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1. Introduction

1.1 Group preliminaries. Throughout this paper, "group" means "locally
compact nondiscrete Abelian group’’ unless the contrary is explicitly stated,
and G, with elements x, y, u, will denote such a group. The group of
continuous characters of G (taken as mappings into the multiplicative group
of complex numbers of absolute value 1) will be denoted by X, and elements
of X will be denoted by x, , The word "character" will mean "con-
tinuous character" unless the contrary is specified. For an integer n 1, G
will denote the Cartesian product of G with itself n times. Let R denote the
additive group of real numbers, T the multiplicative group {exp(2ri0)}0_<<,
Z the group of all integers, and K the field of complex numbers. The group
operation in all groups considered will be written as addition, except for T
and T. For an integer b > 1, the additive group of integers modulo b will
be denoted by Z(b), and the complete direct sum of groups Z(b,), e I, by
P,Z(b,). In the special case where I ll, 2, 3,... and all b, have a
single value a, we write D for this group.
For subsets A and B of G, let A -4- B be the vector sum of A and B, that is,

the set x+y’xeA, yeBl. We writenAforA +A A- A-A (ntimes),
forn 2, 3,.... We write -A for the setl-x’xeAt. IrA Ix} for
xeG, wewriteA -4- BasxA- B.

1.2 Measure-theoretic preliminaries. We shall be concerned with the al-
gebra 9(G) of all complex-valued, bounded, countably additive, regular
Borel measures on G, with setwise linear operations and multiplication of
two measures , and in (G) defined by convolution"

1.2.1 ) (E) fa h(E- x) d(x)

for all B0rel sets E in G. The following evident fact will be useful. For a
Borel set E G and an integer n > 1, let E() be the subset of G" defined
byE(n) (x x) Xl A- A- x e E}. Then for
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we have

1.2.2

where ),1 X X }, is the direct product measure of },1, , on G.
For e (G), let [ be defined for each Borel set E G by

1.2.3
= A E; A, A are Borel sets

Then X is in (G) and is the smallest nonnegative majorant of X in (G).
We define

For teG, let be the Borel measure on G such that v(E) 1if teE
and (E) 0 if e E. Plainly is an element of (G). With the algebraic
operations defined above and the norm 1.2.4, (G) is a commutative Banach
algebra, with unit element v0. It is easy to see that every in (G) can be
uniquely written in the form X a t + , where the a are complex
numbers, = a < , and ({x}) 0 for all x e G. The measure his
called the continuous part of , and if h h, X is called a continuous measure.
The carrier C(h) of a measure h e (G) is defined as the set (x" x e G,

](A) > 0 for all neighborhoods A of x}. For a closed subset F of G, we
write (F) for the set of all measures X e (G) for which C(h) F, (F)
for the set of all continuous measures in (F), and (F) for the set of all
measures in (F) having zero continuous part. It is easy to see that (F),
(F), and (F) are closed linear subspaces of (G), and that (F) is
the direct sum of (F) and (F).
For , e (G), we write << to mean that h is absolutely continuous

with respect to , and to mean that h and u are mutually singular.

1.3. Let S be the compact Hausdorff space of all nonzero multiplicative
linear functionals on (G), with the usual weak topology as linear functionals
on (G). The structure of S is formidably complicated. For x e X, the
mapping

1.3.1 k i(X) f, x(x) dk(x)

is obviously an element of S, and if x x, then (Xl) (x:) for some
reG. Thus Xis embedded in S. The topology of X as a subspace of S
agrees with its topology as the character group of G. Yu. A. Sreider [13]

One way to describe the usual topology of X is to define it as the weakest topology
under which all functions are continuous, where the measures a in UIZ(G) are absolutely
continuous with respect to Haar measure on G ([6], pp. 134-135). Since every function
is continuous in this topology, we see that X retains its usual *.opology when embedded

in .
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has given a concrete construction of the multiplicative linear functionals
on (G) for the case in which G has a countable basis for open sets. His
construction is valid for an arbitrary G. It is too general to yield by itself
much specific information about S.

1.4. Sreder has also produced a curious example of a multiplicative linear
functional on (R) [12]. This multiplicative linear functional has the
form ’t(R) for every absolutely continuous with respect to Lebesgue’s
singular measure on Cantor’s ternary set, where , is a complex number such
that0 < [/I < 1. In fact, one has

1.4.1 lim exp (2ri3Px) dt(x) "(R)

for all such t. Then M can be taken as any point in 1 zl {2r3p} =z) the
closure being taken in S for the algebra (R).

In the present paper, we give two constructions of classes of multiplicative
linear functionals on 9(G). The first of these generalizes the construction of
asymmetric multiplicative linear functionals in 9(G), and the second displays
in much stronger form the phenomenon produced by Sreder.

1.5 DEFINITION. A subset A of G is said to be independent if, whenever
xl, Xn are distinct elements of A and q, q are integers, the equality
q x -t- q x 0 implies that ql q, O. Let a be an integer
> 1. A subset A of G is said to be a-independent if all elements of A have
order a, and if, whenever x, xn are distinct elements of A and ql, qn
are integers, the equality q xl + + qn Xn 0 implies q q2

qn 0 (mod a).

Our first main result follows.

1.6 THEOREM. Let G be any group, and let P be any closed subset of G that is
either independent or a-independent for some integer a > 1. Let L be any linear

functional of norm 1 on the linear space (Pt (-P) such that if xl x,

are elements of P (not necessarily distinct), q,..., q, are integers, and
q x zr q,Xn O, then

1.6.1 L(s,)’L(s.) L(s,)’ 1.

Then there is a uliplicative linear functional M on (G) such that L()
M() for all e (P P) ). If every neighborho of 0 in G contains an ele-
ment of infinite order, then every nonvoid open subset of G contains an independent
set homeomorphic to Cantor’s ternary set. If some neighborhood of 0 in G con-
tains only elements of finite order, then every neighborhood of 0 in G contains an
a-independent set A, for some integer a > 1, homeomorphic to Cantor’s ternary set,
and every nonvoid open subset of G contains a translate P of A for
which (P (-P) has the property stated above.
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1.7. To state our second main result, we define sets of complex numbers
10 and 11 for every group G. If every neighborhood of 0 in G contains an
element of infinite order, then

F0 {z: z e K, [z 1} and r, {z: z e K, z[

_
1}.

