SOME UNIQUENESS THEOREMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY ${ }^{1}$

BY
Chuan-Chif Hsiung

1. Introduction

Let M_{n} be a differentiable manifold of dimension n, and $X: M_{n} \rightarrow E_{n+m}$ a mapping of M_{n} into a Euclidean space E_{n+m} of dimension $n+m$ for any $m>0 . \quad M_{n}$, or rather M_{n} together with the mapping X, is called an immersed submanifold of E_{n+m} if the functional matrix of X is of rank n everywhere. The submanifold M_{n} is said to be imbedded, if X is one-one, that is, if $X(P)=X(Q), P, Q \in M_{n}$, implies that $P=Q$. In particular, when $m=1$, an immersed (imbedded) submanifold M_{n} of the space E_{n+m} is called an immersed (imbedded) hypersurface. Throughout this paper all manifolds are supposed to be of class C^{3}, and the dimension of a manifold M_{n} is understood to be n.

Now let us consider an oriented immersed manifold M_{n}. Then to each point $P \in M_{n}$ there is a unique linear space N of dimension m normal to $X\left(M_{n}\right)$ at the point $X(P)$. For any unit normal vector $e_{r}(P)$ at the point $X(P)$ in the space N, we put

$$
\begin{equation*}
I=d X \cdot d X, \quad I I_{r}=d e_{r} \cdot d X, \quad I I I_{r}=d e_{r} \cdot d e_{r} \tag{1.1}
\end{equation*}
$$

where $d X$ and $d e_{r}$ are vector-valued linear differential forms on M_{n}, and the dot denotes the scalar product of two vectors in the space E_{n+m}. The eigenvalues $k_{r 1}, \cdots, k_{r n}$ of $I I_{r}$ relative to I are called the principal curvatures of the manifold M_{n} associated with the unit normal vector $e_{r}(P)$. If the GaussKronecker curvature $K_{r}=k_{r 1} \cdots k_{r n}$ associated with the vector $e_{r}(P)$ is nonzero, the reciprocals $1 / k_{r 1}, \cdots, 1 / k_{r n}$, called the radii of principal curvatures associated with the vector $e_{r}(P)$, are the eigenvalues of $I I_{r}$ relative to $I I I_{r}$, which is also positive definite due to the assumption $K_{r} \neq 0$. In this case we introduce the $\alpha^{\text {th }}$ elementary symmetric function

$$
\begin{equation*}
\binom{n}{\alpha} P_{r \alpha}=\sum 1 / k_{r 1} \cdots 1 / k_{r \alpha} \quad(1 \leqq \alpha \leqq n) \tag{1.2}
\end{equation*}
$$

If M_{n} is a hypersurface, then at each point $X(P)$ of M_{n} there is only one unit normal vector e_{r}, and for $P_{r \alpha}$ associated with it we shall simply write P_{α}.

Let M_{n} be a closed oriented Riemannian manifold immersed in a Euclidean space E_{n+m}. By a normal frame $X e_{n+1} \cdots e_{n+m}$ on the manifold M_{n} we mean a point X of the manifold M_{n} and an ordered set of mutually perpendicular unit vectors e_{n+1}, \cdots, e_{n+m} normal to the manifold M_{n} at the point

[^0]X. M_{n} is called a star manifold, ${ }^{2}$ if there exist a point O, called a pole, in the manifold M_{n} and a class C^{2} field of normal frames $X e_{n+1} \cdots e_{n+m}$ over the manifold M_{n} such that the Gauss-Kronecker curvature K_{r} of the manifold M_{n} and the support function $X \cdot e_{r}$ with respect to the pole O are positive for every vector $e_{r}, n+1 \leqq r \leqq n+m$, at every point of the manifold M_{n}. This normal frame $X e_{n+1} \cdots e_{n+m}$ is called a fundamental normal frame of the star manifold M_{n} at the point X. An n-dimensional star manifold with boundary is an n-dimensional compact subset of an n-dimensional star manifold. An n-dimensional convex hypersurface with boundary is an n-dimensional compact subset of the boundary of a convex region in an $(n+1)$ dimensional Euclidean space E_{n+1}, or is equivalently an n-dimensional compact subset of an n-dimensional imbedded hypersurface with positive GaussKronecker curvature everywhere. An n-dimensional convex hypercap is an n-dimensional convex hypersurface with boundary such that in the space E_{n+1} there is at least one fixed direction, along which every line either is a tangent to the hypersurface or intersects the hypersurface at most at one point. It is obvious that a convex hypercap can never be closed.

Since Christoffel [5] established in 1865 his well-known uniqueness or rigidity theorem on closed convex surfaces in a space E_{3}, various uniqueness theorems of the same type on closed convex hypersurfaces have been obtained by different authors with different methods. It is natural to ask whether we can extend some of these uniqueness theorems on closed convex hypersurfaces to general immersed manifolds with boundary. In recent years the present and other authors have succeeded in deriving some new integral formulas, by means of which most classical uniqueness theorems can easily be extended to convex hypersurfaces with boundary satisfying a natural boundary condition. For uniqueness theorems on general immersed manifolds with boundary, due to the complication arising from the immersion, the only result we have so far is the generalization [9] of Christoffel's uniqueness theorem to two-dimensional immersed manifolds with boundary. The main purpose of the present paper is to further extend this uniqueness theorem to immersed manifolds of a general dimension $n>2$ with boundary, and to establish a uniqueness theorem on convex hypercaps by proving the following theorems.

Theorem I. Let M_{n} and M_{n}^{*} be two star manifolds, with boundaries B_{n-1} and B_{n-1}^{*} respectively, in a Euclidean space E_{n+m} for any $m>0$. Suppose that there exists an orientation-preserving diffeomorphism f of the manifold M_{n} onto the manifold M_{n}^{*} such that, at each pair of corresponding points, the manifolds M_{n} and M_{n}^{*} have a common fundamental normal frame $e_{n+1} \cdots e_{n+m}$ and equal $P_{r, n-1}$ defined by equation (1.2) and associated with each common unit normal vector $e_{r}, r=n+1, \cdots, n+m$. If the diffeomorphism f restricted to the boundary B_{n-1} is a translation (strictly speaking, is induced by a transla-

[^1]lation in the space E_{n+m}) carrying the boundary B_{n-1} onto the boundary B_{n-1}^{*}, then the diffeomorphism f is a translation carrying the whole manifold M_{n} onto the whole manifold M_{n}^{*}.

Theorem II. Let M_{n} be a star manifold with a spherical boundary B_{n-1} such that at every point $P_{r, n-2}^{\mu} P_{r, n-1}^{\nu}$ is constant for $\mu+\nu>0, \mu \geqq 0, \nu>0$ and for each vector e_{r} of a fundamental normal frame of the manifold M_{n}. Then the manifold M_{n} is a compact subset of an n-sphere.

