particular, if under such equivalence dim A0,0 dim A0*,o
r > 0 and n(x) is an n X r matrix whose column vectors form a basis for h0,0,
then the columns of (x) T(x)v(x) form a basis for A0*,0. Moreover, as
M0P No Q M P0 + N Q0 V( M2 P0 + N Q0) V from (2.2), it
then follows from t0[’] tl[.] 0 and rank V rank M1 N1 II P that
there exists an n X r constant matrix z of rank r such that

*(a) z*JMo t* (b) r*JNo
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where J is an n X n constant matrix of rank n p satisfying JV O, and
*J has rank r __< n p. Hence, for r an n X (n r) constant matrix of
rank n r such that *Jr O, the boundary conditions s[y; k] 0 are
equivalent to

r*s[y; )‘] 0,

a*Js[y; )‘] =- r*(a)y(a) f*(b)y(b) O.

In addition, as a*JM1 a*JVM O, a*JNI a*JVN 0 it follows
from the nonsingularity of r J*a that the (n- r) X 2n matrix
r’M1 r’N1 has rank o and its rows are linearly independent of the rows of
r’M0 r’No 11. Consequently, if 0 and are n X r constant matrices such

that the r X r matrix O*v(a) + *(b) is nonsingular, then the boundary
problem

(4.2) L[y] )‘By, r*s[y; )‘] 0, O*y(a) - *y(b) 0

is a normal problem whose boundary conditions satisfy the matrix hypotheses
of Section 2. Furthermore, as relation (4.1) implies that z*Js[y; )‘] 0 for
any proper solution y(x) of L[y] )‘By, problem (4.2) is equivalent to (2.1)
in the sense that, if y(x) is a proper solution of (4.2) for a value )‘, then y(x)
is a normal solution of (2.1) for this value )‘, while if y(x) is a solution of (2.1)
for a value )‘, then

y(x) - (x)’, . -[0*(a) -t-*(b)]-l’[O*y(a) + *y(b)],

is a solution of (4.2) for the same value )‘. Finally, )‘ is a proper value of (4.2)
of index/ if and only if), is a proper value of (2.1) with normal index in()‘) k.

THEOREM 4.1. If (2.1) is an abnormal problem equivalent to its adjoint (2.3)
under a nonsingular slew-hermitian transformation T x and the matrices (2.4)
are reciprocals, then there exists an equivalent normal problem, (4.4) below, that
is also equivalent to its adjoint under the same T(x) and for which the matrices
corresponding to (2.4) are reciprocals.

For a problem (2.1) equivalent to its adjoint under T(x) one may choose

(4.3) P()‘) T*-I(a)M*(), Q()‘) T*-I(b)N*(X)

in view of (3.3). Then, for (x), J, , and as above and

R =- --1/2IMp. T-I(a)M* N2 T-(b)N*],

z*J(s2[] Rs0[v]) -a*J (a*J)* is nonsingular, and, hence, the boundary
problem

L[y] )‘By,

(4.4) r’sly; )‘1 O,

a*J(s[y] Rso[y]) 0
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is a normal problem equivalent to (2.1). Furthermore, if T(x) is skew-
hermitian on ab, then R is also skew-hermitian, while the matrix W given by
(3.4) is hermitian in view of (3.3). Consequently, as W V and 0 VR
WR RW from the choice in (4.3), we have, by direct computation, that
the boundary conditions of (4.4) satisfy with T(x) a relation corresponding
to (3.3), and, hence, problem (4.4) is also equivalent to its adjoint under the
same T(x) as the original problem. Moreover, for problem (4.4) it also follows
from the choice (4.3) and RW 0 that the matrix W1 corresponding to the
matrix W of problem (2.1) is of the form

and has rank equal to rank W p as *JW *JV 0 and the matrix
r J*z is nonsingular.

5. Symmetrizable boundary problems
A problem (2.1) will be termed symmetrizable under T(x) if it satisfies the

matrix assumption of Section 2 that the matrices (2.4) are reciprocals, is
equivalent to its adjoint (2.3) under T(x), S(x) =- T*(x)B(x) is hermitian
on ab, and the 2n X 2n constant matrix

T*(a)P2 MI T*(a)P2 Y(5.1) @ T*(b)Q M1 T*(b)Q NI
belonging to the bilinear form [u; v] (s[v], t.[Tu]) is hermitian.
Now, for a boundary problem (2.1) equivalent to its ad]oint (2.3) under

T(x), it follows from (3.3) that the most general form of P(k) and Q(k) is

(5.2) P(k) T*-(a)M*()C(k), Q() T*-(b)N*()C(k),
where C(k) is nonsingular for all . From the reciprocal character of the
matrices in (2.4) we then have that