If there is a neighborhood of 0 in G containing only elements of finite order,
then there is at least one integer a > 1 such that every neighborhood of 0
in G contains a replica of Da (for the proof of this fact, see 2.2 infra). Select
any such a, let F0 {1, exp(2ri/a), exp(4ri/a), exp(2(a 1)ri/a)},
and let rl be the convex hull in K of I0.

1.8 THEOREM. Let Q be any subset of G homeomorphic to Cantor’s ternary
set such that every continuous function defined on Q with values in F0 is arbitrarily
uniformly approximable by characters of G. Let L be any linear functional
on 9 Q such that

1.8.1 L(},) erl /f e(Q), },_ 0, andS(G) <- 1

and

1.8.2 L(s) eF0 /f xeO.
Then there is a multiplicative linear functional M X- such that M(h L(
for all e (Q). Furthermore, every nonvoid open subset of G contains a set Q
of the sort described.

1.9. In 2, we show that every nonvoid open subset of an arbitrary group
G contains a set P as described in Theorem 1.6. The proof of Theorem 1.6
is given in 3, and various inferences are drawn from Theorem 1.6 in 4. In
5, we construct sets Q as required in Theorem 1.8, and in 6 we give an
analogue of Kronecker’s approximation theorem for finite sets of measures
on Q. This theorem is applied in 7 to prove Theorem 1.8. We are indebted
to W. Rudin, K. R. Stromberg, and J. H. Williamson, respectively, for the
privilege of reading [11], [14], and [16] in manuscript form.

2. Construction of sets for Theorem 1.6
2.1. Suppose that every neighborhood of 0 in G contains an element of

infinite order. Rudin has shown [10] that every neighborhood U of 0 in G
contains an independent perfect set homeomorphic to Cantor’s ternary set,
which we denote by A. Now let x be any element of G. Let P x + A.
If x has finite order, it is obvious that P is an independent set. If x has
infinite order, let A and A2 be perfect complementary subsets of A. Assume

The first construction of perfect independent sets in R is due to J. v. Neumann [8].
v. Neumann’s set actually consists of algebraically independent elements.

If G is nonmetrizable, then Rudin’s construction can be modified in an obvious way
to yield perfect independent sets not necessarily homeomorphic to Cantor’s ternary set.
This generalization is unimportant for our present purposes.
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that neither x A1 nor x - As is an independent set. Then we
have mjx q)a)

__ __
q(-,., where the are in A the and m

are integers, and m. 0 (j 1, 2). It follows that ml ms x is a linear com-
bination of elements from A and also a linear combination of elements from
As. This can occur only if ml ms x 0, which is impossible. Hence one of
the sets x -- A1, x -- As is independent. We choose P to be an independent
set x - A (j 1 or 2). Since the neighborhood U of 0 is arbitrary, we find
that every nonvoid open subset of G contains an independent set homeo-
morphic to Cantor’s ternary set.

2.2. Suppose now that there is a neighborhood of 0 in G containing only
elements of finite order. Here a little care is needed in constructing our
sets P. Let U be any neighborhood of 0 in G with compact closure and let
y be any element in G having finite order m. Let V U - {0, y/, W
Vu V), and Go tJ 1 nW. Clearly Go is a compactly generated open and
closed subgroup of G. The structure theorem of Pontryagin-van Kampen
([9], p. 274, Theorem 51) shows that Go is the direct sum Z G, where G..
is compact. Note that y e G. Thus G is an infinite compact group with a
neighborhood of 0 containing only elements of finite order. Rudin ([10], p.
161, Lemma 3) has shown that the orders of all elements in G1 are bounded.
Hence the same is true of the character group X1 of G. As a discrete Abelian
group of bounded order, X is the algebraic direct sum of cyclic groups of
bounded order (see for example [1], p. 44, Theorem 11.2). Therefore G1 is
the complete direct sum of cyclic groups of bounded order, G P,x Z(b,),
where I is an infinite index class. The topological structure of G as
a Cartesian product of finite discrete spaces and the fact that there are only
finitely many distinct integers b, show that every neighborhood of 0 in G
contains a replica of the group Da, for some fixed integer a > 1.

2.3. Let Da be represented as the group of all Z(a)-valued functions
x() defined on a countably infinite set t, with the usual addition and the
Cartesian product topology. We may suppose that 2 is the set of all finite
dyadic systems" 2 [J

__
2, where t consists of 2 elements ,....,,, each

is0or lfori 1, ,n, and the setsftarepairwisedisioint. Let Y {y}
be a realization of Cantor’s ternary set as the set of all infinite dyadic sequences
with the usual topology: y ((y), s(y), ), where j(y) is 0 or 1 for
j 1,2,.... Putx() lif ,,...,, for some n, andx(0) 0
otherwise. Then it is easy to see that the mapping y -- x is a
homeomorphism of Y into Da. Write the set /x}r as A. Suppose that
x, ..., x are distinct elements of A and that qx -t- + qx 0,
where q, q are integers. There is obviously a positive integer n such
that the elements ((y.), (y.) e 2 are all distinct. Hence the
only entry in the sum ql x -t-- q,x at ((y), ..., (y)) is q.
Thus A is a-independent in D. (For a similar construction, see [7].)
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2.4. Now let y be any element of finite order in G. We have already
constructed G1 so as to contain y. A neighborhood of y in G1 (and hence in
G, since G is open and closed) consists of all x e G such that x, y, for all
in a certain finite subset {, m} of the index class I. Let y be the

element of G1 ecual to y on this finite set and equal to 0 for all other values
of e I. Let D be a replica of the group Da contained in the subgroup of G
consisting of all x such that x,1 x, 0. Let A be any subset
of DPa of the sort constructed in 2.3. In this case, let P y’ A- Ap. The
elements of P need not have order a, so that P need not be a-independent.
However, P has the important property that no multiple of y’ is in the group
D unless it is equal to 0.

Finally, let y be any element of G having infinite order. Plainly no multiple
of y except 0.y lies in G1. Let Da’ be any replica of D contained in a fixed
neighborhood U of 0 in G, let A be a subset of Da’ as constructed in 2.3,
and let P y -4- A.