Theorem III. Let M_{n} and M_{n}^{*} be two oriented convex hypercaps with boundaries B_{n-1} and B_{n-1}^{*} respectively. Suppose that there exists an orientationpreserving diffeomorphism f of the hypercap M_{n} onto the hypercap M_{n}^{*} such that at each pair of corresponding points the hypercaps M_{n} and M_{n}^{*} have the same outer normal vector and satisfy either

$$
\begin{equation*}
P_{1} \leqq P_{1}^{*}, \quad P_{2} \geqq P_{2}^{*} \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{1} \geqq P_{1}^{*}, \quad P_{2} \leqq P_{2}^{*} \tag{1.4}
\end{equation*}
$$

where P_{α} and P_{α}^{*} are defined by equation (1.2) for the hypercaps M_{n} and M_{n}^{*} respectively. If the diffeomorphism f restricted to the boundary B_{n-1} is a translation carrying the boundary B_{n-1} onto the boundary B_{n-1}^{*}, then the diffeomorphism f is a translation carrying the whole hypercap M_{n} onto the whole hypercap M_{n}^{*}.

Corollary. Let M_{n} be a convex hypercap with a spherical boundary B_{n-1}. If there is a constant c such that, at each point of the hypercap M_{n}, either

$$
\begin{equation*}
P_{1} \leqq c \leqq P_{2}^{1 / 2} \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{1} \geqq c \geqq P_{2}^{1 / 2} \tag{1.6}
\end{equation*}
$$

then the hypercap M_{n} is a compact subset of an n-dimensional hypersphere.
It should be noted that when $n=2$, the conditions (1.3) and (1.4) together are obviously weaker than the condition of Alexandroff [2], which can be stated as follows: At each pair of corresponding points the hypercaps M_{2} and M_{2}^{*} satisfy the condition $F\left(2 P_{1}, P_{2}\right)=F\left(2 P_{1}^{*}, P_{2}^{*}\right)$, where $F(U, V)$, for $U>0, U^{2} \geqq 4 V>0$, is a continuous function monotonely increasing in both variables U and V. Furthermore, Grotemeyer [8] obtained Theorem III for $n=2$ in terms of the condition of Alexandroff, but actually only used the conditions (1.3) and (1.4) together in his proof.

2. Immersed submanifolds in Euclidean space

Suppose a Euclidean space E_{n+m} is oriented. By a frame $X e_{1} \cdots e_{n+m}$ in the space E_{n+m} we mean a point X and an ordered set of mutually perpendicular unit vectors e_{1}, \cdots, e_{n+m} with an orientation coherent with that of
the space E_{n+m} so that the determinant $\left|e_{1}, \cdots, e_{n+m}\right|$ is equal to +1 . To avoid confusion we shall use the following ranges of indices throughout this paper:

$$
\begin{gather*}
1 \leqq \alpha, \beta, \gamma \leqq n, \quad n+1 \leqq r, s, t \leqq n+m \\
1 \leqq i, j, k \leqq n+m \tag{2.1}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
e_{i} \cdot e_{j}=\delta_{i j} \tag{2.2}
\end{equation*}
$$

where $\delta_{i j}$ are the Kronecker deltas. Let $F(n, m)$ be the space of all frames in the space E_{n+m}, so that $\operatorname{dim} F(n, m)=\frac{1}{2}(n+m)(n+m+1)$. In $F(n, m)$ we introduce the linear differential forms $\omega_{i}^{\prime}, \omega_{i j}^{\prime}$ by the equations

$$
\begin{equation*}
d X=\sum_{i} \omega_{i}^{\prime} e_{i}, \quad d e_{i}=\sum_{j} \omega_{i j}^{\prime} e_{j} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{i j}^{\prime}+\omega_{j i}^{\prime}=0 \tag{2.4}
\end{equation*}
$$

Since $d(d X)=0$ and $d\left(d e_{i}\right)=0$, from equations (2.3) we have

$$
\begin{equation*}
d \omega_{i}^{\prime}=\sum_{j} \omega_{j}^{\prime} \wedge \omega_{j i}^{\prime}, \quad d \omega_{i j}^{\prime}=\sum_{k} \omega_{i k}^{\prime} \wedge \omega_{k j}^{\prime} \tag{2.5}
\end{equation*}
$$

where \wedge denotes the exterior product.
As explained in $\S 1$, by an immersed submanifold in the space E_{n+m} we mean an abstract manifold M_{n} and a mapping $X: M_{n} \rightarrow E_{n+m}$ such that the induced mapping $X *$ on the tangent space is univalent everywhere. Analytically, the mapping can be defined by a vector-valued function $X(P)$, $P \in M_{n}$. Our assumption implies that the differential $d X(P)$ of $X(P)$, which is a linear differential form on M_{n} with value in E_{n+m}, has as values a linear combination of n, but not less than n, vectors t_{1}, \cdots, t_{n}. Since X_{*} is univalent, we can identify the tangent space of M_{n} at the point P with the vector space spanned by t_{1}, \cdots, t_{n}. A linear combination of the vectors t_{1}, \cdots, t_{n} is called a tangent vector, and a vector perpendicular to them is called a normal vector. The immersion of M_{n} in E_{n+m} gives rise to a bundle B, whose bundle space is the subset of $M_{n} \times F(n, m)$ consisting of

$$
\left(P, X(P) e_{1} \cdots e_{n+1} \cdots e_{n+m}\right) \in M_{n} \times F(n, m)
$$

such that e_{1}, \cdots, e_{n} are tangent vectors and e_{n+1}, \cdots, e_{n+m} are normal vectors at the point $X(P)$.

Consider the inclusion mapping ϕ and the projection p :

$$
\begin{equation*}
B \xrightarrow{\phi} M_{n} \times F(n, m) \xrightarrow{p} F(n, m) . \tag{2.6}
\end{equation*}
$$

By putting

$$
\begin{equation*}
\omega_{i}=(p \phi)^{*} \omega_{i}^{\prime}, \quad \omega_{i j}=(p \phi)^{*} \omega_{i j}^{\prime} \tag{2.7}
\end{equation*}
$$

from equations (2.4) and (2.5) we have

$$
\begin{gather*}
\omega_{i j}+\omega_{j i}=0 \tag{2.8}\\
d \omega_{i}=\sum_{j} \omega_{j} \wedge \omega_{j i}, \quad d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j} \tag{2.9}
\end{gather*}
$$

From the definition of the bundle B it follows that $\omega_{r}=0$ and that ω_{α} are linearly independent. Thus the first equation of (2.9) gives

$$
\sum_{\alpha} \omega_{\alpha} \wedge \omega_{\alpha r}=0
$$

from which we have

$$
\begin{equation*}
\omega_{\alpha r}=\sum_{\beta} A_{r \alpha \beta} \omega_{\beta}, \quad A_{r \alpha \beta}=A_{r \beta \alpha} . \tag{2.10}
\end{equation*}
$$