(5.3) C-(k) =- -M T*-(a)M*(7) + Y T*-(b)N*(7);
that is, C-1(},) is linear in k. Writing C-(k) Do + kD, we have

(5.4) D -M T*-I(a)M* + N2 T*-(D)N*.
LEMMA 5.1. Suppose that the boundary conditions s[y; k] 0 are equivalent

to their adjoint conditions t[z; k] 0 under z T(x)y and that the rantc of (2.5)
is n - p, where p is the rant of MI N1 II. Then the matrix (5.1) is hermitian

if and only if the matrix C k defined by (5.2) is independent of k and the matrix
W given by (3.4) is hermitian. Moreover, under these conditions P(k) and Q(k)
can be chosen as in (4.3).

Under the one-to-one transformation between values u(a), u(b) and con-
stnt vectors ,
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(5.5) T(a)u(a) M + MV, -T(b)u(b) N + NV,
we have from the reciprocal character of the matrices (2.4) that t*[Tu] -*and sl[u] W* D, where D1 is given by (5.4). Now, if ,, , (a 1, 2)
are arbitrary constant vectors and u,(a), u,(b) (a 1, 2) corresponding
Sets of values related by (5.5), then

9[u u] [u ;u] (W* W)2 + vD DI**y2
Thus, 9[u; v] is hermitian if and only if W W* and D 0. Now, as the
matrices (2.4) are reciprocals from Theorem 2.1, the corresponding matrices
obtained on replacing P(h), Q(h), M, and N by P(h)Do, Q()Do, DM2,
and DIN, respectively, are also reciprocals. Hence, without loss of general-
ity, we may choose P(h) and Q(h) of the form (4.3).

ConoAn. Under the conditions of Lemma 5.1 the hermitian form [u; v]
has the representation

(5.6) 9[u; v] (Wt[Tv], t[T]).

From D 0 it follows that there exists an n X n constant matrix F such
that T*-(a)M P F, T*-(b)N Q F, und from -M0 P + N0 Q E
we have that F -W. Consequently, s[v] -Wt[Tv] as W is hermitian.

THEOREM 5.1. If the boundary conditions s[y; ] 0 satisfy (3.3) with a
nonsingular T(x), then necessary and sucient conditions that there exist
matrices P(h) Po hP Q(h) Qo Q1 and constant matrices M2 N
P2 Q2 such that the matrices (2.4) are reciprocals and the 2n X 2n matrix (5.1)
is hermitian are that the matrix W given in (3.4) be hermitian and of rank p,
the rank of
The necessity follows at once from Theorem 2.1, Lemma 5.1, and the Corol-

lary to Lemma 3.1. To establish the sufficiency, let be a r X n matrix such
that aW is of rank p. As aW* aW, it follows that aM aN has rank
p, and if r is a (n p) n matrix, of rank n p, such that rW 0, there
exist (n p) X n matrices , such that T*-I(a)M ,T*-I(b)N 0
while the (2n p) X 2n matrix

rM0 rN0
(5.7) zM zN

is of rank 2n p. The rows of aM0 aN0 are linearly independent of the
rows of (5.7), for else a nonnull linear combination of its rows,
would be dependent on the rows of (5.7) and would, therefore, satisfy
T*-I(a)M T*-(b)N* 0, implying that the rows of W are linearly
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if we set MI (rM1 N12 aN1 thendependent. Moreover,

MT*-I(a)M NT*-I(b)N* 0, and M0 No is nonsingular asM Y
r

is there exists matrix Y such thatnonsingular. Hence, VM,

Nt V1N, 8nd H -= -M T*-l(a)Mo* + N T*-l(b)Xo* is nonsingular.
=H N,HConsequently, if we define M. -1 N -1 the first matrix of

(2.7) is nonsingular, and there exists a matrix V V1H such that M1 VM,
N1 VN., while M. T*-1 (a)M*(7) + N. T*-1 (b)N*() E for all
Now, let P. and Q. be determined by the relations

-M0 P. + No Q E, -Ms P W N Q 0.

As -M1P + NI Q V(-M. P + N Q) O, it then follows that for
the further choices P() T*-I(a)M*(), Q(X) T*-I(b)N*(), the
matrices (2.4) are reciprocals. The final desired conclusion on the hermitian
character of (5.1) is then asured by Lemma 5.1.
An immediate consequence of the above result and relation (3.3) is that if

the problem (2.1) is symmetrizable under T(x), then (2.1) is also sym-
metrizable under T*(x). Moreover, under the assumption that the matrices
(2.4) are reciprocals, the Corollary to Theorem 3.2 and Theorems 2.1 and 5.1
imply that (2.1) is symmetrizable under a skew-hermitian transformation
T(x) whenever (2.1) is equivalent to its adjoint (2.3) under such a T(x), as
the matrix W is then hermitian.
Theorem 5.3 of Reid [6] can now be extended.