2.5. We summarize the constructions of 2.3 and 2.4. Suppose that there
is a neighborhood of 0 in G containing only elements of finite order. Then
every neighborhood of 0 in G contains a set P homeomorphic to Cantor’s
ternary set which is a-independent. Let H be an open subset of G not con-
raining 0. Then H contains a compact set P of the form w -t- A, where
no multiple of w different from 0 lies in the subgroup generated by A, and
where A is a-independent and homeomorphic to Cantor’s ternary set.

2.6. In 2.1-2.5, we have given rules for constructing a set P in an arbitrary
nonvoid open subset of a group G. Throughout 3, and elsewhere where
Theorem 1.6 is referred to, the set P will be taken to be one of the sets de-
scribed in 2.1 or 2.5. If G has arbitrarily small elements of infinite order,
we use the construction of 2.1; if not, we use 2.5. For all of the sets P con-
structed, we have P n (-P) 9 unless all elements of P have order 2, in
which case it is obvious that P -P.

3. Proof of Theorem 1.6
3.1. We break up the proof into several steps. The basic idea is simple.

The elementary theory of commutative Banach algebras shows that to prove
Theorem 1.6, we need only show that the set lt L()s0}, t 9E(Pu (--P)),
is contained in some ideal of 9E(G). That is, we must prove that the identity

3.1.1 m= (t’ L(/’)0) * a. 0

can hold for no gl, g in ffE(Pu (-P)) and a, a in (G). We
make several reductions to put the left side of 3.1.1 into tractable form, from
which we will prove that 3.1.1 is impossible. Since t is a linear combination
of nonnegative measures and L is linear, we may obviously suppose that each
g. in 3.1.1 is nonnegative and has total measure 1. Our second reduction is
to the case in which the g.’s have pairwise disjoint carriers. For this, we
need a preliminary result.
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3.2 THEOREM. Let B be any closed subset of an arbitrary group G,
let tl m be any nonnegative measures in 9(B), and let v be any positive
number. Then there are nonnegative measures 1, l in (B) with pair-
wise disjoint carriers, and nonnegative real numbers ck (j 1,..., m;
tc 1,..., n), such that

<, 1,..., m).

Proof. Let 1 - - m. All of the .’s are absolutely continuous
with respect to and have nonnegative finite-valued Radon-Nikodym deriva-
tives pj with respect to . For each p. there is a simple Borel measurable
function defined on B such that 0 -<_ . -< p. and

3.2.2 fB [p.(x) z.(x)] dry(x) < 7/2 (j 1,..., m).

For every ordered m-tuple of real numbers (a, am), let
E(a,... ,am) {x:xeB, z.(x) ajforj 1,... ,m}. There are only
a finite number of nonvoid sets E(a, ..., am), say El, E. These
sets are pairwise disjoint, and their union is B.

Let k be the characteristic function of the set E (/ 1, n). There
are (obviously unique) nonnegative numbers c() such that

3.2.3 . = c() (j 1, m).

Let c max {c) - -t- c(J)’j 1, m}. Since is a regular measure,

there are compact subsets F of E such that

3.2.4 p(E) < (F) -b v/2c (l 1, ,n).

Let h be the characteristic function of F, and h the measure in (B)
defined by

),(Y) (F a Y) (/c 1, n)

for Borel sets Y G. Plainly the sets C(h),
joint. Relations 3.2.2, 3.2.3, and 3.2.4 imply that

C(n) are pairwise dis-

f, a.(x)] d(x) + fB d,(x)

< 7/2-k cq/2c v (j 1,...,m).

This is 3.2.1, which we wished to prove.

3.3 LEMMA. If 3.1.1 holds, then there are nonnegative measures
in (P o (-P) and measures , in (G) such that

3.3.1 = ( L(,)eo) So,

The following result holds for measures on any locally compact Hausdorff space;
we state it only for the case needed below.
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and such that the sets C(X1), C() are pairwise disjoint and C(hk) is con-
tained in P or in P k 1,... n)

Proof. In Theorem 3.2, let B P u (-P), and let (2i1 a. [[)-1.
It is clear that in constructing the k’s of Theorem 3.2, we may suppose that
C(h) c PorC(
or P -P). A simple computation shows that

(recall that [[ L 1). Hence the measure

has an inverse, say
c. a) . ( 1,..., n).

We now make a third reduction.

3.4 LEMM. If 3.3.1 holds, then there are continuous nnegative measures
7, Yn in (Pu (-P)), points x, x in Pu (-P),and meas-
ures a, a, fl, in (G) such that

3.4. (-/()e0)

The sets C(7x), C(7), {x}, ..., {x} are pairwise disjoint, and each is
contained in P or in -P.

Prog. The measure X in 3.3.1 has the form + t)e}), where
is continuous, the t) are positive or zero, anda t) < (k 1, ,n).

The norm t e ]] _+ tl) can be made arbitrarily
small by proper choice of the N (k 1, n). The proof now follows
that of Lemma 3.3. The disjointness and inclusion relations asserted follow
from the inclusions ,..., , a C() ( ,...,n).

3.5 LEMMA. Lef 7 be any nonnegative confinuous measure in (G) such
$hat 7(G) 1, and let z be any complex number such that z < 1. Le be
any posifive number less $han 2. Then there are complex numbers u and such
(ha u
wi(h (g) ,(g) 1, C() n C(,) , and C() u C(,) a C(), such
fhaf

3.5.1 (- uo) +
Proof. For z 0, let u nd v be the unique complex numbers such that

[u[ v lndz (u + v). Forz 0,1etu -1, v 1. Since

See footnote 8.
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, is continuous, there is a measurable subset A of C(,) such that ,(A) 1/2.
Since is regular, there are a compact subset F1 of A and a compact subset
F of C(,) n A’ such that ,(A a F’I) < 1/47, ,(C(,) A’ n F) < 1/47. Let. be the measure such that .(E) (Fj n E) (,(Fj))-1 for Borel sets E c G.
Then we have

1/2(1-- U0) " 1/2(2--" VS0) (’ Z0)i[

which is 3.5.1.