If $\operatorname{det}\left(A_{r \alpha \beta}\right) \neq 0$ for some r, by introducing the matrix $\left(\lambda_{r \alpha \beta}\right)$ inverse to the matrix $-\left(A_{r \alpha \beta}\right)$ we have

$$
\begin{equation*}
\omega_{\alpha}=\sum_{\beta} \lambda_{r \alpha \beta} \omega_{r \beta} \tag{2.11}
\end{equation*}
$$

By means of equations (2.2), (2.3), (2.7), (2.10), and (2.11), equations (1.1) can be written as

$$
\begin{gather*}
I=\sum_{\alpha} \omega_{\alpha}^{2}, \quad I I I_{r}=\sum_{i} \omega_{r i}^{2} \\
I I_{r}=+\sum_{\alpha} \omega_{r \alpha} \omega_{\alpha}=-\sum_{\alpha, \beta} A_{r \alpha \beta} \omega_{\alpha} \omega_{\beta}=+\sum_{\alpha, \beta} \lambda_{r \alpha \beta} \omega_{r \alpha} \omega_{r \beta} \tag{2.12}
\end{gather*}
$$

Suppose

$$
\begin{equation*}
\operatorname{det}\left(\delta_{\alpha \beta}+\lambda_{r \alpha \beta} y\right)=\sum_{0 \leqq \gamma \leqq n}\binom{n}{\gamma} P_{r \gamma}\left(\lambda_{r}\right) y^{\gamma}, \tag{2.13}
\end{equation*}
$$

where y is a parameter. Then $P_{r \gamma}\left(\lambda_{r}\right)$ is a polynomial of degree γ in $\lambda_{r \alpha \beta}$ for a fixed r, and it is easily seen that $P_{r \alpha}\left(\lambda_{r}\right)$ is equal to the invariant $P_{r \alpha}$ defined by equation (1.2).

Through a point in a Euclidean space E_{n+m} let A_{1}, \cdots, A_{n+m-1} be $n+m-1$ differentiable vector functions of n variables x^{1}, \cdots, x^{n}, and let J be any vector. Then the scalar product of the vector J and the vector product $A_{1} \times \cdots \times A_{n+m-1}$ of the vectors A_{1}, \cdots, A_{n+m-1} is given by

$$
\begin{equation*}
J \cdot\left(A_{1} \times \cdots \times A_{n+m-1}\right)=(-1)^{n+m-1}\left|J, A_{1}, \cdots, A_{n+m-1}\right| \tag{2.14}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
e_{1} \times \cdots \times \hat{e}_{r} \times \cdots \times e_{n+m}=(-1)^{n+m+r} e_{r} \tag{2.15}
\end{equation*}
$$

where the circumflex over e_{r} indicates that the vector e_{r} is to be deleted. In a previous paper of the author [10] we have combined the vector product of vectors and the exterior product of differentials to define the vector

$$
\begin{align*}
& A_{1} \otimes \cdots \otimes A_{i-1} \otimes d A_{i} \otimes \cdots \otimes d A_{n+m-1} \\
& =\left(A_{1} \times \cdots \times A_{i-1} \times A_{i, \alpha_{i}} \times \cdots \times A_{n+m-1, \alpha_{n+m-1}}\right) d x^{\alpha_{i}} \tag{2.16}\\
& \wedge \wedge \cdots \wedge d x^{\alpha_{n+m-1}},
\end{align*}
$$

where $i=1, \cdots, n+m-1$ and $A_{i, \alpha_{i}}=\partial A_{i} / \partial x^{\alpha_{i}}$. It is obvious that the vector (2.16) is independent of the order of the vectors $d A_{i}, \cdots$, $d A_{n+m-1}$. Let $d A$ be the area element of an immersed submanifold M_{n} in the space E_{n+m}. Then by means of the combined operation \otimes we obtain

$$
\begin{align*}
& \underbrace{d X \otimes \cdots \otimes d X}_{n} \otimes e_{n+1} \otimes \cdots \otimes \hat{e}_{r} \otimes \cdots \otimes e_{n+m} \tag{2.17}\\
&=(-1)^{n+m+r} n!e_{r} d A \\
& \underbrace{d e_{r} \otimes \cdots \otimes d e_{r}}_{n} \otimes e_{n+1} \otimes \cdots \otimes \hat{e}_{r} \otimes \cdots \otimes e_{n+m} \\
&=(-1)^{n+m+r} n!e_{r} K_{r} d A
\end{align*}
$$

From equations (2.3), (2.7), (2.15), (2.17), and (2.18) it follows that

$$
\begin{align*}
d A & =\omega_{1} \wedge \cdots \wedge \omega_{n} \tag{2.19}\\
K_{r} d A & =\omega_{r 1} \wedge \cdots \wedge \omega_{r n} \tag{2.20}
\end{align*}
$$

3. Integral formulas for a pair of immersed manifolds with boundary

Let M be a compact differentiable manifold of dimension n with boundary, and let M_{n} and M_{n}^{*} be immersed manifolds with boundaries B_{n-1} and B_{n-1}^{*} given by $X: M \rightarrow E_{n+m}$ and $X^{*}: M \rightarrow E_{n+m}$, respectively. Then $\S 2$ can be applied to the manifolds M_{n}, and for the corresponding quantities and equations for the manifold M_{n}^{*} we shall use the same symbols and numbers with a star respectively.

Suppose that there is a diffeomorphism f of the manifold M_{n} onto the manifold M_{n}^{*} such that at each pair of corresponding points the manifolds M_{n} and M_{n}^{*} have parallel tangent spaces. Without loss of generality we may assume that

$$
\begin{equation*}
e_{i}^{*}=e_{i} \quad(i=1, \cdots, n+m) \tag{3.1}
\end{equation*}
$$

From equations (2.3), (2.7), (2.3)*, (2.7)*, and (3.1) it follows that

$$
\begin{equation*}
\omega_{r \alpha}^{*}=\omega_{r \alpha} \tag{3.2}
\end{equation*}
$$