THEOREM 5.2. For a problem (2.1) equivalent to its adjoint (2.3) under T(x)
and satisfying the condition that the associated matrices (2.4) are reciprocals,
there exist constants c, c. such that (2.1) is symmetrizable under T(x)
cl T(x) c T*(x) and T(x) is a nonsingular slcew-hermitian transformation
on ab. Moreover, if (2.1) is symmetrizable under T(x), then for each such
pair c, c there is an associated nonzero real constant tc such that the matrix
S(x) =- T (x)B(x) and the form [u; v], corresponding to 9[u; v], satisfy
S(x) kl S(x) on ab and l[u; v] /c [; v] for arbitrary vectors u(a), u(b),
v(a),v(b).

In view of the remarks immediately prior to the theorem above, Theorem
2.1, and the remarks following Theorem 3.2, the first result follows as in the
proof of the corresponding result of Theorem 5.3 of Reid [6]. Then, if (2.1) is
symmetrizable under T(x), it also follows, as in the proof of Theorem 5.3 of
[6], on setting A E, that for any pair of constants c, c such that (2.1) is
symmetrizable under T(x) c T(x) c T*(x) with T(x) nonsingular
and skew-hermitian on ab, that S(x) T*(x)B(x) t S(x) on ab for
k c c. a nonzero real constant. Now, as in the proof of Theorem 5.1
above, P(h) T-I(a)M*(), QI(h) T-I(b)N*(7) may be chosen as the
matrices corresponding to P(h) T*-I(a)M*(), Q() T*-I(b)N*()
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and, hence, in view of relation (3.3) for both T and T1, it follows that there
exists an n X n matrix C(), nonsingular for all ,, such that

Thus,
P(h) =. Q(),) Q(,)C(),).

M*()C(h) T(a)T*-I(a)M*()
(5.8) T(a)[61 T-(a) -+- T*-(a)]M*(),

N*()C(h) T(D)T*-(b)N*(X,)
T(b)[ T-(b) + . T*-(b)]N*(7).

On multiplying the first equation of (5.8) on the left by -WP, and the sec-
ond on the left by WQ*, and adding, it then follows from (3.3), the reciprocal
property of the matrices (2.4), the hermitian character of W, and the rela-
tions M WPT a N *--WQ2 T(b), established in the proof of the
Corollary to Lemma 5.1, that

wc(x) ( )w w.
Moreover,

W MoP- NoQ1 MOP(),) NoQ(h)

[M0 PI(X) No Q(x)]C(X) W
where W designates for the transformation T(x) the matrix corresponding
to W. Consequently,

(5.9) W k WC-(h) k W.
Finally, if P, Q, t.[u], and l[u; v] denote the matrices and forms for the
transformation T(x) corresponding to P, Q, t[u], and 9[u; v], respectively,
then

-M--- WP*T(a) WP*T(a), -N WIQ*T(D) -WQ*T(D)
and, hence, W t[T u] Wt2[Tu] for arbitrary vectors u(a), u(b). It now
follows from the representation (5.6) and relation (5.9) that

t[T t2[T u])91[u; v] (W v] t2[T u]) (Wt2[Tv],

--lc(t2[Tv], W t[T2 u]) lcl(t2[Tv], Wt2[Tu]) /cx 9[u; v]

for arbitrary end values u(a), u(b), v(a), v(b).
It is to be noted that the reality and nonvanishing of/ cl c allows

the representation cl a -5 i7, c. -5 i5,, a and t3 real and distinct, while
the skew-hermitian character of T(x) implies that (a + /3) T(x) is skew-
hermitian on ab. In particular, if a + / c + 62 0 for a suitable pair
cl, c. above, then T(x) is also skew-hermitian on ab, and

T(x) =-- (ca c2)T(x) =-- l T(x)
on ab.
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Combining the results of Theorems 4.1 and 5.2 with the argument below
yields the following extension of Theorem 6.2 of Reid [6].