3.6 LEMMA. If 3.4.1 holds, there are continuous nonnegative measures
1, q each of total measure 1, complex numbers al aq each of absolute
value 1, and measures rl rq in 9(G), such that

3.6.1

The sets C(), C(q), {x}, {x} are pairwise disjoint, and each is
contained in P or in -P.

Proof. There is no loss of generality in supposing that 0 for
j 1,.-., m, in 3.4.1. Writing ( L()r0),a as

we may also suppose that (G) 1 (j 1,..., m). Since i 1,
we then have [L() 1. if L(+) 1, we set equal to a single
measure , and write L() a,. If L(+) < 1, we apply Lemma 3.5,
choosing complex numbers u+ and v+ such that [u+] v+] 1, L(+)
+(u + v), and finding measures > and J-:> such that

Choosing v sufficiently small, using the argument of Lemma 3.3, and re-
numbering the ’s, we obtain 3.6.1.

3.7. We summarize our present situation. If Theorem 1.6 fails, there exist
continuous nonnegative measures X,..-, X in (P u (-P)), points
x, Xn in P (--P), complex numbers a, a of absolute value 1,
and measures a, a, B, B in (G) such that

3.7.1 +
The sets C(X), C(X), {x}, {Xn} are pairwise disjoint and each is
contained in P or in -P. We will prove that 3.7.1 cannot hold.

3.8 TEOnEM. Let p be any positive integer, and all notation as in 3.7. Then
0 Products and powers of measures are convolution products, here and below.
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3.8.1 I]I-IL1 (x-1 -- a8 x -- -- a-1o)
p--I --2H= (, + L() +... + L()-%)[

Proof. Let denote the measure written on the left side of 3.8.1. The
general term of v is

3.8.2 A(l ,... l,)B( ,..., k.)X’ m+...+,,

where0 1, p- 1 (s 1,...,m),0 kt p 1 (t 1,...,n),

3.8.3 A(ll, ,/,,) af--h a--zm,
and

3.8.4 B(k,... /c) L(,,)--k’... L(- --k

We first show that

unless 11 l’, l 1;. With no loss of generality, we suppose that
11 > l’ and will prove that

xl’ x (c(xl x ,)) o,"
where for brevity we have written/t xl -t- - k x, u, k[ xl -t- -t-

x, This of course will prove that

x’ ,... x +/- x ,... x ,,.
Write C(X.) P. (j 1, m). It is easy to see that

(xl ,..., xa , ,) ; P, + + ’ p, + ’.

As pointed out in 1.2.2, we have

a.s. x’ x ,(; P, + + P + ’)

where E is the set of all points (x[) () x) () u) in

Gh+’’’++ such that xi) ePi (s 1, li ;j 1, m) and
(1) X) (m)x)+ +x + + + + +uelP+ +lP+u’.

For every point in E, therefore, we have

(1) xm)3.8.6 x) + + + + + + +u
) +... + i) + + I) +... + 12’ + ’,

This does not assert that

x’,...,x, na x ,...,x ,,
have disjoint carriers, which is a much stronger condition than mutual singularity.
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or

,.s. Ex’- E i,’ + + E, E + - 0,

where the xj) and y) are in P. (j 1, m). Suppose first that P is
independent or a-independent in the sense of 1.5. Then, since P, P,
x}, {Xn} are pairwise disjoint and each is contained in P or in -P, it is
clear that
3.8.8

if 3.8.7 is to hold. If the equality x) x) holds for no distinct s and t,
(1)1 s l, 1 l, then each x, must combine with a distinct y) in

order for 3.8.8 to hold. Since l l, this is impossible, and we have
x) x1) or x) -x) for some distinct s and t. Fubini’s theorem and
the continuity of h now show that the right side of 3.8.5 is zero, which we
wished to prove.

If P has the form w + A as in 2.5, then the equality 3.8.6 leads to the
equality

N + E i" + + E i)+ N% + E i)+ + E Iv)+ ’,
where N and N’ are integers, the x’s and y’s lie in A, nd u and u’ are now
linear combinations of elements of A. It follows that Nw Nw, and then
we argue as before to prove that the right side of 3.8.5 is zero.
Now look at the measures

h .... h e+...+ and .... i+...+.,

which have carriers

and
P + +P + (’ + + ’, ),

respectively, and suppose that k x +... + x k x +... + k x
Assume that C D 9. If P is independent or a-independent, then the dis-
jointness of P, P, (x], {x], and the fact that each P is con-
tained in P or in -P, give an immediate contradiction. Suppose that P has
the form w + A as in 2.5 and that C D . Write x x w
(k 1,... ,n). Then there are pointsy)andz)inP- w A such
that

(1 + + ) +

3.8.9
1) zm) ()( + +

+ (’ +... + ’) + ’ +... + .
The sets P w, ..., P w, (x, {x are obviously pairwise dis-
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joint, and each is contained in A or in -A. No multiple of w except for 0
is in the group generated by A. Equality 3.8.9 therefore implies that
(k + + k)w (k -+- k’,)w, and the properties of A implythat
kx* k’x*, ..., kx kx. Hence k.x + + kx
x W W k x, which is a contradiction. The measures

’ .... e,+...+ and ), .... ,+...+
therefore have disioint carriers if ] x + -t- ] x k’ x d- W k’ x
and are certainly singular with respect to each other.

Condition 1.6.1 on the linear functional L shows that B(/, /c)
B(k’ k’ if k x d- d- k x k Xl - + ’n Xn
We have thus proved that every pair of distinct measures appearing in the

expansion of r as a sum of monomials h h r+...+.. are mutu-
ally singular, and that equal measures appear with equal coefficients. The
coefficients A (l, l)B(k, k.) all have absolute value 1. Since
the norm of a sum of pairwise singular measures is the sum of the norms,
the equality 3.8.1 is proved.

3.9 Completion of the proof of Theorem 1.6. Multiply both sides of the
equality 3.7.1 by the measure r introduced in Theorem 3.8. An elementary
computation then gives

’= a, (h a’0)l-I=.i (hv- + a h- + + a Co)

*i (- -+ L(,) +...+
3.9.1

+ ( L()) ’ (x- + a- + + af-0)

* H=. (: + L(), +-.. + L()-0) .
The usual norm inequalities show t once that the norm of the left side of
3.9. i thn or u to 2+-(7_ +

_
), Co,try-

diction if p is sufficiently lrge. This completes the proof of Theorem 1.6.