Now for the pair of immersed manifolds M_{n} and M_{n}^{*} we introduce the following differential forms:

$$
\begin{align*}
& B_{\alpha, n-2-\alpha}=\sum_{r=n+1}^{n+m}(-1)^{r-1} \\
& \cdot|X, X^{*}, e_{n+1}, \cdots, \hat{e}_{r}, \cdots, e_{n+m}, d e_{r}, \underbrace{d X, \cdots, d X}_{\alpha}, \underbrace{d X^{*}, \cdots, d X^{*}}_{n-2-\alpha}| \tag{3.3}
\end{align*}
$$

$$
C_{r \beta, n-1-\beta}=(-1)^{m+r}
$$

$$
\begin{equation*}
|X, e_{n+1}, \cdots, \hat{e}_{r}, \cdots, e_{n+m}, d e_{r}, \underbrace{d X, \cdots, d X}_{\beta}, \underbrace{d X^{*}, \cdots, d X^{*}}_{n-1-\beta}| \tag{3.4}
\end{equation*}
$$

$$
C_{r \beta, n-1-\beta}^{*}=(-1)^{m+r}
$$

$$
\begin{equation*}
\cdot|X^{*}, e_{n+1}, \cdots, \hat{e}_{r}, \cdots, e_{n+m}, d e_{r}, \underbrace{d X, \cdots, d X}_{\beta}, \underbrace{d X^{*}, \cdots, d X^{*}}_{n-1-\beta}| \tag{3.5}
\end{equation*}
$$

$$
D_{r \beta, n-1-\beta}=(-1)^{m+r}
$$

$$
\begin{equation*}
\cdot|e_{r}, e_{n+1}, \cdots, e_{r-1}, e_{r+1}, \cdots, e_{n+m}, d e_{r}, \underbrace{d X, \cdots, d X}_{\beta}, \underbrace{d X^{*}, \cdots, d X^{*}}_{n-1-\beta}| \tag{3.6}
\end{equation*}
$$

where $0 \leqq \alpha \leqq n-2$ and $0 \leqq \beta \leqq n-1$. By means of equation (2.14) and the operation \otimes we obtain

$$
\begin{gather*}
C_{r \beta, n-1-\beta}=(-1)^{n+r-1} X \cdot E, \quad C_{r \beta, n-1-\beta}^{*}=(-1)^{n+r-1} X^{*} \cdot E, \tag{3.7}\\
D_{r \beta, n-1-\beta}=(-1)^{n+r-1} e_{r} \cdot E
\end{gather*}
$$

where
$E=e_{n+1} \otimes \cdots \otimes \hat{e}_{r} \otimes \cdots \otimes e_{n+m} \otimes d e_{r}$

$$
\otimes \underbrace{d X \otimes \cdots \otimes d X}_{\beta} \otimes d \underbrace{X^{*} \otimes \cdots \otimes d X^{*}}_{n-1-\beta} .
$$

From the definition of the operation \otimes and the last equation of (3.7) it follows immediately that

$$
\begin{equation*}
(-1)^{n+r-1} E=D_{r \beta, n-1-\beta} e_{r} . \tag{3.8}
\end{equation*}
$$

Thus the substitution of equation (3.8) in the first two equations of (3.7) gives

$$
\begin{equation*}
C_{r \beta, n-1-\beta}=h_{r} D_{r \beta, n-1-\beta}, \quad C_{r \beta, n-1-\beta}^{*}=h_{r}^{*} D_{r \beta, n-1-\beta}, \tag{3.9}
\end{equation*}
$$

where we have placed

$$
\begin{equation*}
h_{r}=X \cdot e_{r}, \quad h_{r}^{*}=X^{*} \cdot e_{r} \tag{3.10}
\end{equation*}
$$

By using equations (3.3), (3.4), (3.5), and (3.9), applying the ordinary rules for differentiation of determinants, and noticing the pairwise cancellation of terms, we can easily obtain

$$
\begin{align*}
& d B_{\alpha, n-2-\alpha}=\sum_{r=n+1}^{n+m}\left(C_{r \alpha, n-1-\alpha}-C_{r, \alpha+1, n-2-\alpha}^{*}\right) \\
&=\sum_{r=n+1}^{n+m}\left(h_{r} D_{r \alpha, n-1-\alpha}-h_{r}^{*} D_{r, \alpha+1, n-2-\alpha}\right) \tag{3.11}\\
& \quad(0 \leqq \alpha \leqq n-2) .
\end{align*}
$$

Integrating both sides of equation (3.11) over the manifold M_{n} and applying Stokes's theorem to the left side, we can arrive at the integral formulas

$$
\begin{align*}
& \int_{B_{n-1}} B_{\alpha, n-2-\alpha}=\int_{M_{n}} \sum_{r=n+1}^{n+m}\left(h_{r} D_{r \alpha, n-1-\alpha}-h_{r}^{*} D_{r, \alpha+1, n-2-\alpha}\right) \tag{3.12}\\
&(0 \leqq \alpha \leqq n-2) .
\end{align*}
$$

To apply the formulas (3.12) we introduce the differential forms of order n

$$
\begin{equation*}
D_{r \alpha \beta}=(-1)^{m+r} \tag{3.13}
\end{equation*}
$$

$$
\cdot|e_{r}, e_{n+1}, \cdots, e_{r-1}, e_{r+1}, \cdots, e_{n+m}, \underbrace{d e_{r}, \cdots, d e_{r}}_{n-(\alpha+\beta)}, \underbrace{d X, \cdots, d X}_{\alpha}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\beta}|
$$

$$
(0 \leqq \alpha, \beta \leqq n)
$$

In virtue of equations (2.3), (2.7), (2.8), (2.11), (2.14), (2.15), (2.20), $(2.3)^{*},(2.7)^{*},(2.11)^{*},(3.2)$, and (3.13) we can easily obtain, for two parameters y and y^{*},

$$
\begin{align*}
& \sum_{0 \leqq \alpha+\beta \leqq n} \frac{n!}{\alpha!\beta!(n-\alpha-\beta)!} y^{\alpha} y^{* \beta} D_{r \alpha \beta} \\
&=(-1)^{(n+1)(m-1)} \sum_{1 \leqq \alpha_{1}, \cdots, \alpha_{n} \leqq n} \varepsilon_{\alpha_{1} \cdots \alpha_{n}}\left(y \omega_{\alpha_{1}}+y^{*} \omega_{\alpha_{1}}^{*}+\omega_{r \alpha_{1}}\right) \tag{3.14}\\
& \wedge \cdots \wedge\left(y \omega_{\alpha_{n}}+y^{*} \omega_{\alpha_{n}}^{*}+\omega_{r \alpha_{n}}\right) \\
&=(-1)^{(n+1)(m-1)} n!\left(y \omega_{1}+y^{*} \omega_{1}^{*}+\omega_{r 1}\right) \wedge \cdots \wedge\left(y \omega_{n}+y^{*} \omega_{n}^{*}+\omega_{r n}\right) \\
&=(-1)^{(n+1)(m-1)} n!\operatorname{det}\left(y \lambda_{r a \beta}+y^{*} \lambda_{r \alpha \beta}^{*}+\delta_{\alpha \beta}\right) K_{r} d A,
\end{align*}
$$