TEOEM 5.3. If (2.1) is an abnormal problem equivalent to its adjoint
under T(x), and if the associated matrices (2.4) are reciprocals, then for an
associated transformation Tl(x) of Theorem 5.2 there is an equivalent normal
problem that is symmetrizable under Tl(x); moreover, if the original problem
(2.1) is symmetrizable under T(x), then for each such T1 (x) there is a nonzero
real constant t such that the corresponding matrix Sx(x) and the corresponding
form [u; v] satisfy S(x) =- tc S(x) on ab and [u; v] =/1 [u; v] for arbitrary
vectors u(a), u(b), v(a) and v(b).

To establish the final conclusion we shall show that the matrix (5.1) re-
mains invariant when we pass from an abnormal problem (2.1) to its equiva-
lent normal problem (4.4), with each problem equivalent to its adioint under
a skew-hermitian, nonsingular transformation T(x). Let the superscript 1
following a matrix associated with problem (2.1) denote the corresponding
matrix for the problem (4.4). Then, from Lemma 5.1 and the comments
prior to Theorem 5.2 we may choose pl(,) T.-I(a)M.(), Q(X)
T*-(b)N*(). Moreover, with R, J, , and as in the proof of Theorem
4.1, P() and Q(A) as in (4.3), and the choices

P2 Po

0 e a*J- e-let*JR

T

ez*J

e-.j

where e is the r r nonsingular matrix z*JJ*z, it follows by direct clcula-
tion, in view of the relations V W W*, 0 JV WJ*, R -R*,
0 VR RV, z’Jr O, 0 JMt JNt, and 0 RMI RNt, thst
for the problem (4.4) the matrices corresponding to (2.4) are reciprocals.
Furthermore, as

]1 M N

we then have that

and, consequently, @2 @.

Q2 M1 N

6. Definite boundary problems
For a boundary problem (2.1) let A denote the linear class of vectors y(x)

satisfying L[y] Bg on ab and s0[y] -t- s[g] 0 with a continuous vector g(x).

LE 6.1. For a problem (2.1) symmetrizable under T(x), the bilinear

functional
[u; v] (s0[v], t2[Tu]) + (L[v], Tu}



BOUNDARY PROBLEMS INVOLVING A PARAMETER 605

is hermitian on A in the sense that q[u; v] [v; u] for arbitrary vectors u and v
of A; in particular, cq[u] q[u; u] is real-valued on the space A.

For suppose that u(x) and v(x) belong to A with g(x) and h(x), respec-
tively. Then, with thechoice (4.3), w T(x)u belongs to the corresponding
space A* for the adjoint problem (2.3) with the vector T(x)g; i.e., L*[w]
-B*Tg -Sg, t0[w] A- tl[Tg] 0. From relation (2.10) and the hermitian
character of S it now follows that

(L[v], Tu} (i[u], Tv) (L[v], w} (v,

(L[v], w) -t" (v, L*[w])

(v(b), w(b)) (v(a), w(a)).

Moreover, from relations (2.9) and the hermitian character of (5.1) we have
that

-(s0[v], t.[Tu]) + (s0[u], t[Tv])

(s[v], t0[w]) (sj[g], t[Tv]) + (v(a), w(a)) (v(b), w(b))

(s[v], tl[Tg]) (sl[v], t[Tg]) + (v(a), w(a)) (v(b), w(b))

(v(a), w(a) (v(b), w(b) ),

and, thus, og[u; v] [v; u].
Now, with

[Y] --- 9[Y; Y] + (Sy,

it follows that for a problem (2.1) symmetrizable under T(x) the functional

(6.1) [y; cl, c T] c [y] + c. [y]

is real-valued for vectors y e A and arbitrary real constants c, c. The
boundary problem (2.1) will be termed definite [cl, c. T] whenever (2.1) is
symmetrizable under T(x) and there exist real constants cl, c such that (6.1)
is positive for arbitrary vectors y(x) e A unless B(x)y(x) =- 0 on ab and
sl[y] O.
For symmetrizable problems (2.1) with real coefficients, the condition of

definiteness considered by Bobonis [3] is the positive semidefiniteness of [y]
for arbitrary continuous vectors. From Lemma 5.3 of [3] such problems are
clearly definite [c, c T] with c 0, c 1. On the other hand, for a
problem (2.1) definite [cl, c T] with c 0, the associated problem obtained
on replacing h by c./c is definite either [1, 0; T] or [1, 0; -T] according
as c > 0 or c < 0. A problem (2.1) that is normal and definite [0, 1; T]
may be treated by methods corresponding to those of Bobinis [3], while a
problem that is normal and definite [1, 0; T] may be handled by an extension
of the methods employed by Reid [4] for the class of problems in which ), does
not appear in the boundary conditions.
For a normal and definite [cl, c. T] problem (2.1), it follows, from the re-
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lation g[y] N[y] for a proper solution y(x) corresponding to a proper value
X, that N[y] 0 for all proper solutions. By methods analogous to those
employed in the proof of Theorem 4.2 of [3] it then follows that for such a
problem (2.1) all proper values are real and at most denumerably infinite in
number as they are the zeros of an entire function