4. Some consequences of Theorem 1.6
4.1 THEOREM. Let L be any linear functional on the linear space

9(P u (-P)) of norm not exceeding 1. Then there is a multiplicative linear
functional M on 9(G) that agrees with L on 9(P u (-P)).

Proof. Let b be any character of G, continuous or discontinuous. For
), h -+- = ae(P u (-P)), let L(X) L(h) A- =1 a (x).
Since r(P u P) is the direct sum of (Pu P) and (P u P) ),
L is well-defined. Plainly, L satisfies the hypotheses of Theorem 1.6.

4.2 THEOREM. Letf be any Borel measurable complez-valuedfunction of abso-
lute value no exceeding 1, defined on P u (-P). Then there is a muliplicaive
linear functional M on (G) such that

M(X) fa f(x) dX(x) for all h e 9(P u (--P) ).
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This fact follows at once from Theorem 4.1.

4.3. Theorem 4.2 can be regarded as a partial generalization of the theorem
of Yu. A. Srelder referred to in 1.4, except for the fact that the M of Theorem
4.2 need not lie in X- In 7, we shall show that a similar result can be ob-
tained with M e X- if P u (-P) is replaced by a more special, set Q.
The following fact is a slight improvement over previously obtained results

([3], [11], [16]).
4.4 THEOREM. The algebra 9(G) is asymmetric. In fact, there is a multi-

plicative linear functional M on 9(G) such that M() M(h) for
91(P o (--P)) if and only if (G) O.

Proof. In Theorem 4.2, let f be the function identically equal to
i (i -1). Then there is a multiplicative linear functional M on

such that M(h) ih(G) for all e 9]Z(P (-P)). Since (G) h(G) and
C(k) c P (-P), the present theorem will be proved as soon as we show
that there are nonzero continuous measures on P (-P). Taking P homeo-
morphic to Captor’s ternary set, we see that P u (-P) is also homeomorphic
to Captor’s ternary set, and hence carries a large number of nonzero con-
tinuous positive measures.
The following theorem is also a slight generalization of known facts.

4.5 THEOREM. There is a measure with carrier P o (--P) u {0} such that
is bounded away from zero on X and has no inverse in 9(G).TM

Proof. Let P and X be as in 4.4, and let , W 2ie0.

4.6 Note. Condition 1.6.1, which is evidently necessary for Theorem 1.6,
imposes a severe restriction on L(e,) for x e P (-P). This is quite natural,
since any multiplicative linear functional M is a character of G (continuous or
discontinuous) when applied to the point measures e, (x e G).

4.7 THEOREM. Let ,..., , be pairwise singular measures in
g(P o (-P) ), for which k-[[ 1. Then thejoint spectrum
of k kn is the product of n unit disks {z" z e K, zl <= 1}. That is, for
every n-tuple of complex numbers (z,..., Zn) for which zll <-_ 1,...,
z, <- 1, there is a multiplicative linear functional M on g(G) such that
M(M) z ,..., i()n) Zn.

Proof. Consider the linear space i)0 spanned by , h and the linear
functional L0 on i)0 defined by Lo(a - an n) a z a, Zn
The norm of L0 is max (Iz I, [Zn I), and by the Hahn-Banach theorem,
there is a linear extension L of L0 over (P u (-P)) with the same norm.
Now apply Theorem 4.1.

The last assertion is due to Wiener and Pitt [15] for the case G R. The con-
struction given by Wiener nd Pitt is difficult to follow. The first satisfactory proof,
for G R, is due to retder [13].
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4.8 THEOREM. Let k and be distinct positive integers, let 1, hk and
be nonnegative measures in 91(P u (-P) ), and let r and p be arbi-

trary elements of norm 1 in gg(G) that have inverses. Then the measures
)t hk * r and p are mutually singular.

Proof. Let be a real number such that 0 < . 1, and let M be a multi-
plicative linear functional on 9r(G) that is equal to a(G) for all

e 91Z(P u (-P)). Theorem 4.1 shows that such an M exists. reider [13]
has shown that M can be represented by integration with respect to a general-
ized character x(x) of G, which is defined as follows. For every e 9Z(G),
: is a Borel measurable function13 defined on G such that

(1) implies xl(x) (x) a. e. (I 1 [);
(2) sup:(a) {ess supa x(x) [} 1;

G(3) x(x)x(y) x(x - y) for almost all points (x, y) e with respect
to X ;

(4) M(o-) . x(x) do-(x) for all t e i)(G).
In examining the measures , and for singularity, we lose no generality in

supposing that all and u" have total measure 1. Assume that there is a
nonzero, nonnegative measure ti such that ti << , and << . Then we have
X(x) Xx(x) a. e. (ti) and x(x) x(x) a. e. (), by condition (1). Hence
there is u Borel set E such that h(E) > 0, (E) > 0, and x(x) x(x) for
all x e E. We also have M(),) tkM(r) and M() tM(p). It is easy to
see from this that xx(x) tM(r) a. e. ([ X I) and x(x) tM(p) a. e. (I I),
in view of condition (4). It follows that tM(r) tM(p). Since 0 < < 1
and i(r) I/(p) 1, this is impossible.

4.9 THEOIEM. Let and be nonzero nonnegative measures in
NZ(P u (--P) ). Then ffg(P u (-P) ).

Proof. Let M be the multiplicative linear functional used in the proof of
Theorem 4.8. We have M( ) M() .M() th(G)p(G) tk (G).
If were in lllZ(P u (-P) ), we would have M(), ) t), (G), an im-
possibility.

5. Construction of the set Q for Theorem 1.8
The sets P that figure in Theorem 1.6 are pathological, to be sure, but they

are constructible explicitly in groups such as R and D, and they are charac-
terized essentially by the condition of independence or a-independence (barring
the special case discussed in 2.5). If we construct more special sets, then we
can expect even more bizarre results, like Theorem 1.8. We proceed to the
construction of sets Q in arbitrary groups.