where $\varepsilon_{\alpha_{1} \cdots \alpha_{n}}$ is +1 or -1 according as $\alpha_{1}, \cdots, \alpha_{n}$ form an even or odd permutation of $1, \cdots, n$, and is zero otherwise. Now suppose
(3.15) $\operatorname{det}\left(y \lambda_{r \alpha \beta}+y^{*} \lambda_{r \alpha \beta}^{*}+\delta_{\alpha \beta}\right)=\sum_{0 \leqq \alpha+\beta \leqq n} \frac{n!}{\alpha!\beta!(n-\alpha-\beta)!} y^{\alpha} y^{* \beta} P_{r \alpha \beta}$, so that $P_{r \alpha \beta}$ is a homogeneous polynomial of degrees α and β in $\lambda_{r \rho \sigma}$ and $\lambda_{r \rho \sigma}^{*}(\rho, \sigma=1, \cdots, n)$ respectively. In particular, from equation (2.13) it follows that $P_{r \alpha 0}=P_{r \alpha}\left(\lambda_{r}\right)$. Comparison of equation (3.14) with equation (3.15) yields immediately

$$
\begin{equation*}
D_{r \alpha \beta}=(-1)^{(n+1)(m-1)} n!P_{r \alpha \beta} K_{r} d A \quad(0 \leqq \alpha, \beta \leqq n) \tag{3.16}
\end{equation*}
$$

Substituting equation (3.16) in equation (3.12) we therefore obtain

$$
\begin{align*}
\int_{B_{n-1}} & B_{\alpha, n-2-\alpha} \\
=(-1)^{(n+1)(m-1)} n!\int_{M_{n}} \sum_{r=n+1}^{n+m}\left(h_{r} P_{r \alpha, n-1-\alpha}-h_{r}^{*}\right. & \left.P_{r, \alpha+1, n-2-\alpha}\right) K_{r} d A \tag{3.17}\\
& (0 \leqq \alpha \leqq n-2) .
\end{align*}
$$

If the diffeomorphism f of the manifold M_{n} onto the manifold M_{n}^{*} restricted to the boundary B_{n-1} is a translation carrying the boundary B_{n-1} onto the boundary B_{n-1}^{*}, then on the boundary $B_{n-1}, d X^{*}=d X$, and therefore
$B_{0, n-2}=B_{n-2,0}$. From the two equations of (3.17), for which $\alpha=0$, $n-2$ respectively, we can easily obtain the integral formula

$$
\begin{align*}
& 2 \int_{M_{n}} \sum_{r=n+1}^{n+m} h_{r}\left(P_{r 0, n-1}-P_{r, n-2,1}\right) K_{r} d A \tag{3.18}\\
& \quad=\int_{M_{n}} \sum_{r=n+1}^{n+m}\left[h_{r}^{*}\left(P_{r 1, n-2}-P_{r, n-1,0}\right)-h_{r}\left(P_{r, n-2,1}-P_{r 0, n-1}\right)\right] K_{r} d A
\end{align*}
$$

Addition of equation (3.18) to the one obtained by interchanging the roles of the two manifolds M_{n} and M_{n}^{*} in equation (3.18) thus gives

$$
\begin{equation*}
\int_{M_{n}} \sum_{r=n+1}^{n+m}\left[h_{r}\left(P_{r 0, n-1}-P_{r, n-2,1}\right)+h_{r}^{*}\left(P_{r, n-1,0}-P_{r 1, n-2}\right)\right] K_{r} d A=0 \tag{3.19}
\end{equation*}
$$

Let $F_{r}\left(u_{1}, \cdots, u_{n}\right), r=n+1, \cdots, n+m$, be m functions in n positive variables u_{1}, \cdots, u_{n}. We shall say that each function F_{r} is of type $n-1$, if the following two conditions for each r are satisfied:
(i) $F_{r}\left(P_{r 10}, \cdots, P_{r n 0}\right)=F_{r}\left(P_{r 01}, \cdots, P_{r 0 n}\right)$ implies that $P_{r, n-2,1} \geqq$ $P_{r 0, n-1}$, and therefore, by interchanging the two manifolds M_{n} and M_{n}^{*}, that $P_{r 1, n-2} \geqq P_{r, n-1,0}$,
(ii) $\quad F_{r}\left(P_{r 10}, \cdots, \quad P_{r n 0}\right)=F_{r}\left(P_{r 01}, \cdots, \quad P_{r 0 n}\right)$ and $P_{r, n-2,1}=P_{r 0, n-1}$ (or $P_{r 1, n-2}=P_{r, n-1,0}$) if and only if $\lambda_{r \alpha \beta}^{*}=\lambda_{r \alpha \beta}$ for $\alpha, \beta=1, \cdots, n$.

Theorem 3.1. Let M_{n} and M_{n}^{*} be two star manifolds, with boundaries B_{n-1} and B_{n-1}^{*} respectively, in a Euclidean space E_{n+m} for any $m>0$, and let $F_{r}\left(u_{1}, \cdots, u_{n}\right), r=n+1, \cdots, n+m$, be m functions of type $n-1$ in n positive variables u_{1}, \cdots, u_{n}. Suppose that there exists an orientationpreserving diffeomorphism f of the manifold M_{n} onto the manifold M_{n}^{*} such that, at each pair of corresponding points, the manifolds M_{n} and M_{n}^{*} have a common fundamental normal frame $e_{n+1} \cdots e_{n+m}$, and the functions $F_{r}\left(P_{r 10}, \cdots, P_{r n 0}\right)$ and $F_{r}\left(P_{r 01}, \cdots, P_{r 0 n}\right)$ have the same value for each r. If the diffeomorphism f restricted to the boundary B_{n-1} is a translation carrying the boundary B_{n-1} onto the boundary B_{n-1}^{*}, then the diffeomorphism f is a translation carrying the whole manifold M_{n} onto the whole manifold M_{n}^{*}.

Proof. Applying a translation in the space E_{n+m} if necessary, without loss of generality we may assume the poles in the star manifolds M_{n} and M_{n}^{*} to be coincident, so that $h_{r}>0$ and $h_{r}^{*}>0$ for $r=n+1, \cdots, n+m$ over the whole manifolds M_{n} and M_{n}^{*}. Thus, due to the first property of the functions F_{r} and the assumption that $K_{r}>0$, each term of the integrand of equation (3.19) is nonpositive, and equation (3.19) holds when and only when

$$
\begin{align*}
& P_{r 0, n-1}=P_{r, n-2,1}, \quad P_{r, n-1,0}=P_{r 1, n-2} \\
& \quad(r=n+1, \cdots, n+m) . \tag{3.20}
\end{align*}
$$

By the second property of the functions F_{r} we therefore obtain

$$
\begin{equation*}
\lambda_{r \alpha \beta}^{*}=\lambda_{r \alpha \beta} \quad(\alpha, \beta=1, \cdots, n) \tag{3.21}
\end{equation*}
$$

Substitution of equation (3.21) in equations (2.11) and (2.11)* gives immediately

$$
\begin{equation*}
\omega_{\alpha}^{*}=\omega_{\alpha} \quad(\alpha=1, \cdots, n) \tag{3.22}
\end{equation*}
$$

From equations (3.22), (2.3), (2.7), (2.3)*, and (2.7)* it follows that $d X^{*}=$ $d X$ over the whole manifold M_{n}, and hence the proof of the theorem is complete.