A(k) det [M(),)Y(a; ),) + N())Y(b; k)],

where Y(x; ) denotes a fundamental matrix solution of L[y] )B(x)y with
elements entire functions of for fixed x on ab. Furthermore, the index of
each proper value is equal to its multiplicity as a zero of A(k), as may be es-
tablished by a method analogous to that used in the proof of Theorem 5.2 of
[3].
Now, if k 0 is not a proper value for a problem (2.1), it follows, by

methods entirely analogous to those of Bliss [1, Section 5] for real-valued
coefficients, that

G(x, t; ,o) 1/2Y(x; ,o)

with

E D-(Xo)2()o)Y-(t;+x _J

a <- x,t <= b,x t,

D(,o) =- M(o) Y(a; ),o) + N(),o) Y(b;

2(),o) M(ho) Y(a; ),o) N(,o) Y(b; o),

is the unique Green’s matrixfor the incompatible homogeneous system

L[y] o B x y O, s[y ),0] 0.

Furthermore, by an argument similar to the one employed by Bobonis [3,
Section 6] we have, for arbitrary vectors g(x) with components continuous on
ab and arbitrary constant vectors h, that the nonhomogeneous problem

L[y]- ,o B(x)y g(x), sly; 0] h

has a unique solution given by

y(x) [G(x, a; Xo) P + G(x, b; Xo) Q] h + G(x, t; Xo) g(t) dt,

where
G(a, a; ,0) lima+ G(x, a; ),0),

G (b, b; 0) limx_.b- G (x, b; 0).

Consequently, if ),0 is not u proper value for problem (2.1
rewriting (2.1) in the form

L[y] )oB(x)y (),-)o)B(x)y,

), it follows, on

s[y; 0] ( 0)sl[y],
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that problem (2.1) is equivalent to the integral system

y (x) (k k0) [V (x, a; ),0) P2 G (x, b; )o) Q2] sl[y]
(6.2) b

+ J G(x, t; o) B(t) y(t) dtl.

The integral equation (6.2) is of the form of problems considered in [7, Sec-
tion 8], wherein H(x, t) G(x, t; )o)T*-(t), S(x) =- T*(x)B(x) and 9 @.
Moreover, such integral equations are equivalent to a system of 3n integral
equations of Fredholm type, as indicated in [7, p. 387]. If (2.1) is normal
and definite [1, 0; T], then )0 may be chosen as 0, while for a normal and
definite [0, 1; T] problem (2.1), there exists a real constant 0 not a proper
value of (2.1). For each of these normal and definite problems the results of
Reid [5] on symmetrizable completely continuous linear transformations in
Hilbert space provide, for the integral system equivalent to (6.2), results on
the existence and extremizing properties of proper values, integral expansions
of Hilbert type, and convergence results of associated Fourier series.
For a problem (2.1) that is definite [cl, c2 T] and abnormal, let

L[y] By, s[y; ] s0[y] + s[y] 0

be an equivalent normal problem that is symmetrizable under an associated
nonsingular skew-hermitian transformation T1 (x), as guaranteed by Theorem
5.3. If A denotes the class of vectors y(x) for which there exists a correspond-
ing vector g(x) with continuous components on ab such that L[y] =- Bg on ab
and s[y] s[g] 0, it follows from relation (4.1) and the discussion preced-
ing Theorem 4.1 that A c A, A denoting the corresponding class for the
original problem (2.1). Moreover, if 9 and denote the functionals for the
problem L[y] kBy, sl[y; ] 0 corresponding to 9 and , respectively, for

Aproblem (2.1) it then follows from Theorem 5.3 that for an element y e we
have [y; cl, c2 T] [y; cl/k, c./] T], where kl is the nonzero real con-
stant such that TB =- k T*B on ab and 91[y; y] k 9[y; y]. Furthermore,
if y e A, then there is an abnormal solution y0 of (2.1) such that y y - y0

is an element of A and

T] D[yl el[y c/]c c2/k c2 T] [y;c,ca;T].

Consequently, the normal problem L[y] By, sl[y; h] 0 is definite
[cl/k, c2/] T], and results on the existence and extremizing properties of
normal proper values, integral expansions of Hilbert type, and convergence
in mean of assoeiated generalized Fourier series in terms of normal proper
solutions for the abnormal definite problem (2.1) follow from the application
of the above results to the associated normal definite problem.
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