1 Karl R. Stromberg has pointed out that the functions x can all be taken Borel
measurable, and not merely measurable with respect to a I, as in retder’s original con-
struction.
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5.1. Let G be a group, and let V1, V, be arbitrary nonvoid, pairwise
disjoint open subsets of G. We wish to find points x. V. (j 1, n)
with the following property. Let zl, z, be any complex numbers that
are values of (continuous) characters of G, and let , be any positive number.
Then a character x e X can be found such that x(xj) zl < for j 1,

n. If this can be done, we say that G is Ii:roneckerian. For the con-
struction of the sets Q, we need to show that certain groups are Kroneckerian,
as follows.

5.2. If G R, then in V. we can choose x. such that xl, x are ration-
ally independent. Applying Kronecker’s approximation theorem, we see that
R is Kroneckerian.

5.3. Suppose next that G is compact and that every neighborhood of 0 in
G contains an element of infinite order. Let pl, p be integers not all
zero, and let f be the function with domain G and range contained in G such
that f(y, y) p y d- d- p y. Plainly f is a continuous homo-
morphism. If f-1 (0) contains a nonvoid open subset of G, then f-1 (0) con-
tains a neighborhood W X X W of (0, 0, 0) in G, so that pj x. 0
for all x e W (j 1, n). This contradicts our hypothesis on G. The
set E(pl ,..., p,,) (Y ,’", Y,,)" P Y -4- -4- pn y,, 0} is thus an
open dense subset of G. Since G is compact, the set E E(p, p,,),
taken over all n-tuples (p, p) of integers not all zero, is dense in G.
Hence V X X V contains a point (x, xn) such that pl x d- d-
p x 0 if and only if p pn O. Now look at the subset
B lx(x),’" ,x(xn)}xxofT. Plainly B is a subgroup of T. IfBisnot
dense in T, there is a character of T that is equal to 1 on B and is not
identically 1 (see [9], p. 258, Theorem 42). That is, there is a sequence
(p, p., p) of integers not all zero such that x(x)1... X(Xn)
X(Pl Xl -4- "4- Pn Xn) 1 for all characters x of G. Thus p x d- d-
p x. 0, which is impossible, and therefore B is dense in T.4 This means
of course that G is Kroneckerian.

5.4. Suppose finally that G De. For a sequence of integers
(r,..-,rm),where0 -< r. < a(j 1,.-.,m),letF(r,... ,rm) be the
set of all x De such that x. r (j 1, m). Pairwise disioint open
subsets V,..., V of D may be taken to be of the form V
F(r) ,... ,r (j 1,..- ,n). Letx(’) be the element of V.suchthat
x() lif] m-jandx() 0ifI>mandlm-j(j 1,... ,n).
Let b- be any integers 0,1, ,a- 1 (j 1,... ,n). Let x be the func-
tion on Da such that x (Y) exp [2ia-(b y+ + -t- b y+)]. Plainly

1 This fact can also be proved from a general approximation theorem of Hewitt and
Zuckerman ([4], Theorem 2). The set {x x} generates a free group, and there
is a character of the discrete group G assuming arbitrary values of absolute vlue at
x, x. This character is arbitrarily approximable at x, x by a continuous
character of G.
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x is a continuous character of Da and x assumes the value exp [2ib/a] in the
set Vj (j 1, n). Since every character of Da has the property that
b 1, we have shown that Da is Kroneckerian.

5.5. Suppose now that G is a metric group with metric d that is Kronecker-
ian. Let {,l,l be a sequence of positive real numbers with limit 0. Let
Q0) be any compact neighborhood in G. Suppose that for a nonnegative
integer r, the pairwise disioint compact neighborhoods Q’), r(’) have been
defined. We proceed inductively to define Q,+I) ,(,;1),..., r 1. First select

r(r-l-l) TTr (r-l-l) Q,)nonvoid open subsets rv .-1 and ,, 2" of that have disjoint closures
(r+l) 2r+l) wr-i)(j 1, 2"). Let x (/ 1, be points in such that

the set {xr+l) (r-t-I),-.., x.r+ satisfies the Kroneckerian condition. It is clear
from the Kroneckerian property that we can find a finite set Y,+I of characters
of G with the following property. Consider any sequence u, u,+ll of
complex numbers each of which is a value of a character of G. Then there is
a character x e Y,+l such that x(x) ul < tr+l/2 (] 1, ..., 2r+i).
Now let Q(’+) be defined by

ix: x G, Ix(x) x(x) =< e+/2}
(r-t-l)n {x’x e G, d(x, x <-_ 1/(r - 1)} n W(kr-l),

2"+1)where the first intersection is taken over all x e Y,+I (]c 1,
We have thus defined by induction the sets Q), z., for every non-

negative integer r. The sets Q() are compact neighborhoods, are pairwise dis-
joint for each fixed r, and have the property that u- u u
(r 0, 1, 2, ;j 1, 2, 2). They have a further vital property,
to wit" if u, u} is any sequence of complex numbers each of which is
the value of some character of G, then there is a character x of G such that
x(x) u for allx e Q) (j 1, 2).
Finally we define Q as the set (U= Q)).
5.6. It is easy to see that the set Q just defined is homeomorphic to Cantor’s

ternary set. It is also easy to see that continuous functions of absolute value
1 on Q can be approximated by characters as follows. If G is Kroneckerian
und has arbitrarily small elements of infinite order, let f be any continuous
complex-valued function on Q such that ]fl 1, and let v be any positive
number. Then there is a character x X such that If(x) x(x) < for
all x e Q. If G D, then any continuous function f on Q whose range is
contained in the set {1, exp (2ri/a),..., exp (2(a 1)ri/a)} is actually
equal to a character of G on Q. Note also that we have constructed sets Q
in arbitrary nonvoid open subsets of R, Da, and compact metric groups con-
taining arbitrarily small elements of infinite order.