In particular, if the second manifold M_{n}^{*} in Theorem 3.1 is a compact subset of an n-sphere, then Theorem 3.1 becomes

Theorem 3.2. Let M_{n} be a star manifold with a spherical boundary B_{n-1} in a Euclidean space E_{n+m} for any $m>0$. If there are m functions

$$
F_{r}\left(u_{1}, \cdots, u_{n}\right), \quad r=n+1, \cdots, n+m
$$

in n positive variables u_{1}, \cdots, u_{n} with the following two properties for each vector e_{r} of a fundamental normal frame at every point of the manifold M_{n} :
(i) $F_{r}\left(P_{r 1}, \cdots, P_{r n}\right)=F_{r}\left(a, \cdots, a^{n}\right)=$ constant implies that $P_{r, n-2} \geqq a^{n-2}$,
(ii) $F_{r}\left(P_{r 1}, \cdots, P_{r n}\right)=F_{r}\left(a, \cdots, a^{n}\right)$ and $P_{r, n-2}=a^{n-2}$ imply that $\lambda_{r \alpha \beta}=a \delta_{\alpha \beta}$ for $\alpha, \beta=1, \cdots, n$,
then the manifold M_{n} is a compact subset of an n-sphere of radius a.
For $m=1$, the integral formulas (3.12), (3.17), (3.18) and Theorems I, II, 3.1, 3.2 were obtained by Chern [3].

4. Proofs of Theorems I and II

Proof of Theorem I. Theorem I follows from Theorem 3.1 immediately if we can show that the m functions $F_{r}=P_{r, n-1}, r=n+1, \cdots, n+m$, are of type $n-1$. To this end we need the following inequality of Gårding [7]:

Let $P_{r, n-1}\left(\lambda_{r}^{(1)}, \cdots, \lambda_{r}^{(n-1)}\right)$ be the completely polarized form of the polynomial $P_{r, n-1}\left(\lambda_{r}\right)$ defined by equation (2.13), so that

$$
P_{r, n-1}(\underbrace{\lambda_{r}, \cdots, \lambda_{r}}_{n-1})=P_{r, n-1}\left(\lambda_{r}\right), \quad P_{r, n-1}(\underbrace{\left(\lambda_{r}, \cdots, \lambda_{r}\right.}_{n-2}, \lambda_{r}^{*})=P_{r, n-2,1}
$$

Then for positive definite symmetric matrices $\left(\lambda_{r \alpha \beta}^{(1)}\right), \cdots,\left(\lambda_{r \alpha \beta}^{(n-1)}\right)$ the following inequality is valid:

$$
\begin{equation*}
P_{r, n-1}\left(\lambda_{r}^{(1)}, \cdots, \lambda_{r}^{(n-1)}\right) \geqq P_{r, n-1}\left(\lambda_{r}^{(1)}\right)^{1 /(n-1)} \cdots P_{r, n-1}\left(\lambda_{r}^{(n-1)}\right)^{1 /(n-1)} \tag{4.1}
\end{equation*}
$$

where the equality holds when and only when the $n-1$ matrices are pairwise proportional.

Suppose now $P_{r, n-1,0}=P_{r 0, n-1}$, which can be written as $P_{r, n-1}\left(\lambda_{r}\right)=$
$P_{r, n-1}\left(\lambda_{r}^{*}\right)$. Since $\left(\lambda_{r \alpha \beta}\right)$ and $\left(\lambda_{r \alpha \beta}^{*}\right)$ are positive definite, from the inequality (4.1) it follows that

$$
\begin{align*}
& P_{r, n-2,1}=P_{r, n-1}(\underbrace{\lambda_{r}, \cdots, \lambda_{r}}_{n-2}, \lambda_{r}^{*}) \tag{4.2}\\
& \geqq P_{r, n-1}\left(\lambda_{r}\right)^{(n-2) /(n-1)} P_{r, n-1}\left(\lambda_{r}^{*}\right)^{1 /(n-1)}=P_{r, n-1}\left(\lambda_{r}^{*}\right),
\end{align*}
$$

which is the first condition for the functions $P_{r, n-1}$ to be of type $n-1$. By interchanging the two manifolds M_{n} and M_{n}^{*} we have

$$
\begin{equation*}
P_{r 1, n-2} \geqq P_{r, n-1}\left(\lambda_{r}\right) . \tag{4.3}
\end{equation*}
$$

The equality holds in (4.2) and (4.3) when and only when $\lambda_{r \alpha \beta}^{*}=\rho \lambda_{r \alpha \beta}$ for $\alpha, \beta=1, \cdots, n$. On the other hand, as in the proof of Theorem 3.1, by using equations (4.2), (4.3), and (3.19) it is easily seen that the equality holds in (4.2) and (4.3). Since $P_{r, n-1}\left(\lambda_{r}\right)=P_{r, n-1}\left(\lambda_{r}^{*}\right), \rho=1$, and therefore the second condition for the functions $P_{r, n-1}$ to be of type $n-1$ is satisfied.

Proof of Theorem II. By putting

$$
\lambda_{r \alpha \beta}^{(1)}=\cdots=\lambda_{r \alpha \beta}^{(n-2)}=\lambda_{r \alpha \beta}, \quad \lambda_{r \alpha \beta}^{(n-1)}=a \delta_{\alpha \beta} \quad(\alpha, \beta=1, \cdots, n),
$$

from inequality (4.1) we obtain

$$
\begin{equation*}
P_{r, n-2}^{1 /(n-2)} \geqq P_{r, n-1}^{1 /(n-1)} \tag{4.4}
\end{equation*}
$$

where the equality holds when and only when $\lambda_{r \alpha \beta}=b \delta_{\alpha \beta}$ for $\alpha, \beta=1, \cdots, n$. Let $a>0$ be defined by

$$
\begin{equation*}
P_{r, n-2}^{\mu} P_{r, n-1}^{\nu}=a^{\mu(n-2)+\nu(n-1)} \tag{4.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
P_{r, n-1}=a^{(\mu / \nu)((n-2)+n-1)} P_{r, n-2}^{-\mu / \nu} \tag{4.6}
\end{equation*}
$$

From inequality (4.4) and equation (4.6) it follows that

$$
\begin{equation*}
P_{r, n-2} \geqq P_{r, n-1}^{(n-2) /(n-1)}=a^{(n-2)((\mu / \nu)(n-2) /(n-1)+1)} P_{r, n-2}^{-(\mu / \nu)(n-2) /(n-1)} \tag{4.7}
\end{equation*}
$$

which implies $P_{r, n-2} \geqq a^{n-2}$, where the equality holds when and only when it holds in (4.4). Thus, if $P_{r, n-2}=a^{n-2}$, then $\lambda_{r \alpha \beta}=b \delta_{\alpha \beta}$ for $\alpha, \beta=1, \cdots, n$, and therefore $b=a$ in consequence of equation (4.5). Hence Theorem II follows from Theorem 3.2 by taking $F_{r}\left(P_{r 1}, \cdots, P_{r n}\right)=P_{r, n-2}^{\mu} P_{r, n-1}^{\nu}$.