5.7. We will now show that sets Q with the properties described in 5.6 can
be constructed in every nonvoid open subset of an arbitrary group G. Sup-
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pose first that G contains arbitrarily small elements of infinite order. Let W
be any Open subset of G with compact closure, and let G1 be an open and
closed compactly generated subgroup of G that contains W. (One can take
G as U :=1 nY, where Y u u ) u V), V being any neighbor-
hood of 0 in G with compact closure.) A well-known structure theorem, already
referred to in 2.2, asserts that G Z -- R -- G, where G. is compact. If
is positive, then every open subset of G, and hence in particular W, contains
an open interval from the real line R, and this interval contains set Q as
constructed in 5.5. Since every continuous character of the closed subgroup
Rof G admits an extension over G that is a character of G, we have our set
Q in case is positive. If 0, that is, if G fails to dmit R s a direct
summand, then G must be n infinite compact group containing arbitrarily
small elements of infinite order.
Suppose that the open set W is contained in G nd that u is ny point of

W. We wish to show that there is a compact metric subgroup H of G having
arbitrarily small elements of infinite order such that H a W . Consider
the discrete character group X of G. Since G s the character group of
X. has the topology of pointwise convergence on X, we need to show that,
given the character u of X, there exists a character x of X that is arbitrarily
close to u on a preassigned finite subset {x, x/of X and also generates
a metric subgroup of G. having arbitrarily smll elements of infinite order.
Since G. has arbitrarily smll elements of infinite order, X is not of bounded
order (see [10]). Let Y be ny countable subgroup of X that contains
{xl, xm} and is of unbounded order. Let Y’ be a countable divisible
group containing Y (see [1], p. 65, Theorem 20.1). The identity mapping of
Y onto Y can be extended to a homomorphism carrying X into Y’ ([1], p. 59,
Theorem 16.1). Let X0 be the kernel of this homomorphism. Then distinct
elements of Y lie in distinct cosets modulo X0. Let H be the (compact)
character group of X2/Xo. Plainly H is a compact subgroup of G1. Since
X/Xo is of unbounded order, H has arbitrarily small elements of infinite
order. Since X2/Xo is countable, H is metric. Since no new relations are
introduced among the elements of Y by the homomorphism carrying X onto
X./Xo, there is a character of X2/Xo, that is, an element of H, that agrees
with u on the set {xl, xm}.
Thus H has nonvoid intersection with a preassigned neighborhood of u.

Construct a set Q as in 5.5 lying in W n H, which is a nonvoid opensubset of H.
Then any continuous function of absolute value 1 on Q can be arbitrarily
uniformly approximated on Q by a character of H. This character can be
extended to a character of G.
Now suppose that W lies in some coset of G1. modulo Zk different from G.

There is a character of Zk + G that is identically 1 on Z* and is an arbitrary
character on G, so that here there is no problem in translating a set Q with
preservation of its required properties.
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We have thus shown that sets Q with the properties given in 5.6 exist in
every nonvoid open subset of every group G that contains arbitrarily small
elements of infinite order.

5.8. We must now deal with the case in which G has a neighborhood of 0
containing only elements of finite order. In every neighborhood of 0, there
is a replica of the group Da for some a > 1, as was pointed out in 2.2, and
for Da we have the construction of 5.5. Just as in 2.4, we see that upon trans-
lating these groups Da, we can always arrange to have this translating done by
a direct summand of of Da SO that the required properties of Q c Da can be
preserved by translation of Q into an arbitrary open subset of G.

5.9. We summarize the constructions of the present section. Let G be a
group containing arbitrarily small elements of infinite order. Then every
nonvoid open subset of G contains a set Q that is homeomorphic to Cantor’s
ternary set and has the property that every continuous function of absolute
value 1 on Q can be arbitrarily uniformly approximated on Q by a character
of G. Let G be a group having a neighborhood of 0 consisting solely of ele-
ments of finite order. Then every neighborhood of 0 in G contains a replica
of some group Da For every such a and every nonvoid open subset W of G,
there is a set Q homeomorphic to Cantor’s ternary set contained in W such
that every continuous function on Q with range contained in

{1, exp (2ri/a),... exp (2(a 1)ri/a)l

is equal to a character of G on Q.

6. A property of measures on Q

6.1. Let Q be any subset of G of the sort described in 5.9. Let r0 and rl
be as in 1.7. The following result, which may be of independent interest, is
an analogue of Kronecker’s approximation theorem, for finite sets of measures
Oil qo

6.2 THEOREM. Let hi, k, be nonnegative continuous measures in 9(Q
and xl x points of Q such that the sets C(k), C(k,), {xll, IXn}
are pairwise disjoint (either k’s or x’s may be absent). Let zl,..., z,,
w w, be complex numbers such that zj e k.(G)F (j 1, m) and
wk e F0 (/ 1, n).
X of G such that

and

Let be a positive number. Then there is a character

fax(y) dk(y) z- <7 (j= 1, ,m)

6.2.2 X(xk) w < V (]c 1, ..., n).

Proof. We may obviously suppose that k(G) 1 for j 1,..., m.

WriteC. C(k.) (j 1,...,m). The setsC,’",C,lx},"’,{Xn}
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are pair,wise disjoint, the measures X. are continuous, and Q is homeomorphic
to Cantor’s ternary set. Hence we can find a dissection of Q into pairwise
disjoint open and closed sets, say D1, Dr, such that no D intersects more
than one of the sets C1, Cm,/x}, {xn} and such that X.(D) < 1/47
for j 1,..., m and 1,..., r. Consider now a fixed X. and let
E E be those setsD that intersect C enumerated in some fixed order.
Let F be the set D that contains x (k 1, n). Plainly no set D ap-
pears more than once among the E’s and the F’s.
We have =X(E 1. Consider first the case in which G contains

arbitrarily small elements of infinite order. We look for a character x e X
for which 6.2.1 and 6.2.2. hold. We discuss 6.2.1 first. For the indices j
such that ]z 1, we require that

6.2.3 x(x) z for allxe u ... .
For the indices j such that 0 < z < 1, let a and b be the complex numbers
such that ]a] [b 1 and z (a + b). For the indicesj such that
z 0,1eta -landb 1. For all indices j such that [z] < 1, let
l be the greatest among the integers for which X(E= . Write
p (ECj). Forall indicesj such that z < 1, we require further
of the character x that

6.2.4 Ix(z) al < -y
and

6.2.5 Ix(x) b <= ?
We require finally of the character x that

6.2.6 Ix(x) wk <

7(x )u ufor

for all x E ro’
+I U U .-:vmi

for all x e F(k) (k 1, n).

There is no inconsistency among the requirements 6.2.3-6.2.6, and they can
all be satisfied by a single character x of G, in view of the properties of Q
(see 5.9).
For indices j such that z. 1, we have

u=l i)

For indices j such that z[ < 1, we have

L X(x)dk(x) z <= X(x)dk(x) a,

u=l i+1 i)
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The inequalities 6.2.7 and 6.2.8 are iust 6.2.1. Inequality 6.2.2 is obviously
satisfied for the present choice of x. This completes the proof for the case in
which G contains arbitrarily small elements of infinite order.
Suppose finally that every neighborhood of 0 in G contains a replica of Da

for some a 2, 3, Here we have z. ’- () exp (2riv/a), where
the b,j) are nonnegative numbers such that -0 b) 1, uniquely deter-
mined by z. (j 1,..., m). Also each w is one of the numbers
1, exp (2-i/a), exp (2(a 1)ri/a). The proof is a repetition of the
preceding case, with a and b. replaced by the set

1, exp (2-i/a), exp (2 (a 1) .i/a)}.

We omit the details.

7. Proof of Theorem 1.8
7.1. Let G be any group, F0 and F1 as in 1.7, and Q as in 5.9.

7.2. Let L be a linear functional on lift(Q) satisfying the hypotheses of
Theorem 1.8. Let Its1, m} be any finite subset of 9t(Q), and 7 any
positive number. Let A(tl, m 7) be the set of all x e X such that

I(x) L(.) < 7 forj 1,..., m.

" 7) is nonvoid for all choices of 1, and 7, then

7.2.1

If
the set

7.2.2 1 5(, 7)- IL
is nonvoid, where the intersection is taken over all {, t} and 7 > 0
(the closure is in the space S). This follows at once from the compactness
of S and the finite intersection property of the sets A(, m 7). Now
let M be any multiplicative linear functional in the set Ix. It is obvious
that M() L() for all Ig(Q) and that M X-.
We have thus only to prove that the set A(t, 7) is nonvoid for

each {tl, t} i)t(Q) and 7 > 0. As in the proof of Theorem 1.6,
we make a number of reductions. The first of these is the trivial reduction
to the case in which all are nonnegative.

7.3. Our second reduction is to the case where the sets C(m), C()
are pairwise disioint. In fact, every set A(t, t" 7) contains a set
A(X, i’) such that the sets C(},), C(n) are pairwise disjoint,
the },’s are nonnegative measures in rt(Q), and i" is a positive number. This
is proved from Theorem 3.2 and the linearity of L by a simple computation,
which we omit.

7.4. Our third and last reduction is to the case where each is either a
continuous measure of total measure 1 or a measure e with x e Q. This
reduction is accomplished by an argument like that used in proving Lemma
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3.4. We omit the details. Changing our notation, we thus have to prove
that A(),I, ),, e,1, e, /) 0, where the sets C(1), C(),
{xl}, ,/x/are pairwise disioint subsetsof Q and kl(G) ,(G) 1.
This is just Theorem 6.2.

8. Some consequences of Theorem 1.8
We observe first that Theorems 4.1, 4.2, 4.8, and 4.9 remain true with

P u (-P) replaced by Q. Note too that Theorem 1.8 cannot be used to prove
the asymmetry of 9E(G), since the multiplicative linear functionals con-
structed in Theorem 1.8 lie in X- and necessarily satisfy the relation
M(,) M() for all 9E(G).

8.1 THEOREM. Let G be a group containing arbitrarily small elements of
infinite order, and let 1, kn be nonnegative, pairwise singular measures in
Ec(Q) such that hk(G) 1 (k 1, n). For every sequence of complex
numbers z, z}, each of absolute value <- 1, there is a multiplicative linear
functional M on E(G) such that M e X-and M(hk) zk k 1, n).

8.2 THEOREM. Let G contain arbitrarily small replicas of Da (a 2, 3, ).
Let F be as in 1.7. Theorem 8.1 holds for G, if the numbers z z, lie in r
The proofs of Theorems 8.1 and 8.2 are very like the proof of Theorem 4.7.

We omit the details.

8.3 THEOREM. Let F0 and F be as in 1.7. Let be any function on Q with
range contained in F0, and let Lo be any linear functional on 91c(Q) such that
Lo(h) e r if e 9E(Q), _> 0, and h(G) <= 1. Then there is a multiplicative
linear functional M on (G) such that M X-, M(e,) (x) for all x Q,
and M() L0(k) for all eE(Q).

Proof. For g e(Q), write g g -f- , t,e**, and define L(g)
Lo(g) + = t,(x,). Then L is well-defined, is linear, and satisfies the hy-
potheses of Theorem 1.8.

8.4. Other multiplicative extensions of L. Let X be the Stone-(ech
compactification of the completely regular space X, and let X- be the closure
of X in the compact Hausdorff space S. The identity map of X onto itself
admits a continuous extension 0 mapping X onto X- (see for example [5],
p. 153, Theorem 24). Let L and M be as in Theorem 1.8, and let p be any

--1point of fiX lying in 0 (M). It is easy to see that the evaluation f(p) is a
multiplicative linear extension of the linear functional L over the algebra
(X) of all bounded continuous complex-valued functions on X. Using
X with its discrete topology, denoted by X, we can similarly extend L to be
a multiplicative linear functional on the algebra (X) of all bounded com-
plex-valued functions defined on X. Thus we find infinite-dimensional linear
subspaces of (X) and (X) such that 11 linear functionals on satis-
fying certain weak conditions are actually evaluation at points of/X or (X).
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8.5. Theorem 1.8 is not strictly a generalization of reder’s theorem
quoted in 1.4, since Sreder’s multiplicative linear functional is exhibited as a
limit of a sequence of values of Fourier-Stielties transforms, while Theorem
1.8 exhibits the multiplicative linear functional M only as an element of X-
If we limit ourselves to separable subspaces of (Q), we can produce similar
representations for our M. Note too that reder’s measures have carriers
contained in Cantor’s ternary set, while ours have carriers contained in the
pathological set Q. Distinct improvements in Sreder’s results for Cantor’s
ternary set can be obtained, however, and we hope to discuss these in another
communication.
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