5. Integral formulas for convex hypercaps

Let M be a compact differentiable manifold of dimension n with boundary; and let M_{n} be a convex hypercap with boundary B_{n-1}, so that M_{n} is an imbedded manifold given by $X: M \rightarrow E_{n+1}$ with positive Gauss-Kronecker curvature K_{n+1} everywhere. Then $\S 2$ with $m=1$ can be applied.

In the space E_{n+1}, let ξ be a fixed direction along which every line either
is a tangent to the hypercap M_{n} or intersects the hypercap M_{n} at most at one point, so that by the definition of a convex hypercap we have

$$
\begin{equation*}
\tau \equiv \xi \cdot e_{n+1} \geqq 0 \tag{5.1}
\end{equation*}
$$

For the hypercap M_{n} we introduce the following differential forms:

$$
\begin{array}{ll}
A_{\alpha}=|\xi, X, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-1-\alpha}, \underbrace{d X, \cdots, d X}_{\alpha}| & (0 \leqq \alpha \leqq n-1) \\
D_{\beta}=|\xi, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-\beta}, \underbrace{d X, \cdots, d X}_{\beta}| & (0 \leqq \beta \leqq n) \tag{5.2}
\end{array}
$$

As in §3, by using exterior differentiation and Stokes's theorem we obtain

$$
\begin{equation*}
\int_{M_{n}} D_{\alpha+1}=\int_{B_{n-1}} A_{\alpha} \quad(0 \leqq \alpha \leqq n-1) \tag{5.3}
\end{equation*}
$$

Now let M_{n}^{*} be another convex hypercap given by the imbedding $X^{*}: M \rightarrow E_{n+1}$, and suppose that there is a diffeomorphism f of the hypercap M_{n} onto the hypercap M_{n}^{*} such that at each pair of corresponding points the hypercaps M_{n} and M_{n}^{*} have the same unit normal vector e_{n+1}. For this pair of hypercaps M_{n} and M_{n}^{*} we introduce the following differential forms:

$$
\begin{align*}
& A_{\alpha \beta}=|\xi, X, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-1-(\alpha+\beta)}, \underbrace{d X, \cdots, d X}_{\alpha}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\beta}| \\
& A_{\alpha \beta}^{*}=|\xi, X^{*}, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-1-(\alpha+\beta)}, \underbrace{d X, \cdots, d X}_{\alpha}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\beta}| \\
& B_{\alpha \beta}=|X, X^{*}, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-1-(\alpha+\beta)}, \underbrace{d X, \cdots, d X}_{\alpha}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\beta}|, \\
& C_{\rho \sigma}=|X, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-(\rho+\sigma)}, \underbrace{d X, \cdots, d X}_{\rho}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\sigma}| \tag{5.4}\\
& C_{\rho \sigma}^{*}=|X^{*}, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-(\rho+\sigma)}, \underbrace{d X, \cdots, d X}_{\rho}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\sigma}| \\
& D_{\rho \sigma}=|\xi, \underbrace{d e_{n+1}, \cdots, d e_{n+1}}_{n-(\rho+\sigma)}, \underbrace{d X, \cdots, d X}_{\rho}, \underbrace{d X^{*}, \cdots, d X^{*}}_{\sigma}|
\end{align*}
$$

where $0 \leqq \alpha, \beta \leqq n-1$ and $0 \leqq \rho, \sigma \leqq n$. As in $\S 3$, it is easily seen that

$$
\begin{equation*}
\tau C_{\rho \sigma}=h D_{\rho \sigma}, \quad \tau C_{\rho \sigma}^{*}=h^{*} D_{\rho \sigma} \quad(0 \leqq \rho, \sigma \leqq n), \tag{5.5}
\end{equation*}
$$

where we have placed

$$
\begin{equation*}
h=X \cdot e_{n+1}, \quad h^{*}=X^{*} \cdot e_{n+1} \tag{5.6}
\end{equation*}
$$

Exterior differentiation gives

$$
\begin{gather*}
d A_{\alpha \beta}=D_{\alpha+1, \beta}, \quad d A_{\alpha \beta}^{*}=D_{\alpha, \beta+1}, \\
d B_{\alpha \beta}=C_{\alpha, \beta+1}-C_{\alpha+1, \beta}^{*}=(1 / \tau)\left(h D_{\alpha, \beta+1}-h^{*} D_{\alpha+1, \beta}\right), \quad \text { if } \tau \neq 0 . \tag{5.7}
\end{gather*}
$$

Integrating both sides of each of equations (5.7) over the hypercap M_{n} and applying Stokes's theorem to the left side we have

$$
\begin{align*}
& \int_{B_{n-1}} A_{\alpha \beta}=\int_{M_{n}} D_{\alpha+1, \beta}, \quad \int_{B_{n-1}} A_{\alpha \beta}^{*}=\int_{M_{n}} D_{\alpha, \beta+1}, \tag{5.8}\\
& \int_{B_{n-1}} B_{\alpha \beta}=\int_{M_{n}}(1 / \tau)\left(h D_{\alpha, \beta+1}-h^{*} D_{\alpha+1, \beta}\right), \quad \text { if } \tau \neq 0 .
\end{align*}
$$

Essentially the same argument as that used in deriving equation (3.16) shows that

$$
\begin{equation*}
D_{\alpha \beta}=(-1)^{n} n!\tau P_{\alpha \beta} K_{n+1} d A \quad(0 \leqq \alpha, \beta \leqq n) \tag{5.9}
\end{equation*}
$$

where $P_{\alpha \beta}$ are defined, in terms of two parameters y and y^{*}, by

$$
\begin{align*}
\operatorname{det}\left(y \lambda_{n+1, \alpha \beta}+y^{*} \lambda_{n+1, \alpha \beta}^{*}+\right. & \left.\delta_{\alpha \beta}\right) \\
& =\sum_{0 \leqq \alpha+\beta \leqq n} \frac{n!}{\alpha!\beta!(n-\alpha-\beta)!} y^{\alpha} y^{* \beta} P_{\alpha \beta} \tag{5.10}
\end{align*}
$$

We shall also write $P_{\alpha 0}=P_{\alpha}\left(\lambda_{n+1}\right)$ and $P_{0 \alpha}=P_{\alpha}\left(\lambda_{n+1}^{*}\right)$. Substituting equations (5.9) in equations (5.8) we thus arrive at the integral formulas

$$
\begin{align*}
& \int_{B_{n-1}} A_{\alpha \beta}=(-1)^{n} n!\int_{M_{n}} \tau P_{\alpha+1, \beta} K_{n+1} d A \\
& \int_{B_{n-1}} A_{\alpha \beta}^{*}=(-1)^{n} n!\int_{M_{n}} \tau P_{\alpha, \beta+1} K_{n+1} d A \tag{5.11}\\
& \int_{B_{n-1}} B_{\alpha \beta}=(-1)^{n} n!\int_{M_{n}}(1 / \tau)\left(h P_{\alpha, \beta+1}-h^{*} P_{\alpha+1, \beta}\right) K_{n+1} d A
\end{align*}
$$

$$
\text { if } \tau \neq 0
$$

where $0 \leqq \alpha, \beta \leqq n-1$.

6. Proof of Theorem III

From equations (5.11) we can easily deduce different integral formulas, but for proving Theorem III we need only the following one:

$$
\begin{align*}
\int_{B_{n-1}}\left(A_{10}-A_{01}+A_{01}^{*}\right. & \left.-A_{10}^{*}\right) \tag{6.1}\\
& =(-1)^{n} n!\int_{M_{n}} \tau\left(P_{20}+P_{02}-2 P_{11}\right) K_{n+1} d A
\end{align*}
$$

From the assumption of Theorem III that the given diffeomorphism f re-
stricted to the boundary B_{n-1} is a translation carrying the boundary B_{n-1} onto the boundary B_{n-1}^{*}, it follows that over the boundary $B_{n-1}, d X^{*}=d X$, and therefore $A_{10}-A_{01}+A_{01}^{*}-A_{10}^{*}=0$. Thus the integral formula (6.1) is reduced to

$$
\begin{equation*}
\int_{M_{n}} \tau\left(P_{20}+P_{02}-2 P_{11}\right) K_{n+1} d A=0 \tag{6.2}
\end{equation*}
$$

On the other hand, in a recent paper [4] we have established the
Lemma. If $\mu=\left(\mu_{\alpha \beta}\right)$ and $\mu^{*}=\left(\mu_{\alpha \beta}^{*}\right)$ are two positive definite symmetric matrices of order n such that for a fixed $\gamma, 2 \leqq \gamma \leqq n$,

$$
\begin{equation*}
P_{\gamma-1}(\mu) \leqq P_{\gamma-1}\left(\mu^{*}\right), \quad P_{\gamma}(\mu) \geqq P_{\gamma}\left(\mu^{*}\right) \tag{6.3}
\end{equation*}
$$

then

$$
\begin{equation*}
Q_{\gamma}\left(\mu, \mu^{*}\right) \equiv P_{\gamma}(\mu)+P_{\gamma}\left(\mu^{*}\right)-2 P_{\gamma-1,1}\left(\mu, \mu^{*}\right) \leqq 0 \tag{6.4}
\end{equation*}
$$

where the equality implies that $P_{\gamma}(\mu)=P_{\gamma}\left(\mu^{*}\right)$.
At each pair of corresponding points of the hypercaps M_{n} and M_{n}^{*} under the diffeomorphism f, we take the common unit outer normal vector to be the vector e_{n+1}; so that the matrices $\left(\lambda_{n+1, \alpha \beta}\right)$ and ($\lambda_{n+1, \alpha \beta}^{*}$) are positive definite everywhere, and the conditions (1.3) or (1.4) are equivalent to the conditions (6.3) with $\gamma=2$. Since $Q_{2}\left(\mu, \mu^{*}\right)$ is symmetric with respect to the matrices μ and μ^{*}, the above lemma gives

$$
\begin{equation*}
P_{2}\left(\lambda_{n+1}\right)+P_{2}\left(\lambda_{n+1}^{*}\right)-2 P_{11}\left(\lambda_{n+1}, \lambda_{n+1}^{*}\right) \leqq 0 \tag{6.5}
\end{equation*}
$$

where the equality implies that $P_{2}\left(\lambda_{n+1}\right)=P_{2}\left(\lambda_{n+1}^{*}\right)$. From the inequalities (5.1), (6.5), and the assumption that $K_{n+1}>0$, it follows immediately that the integrand of equation (6.2) is nonpositive, and equation (6.2) holds when and only when the equality holds in (6.5). Thus

$$
P_{2}\left(\lambda_{n+1}\right)=P_{2}\left(\lambda_{n+1}^{*}\right)
$$

and hence Theorem III follows from the uniqueness theorem of Alexandroff-Fenchel-Jessen for convex hypersurfaces with boundary. ${ }^{3}$

References

1. A. Alexandroff, Zur Theorie der gemischten Volumina von konvexen Körpern. II, Mat. Sbornik (N.S.), vol. 2 (1937), pp. 1205-1238 (Russian with German summary).
2. ——, Sur les theorèmes d'unicité pour les surfaces fermées, C. R. (Doklady) Acad. Sci. URSS, vol. 22 (1939), pp. 99-102.
3. S. S. Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, J. Math. Mech., vol. 8 (1959), pp. 947-955.
4. S. S. Chern, J. Hano and C. C. Hsiung, A uniqueness theorem on closed convex hypersurfaces in Euclidean space, J. Math. Mech., vol. 9 (1960), pp. 85-88.

[^2]5. E. B. Christoffel, Ueber die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. Reine Angew. Math., vol. 64 (1865), pp. 193-209.
6. W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selsk. Math.-Fys. Medd., vol. 16, no. 3, 1938.
7. L. GÅrding, An inequality for hyperbolic polynomials, J. Math. Mech., vol. 8 (1959), pp. 957-965.
8. K. P. Grotemeyer, Zur Flächentheorie im Grossen: Über die Abbildung durch parallele Normalen, Arch. Math., vol. 9 (1958), pp. 117-122.
9. C. C. Hsiung, A uniqueness theorem on two-dimensional Riemannian manifolds with boundary, Michigan Math. J., vol. 5 (1958), pp. 25-30.
10. --, Curvature and Betti numbers of compact Riemannian manifolds with boundary, Univ. e Politec. Torino, Rend. Sem. Mat., vol. 17 (1957-1958), pp. 95-131.

Lehigh University
Bethlehem, Pennsylvania

[^0]: Received August 13, 1959.
 ${ }^{1}$ This research was partially supported by the United States Air Force Office of Scientific Research of the Air Research and Development Command.

[^1]: ${ }^{2}$ The author is indebted to the referee for his comment which leads to the definition of a star manifold in the present form.

[^2]: ${ }^{3}$ For the uniqueness theorem of Alexandroff-Fenchel-Jessen, see [1], [6] for closed convex hypersurfaces, and [3] for convex hypersurfaces with boundary.

