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The purpose of this paper is to prove Theorem 1 which was conjectured
by E. Hopf [4, p. 39].
The first operator theoretic generalization of the Birkhoff ergodic theorem

was given by Doob [1] who proved that kn=0 Tkf/n converges pointwise,
where T is a Markov operator for which there is an invariant measure and
f is the characteristic function of a set. It was noted by Kakutani [5] that
Doob’s method was applicable to give the same result for f merely a bounded
function, and Doob [2] later applied the same method to obtain this conver-
gence result for f in L, and more generally for Ill log+ Ill in L1 (relative
to the invariant measure). Hopf [4] then proved the theorem assuming
merely that f is integrable. Dunford & Schwartz [3] extended Hopf’s result
by dropping the assumption of positivity for T. More precisely, they dropped
the restriction of assuming the operator to be a Markov operator and proved
the theorem for an operator which does not increase the L1 and L. norms.
Tsurumi [6] proved a result with the same conclusion as ours but with much
stronger and somewhat complicated hypothesis. In our paper we drop the
assumption that T does not increase the L norm, consider positive operators
which do not increase the L1 norm, and prove a theorem about ratios of
sums of transforms of two functions. Our result implies the Hopf theorem.
The Dunford and Schwartz theorem, although not implied by our theorem,
can be obtained by modifying the method which we use in this paper.

THEOREM 1. Let T be a positive linear operator on L of a positive measure
space S, , ), and let T have LI norm less than or equal to one. Then if f
and p are functions in L and if p is nonnegative, the limit

lim_. =0 Tf/=o Tkp

exists and is finite almost everywhere on the set A s" Tp > 0 for some t >= 0}.

Let D(f, p) =o Vf/=o Tp and suppose in what follows that T
satisfies the conditions stated in the theorem. All given functions in what
follows will be supposed to be in L, and all functions which are constructed
will be in L1 by construction (this will be obvious).

LEMMA 1. If f f+ f-, and if sup ’k=0 Tkf > 0 on a set B, then there
exist sequences {d} and {f} of nonnegative functions such that

+ =< Yf+,
(ii) od f- on B,
(iii) Vf+ ’.=0 T- d q- f.
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Proof. Define inductively

d0=0, f0 f+,
(1.1)

f+l Tf f- + do + + d) +, di+x Tf f+
First note that

(1.2) -f- + do + + d -< 0,

and that there is equality on the set where f > 0 since

f (Tf_ --f- + do + + d_) +

(Tf_ --f- f- + do + + d_l + f) +

(d-f-+do+ +di_+f)+.
It follows easily from (l.1) that

(1.3) T+ ’=0 V’-k d + f-.
Note further that f is nonnegative by definition, and that so is d, by the

last two equations of (1.1) and (1.2). From (1.3) we see that

+(1.4:)

Now we prove

(1.5) ’0 T+ =< =0 d + .% T- -4- ."0f.
To see that (1.5) holds, note that

o =0 T-d oT( d),
and that

(1.6) T?- T(d) for 1 j n,

where (1.6) follows from (1.2).
Rewriting (1.5) we have

(1.7) o T(f+ f-) o (d + f) f-.
We will now prove that

(1.8) 0d f- 0 almost everywhere on B.

It is clear from the remark after (1.2) that (1.8) holds with equality al-
most everywhere on the set C {s:f > 0 for some i 0}. It remains to
show that (1.8) holds in the set B C. This follows on noting that (1.7)
implies that on B (and on B C in particular)

’’=o(d" + f’) f- _-> O.
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Now we note that the condition (iii) is exactly (1.3) and that condition
(ii) follows from formulas (1.2) and (1.8). To verify that (i) holds for the
sequences defined in (1.1), note that we have---- \=0

dk

Now by induction on j we get (i).

LEMMA 2. U P O, then

lim T’+p/= Tp 0

for each fixed j 0 almost everywhere on the set s p > 0}.

Proof. Assume the contrary. Then there are a set D of nonzero measure
and a constant a > 0 such that T"+p > a-=0 Tp for infinitely many n
at each point of D. Set

E, {s’T"+p >a Vp}

e,= f [T+ip] a f Tp.
We will now prove

(2.1) e, e,+ a I_ P;
n+l

n will be fixed through the next paragraph.
Set

Tp) ch E Tp, (Tp) Tp (Vp)l

(where ch E, means the characteristic function of E,). Since the function
r [(V"+p)] [a:0 (Vp)] is nonnegative and has integral equal to
e,, it follows that its transform Tr has integral over any set less than or equal
to e,. In particular,

n+l n+l i0 n-p1

Similarly, since the function w [(T+p)] [a:-0 (Tp)] -< 0, it fol-
lows that Tw has integral over any set less thn or equal to zero. In particu-
lar

n+ n+ iO n+

Combining (2.2) nd (2.3) we get
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en+l fen+
n+l

From (2.4) follows (2.1). In order to obtain a contradiction we note that
=0 f. p diverges, because every point of D is covered infinitely often
by the E. This yields a contradiction since it follows from (2.1) that
=0 p converges.

LEMMA 3. For p >= 0 and any g we have sup D(g, p) is finite almost every-
where on the set where =0 Tap > O.

Proof. It is sufficient to prove the lemma under the hypothesis that g => 0,
and only to prove finiteness of the indicated supremum where p > 0. The
first remark is obvious, and the second follows since we would also have then
that sup D(Tg, Tp) is finite almost everywhere on the set where Tp > O,
and this implies that sup Dn(g, p) is finite almost everywhere on the set
where Tp > O.
Assume the contrary. Then the supremum of D(g, p) is infinite almost

everywhere on a set E of positive measure, and p > b > 0 on the set E for
some positive constant b. We have, therefore, that for any positive constant a

sup _,Lo T((g ap) + (g ap)-) > 0

almost everywhere on E. Applying Lemma 1 with f g ap we get from
(i) and (ii) of Lemma 1 that

f (g ap)+ >- _, d (g- ap)-.

However, the quantity on the extreme right tends to infinity as a tends to
infinity, and the one on the extreme left to zero, giving rise to a contradiction.

LEMMA 4. If on a set F of finite measure, where F is contained in the set where
=0 Tp we have that sup D,(f, p) a, then given O, there exists
a function g such that if we let h ap (f ap)- + g, then

(i) the limits superior and inferior of D,(f, p) are, respectively, the same
as those of D(h, p), almost everywhere on F,

(ii) (f ap)+- f (h- ap) + >= ](f ap)-- ,
(iii) h ap)- <- e on F F’ where # Fr) < e,
(iv) (h-- ap)- <= (f ap)-.

Proof. The fact that the supremum of D(f, p) is greater than the num-
ber a almost everywhere implies that the supremum of

=o T (f ap)
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is positive almost everywhere on F. We now apply Lemma 1 with f replaced
by f ap. We will let g =0 dk + fN for a sufficiently large N. We
have by (ii) of Lemma 1 that

L L(f ap)- dl,

and hence if we choose N sufficiently large,

__> (f
k---0

Note that

(4.2) (g (f ap)-)+ <__ g ca F dk
k--0

since =0 d (f ap)- <- 0 on F, by (ii) of Lemma 1. Now applying
the definition of h we have that (h ap) + (g (f ap)-) +, and hence,
by. (4.2),

f f f(4.3) (f-- ap)+- (h-- ap)+ >= (f- ap)+- g + dk.
kO

Applying (i) of Lemma 1 with (4.1) gives that the N chosen is large enough
to satisfy (ii). If N is taken large enough, we can also insure that
(=0 d (f ap)-)- <= on F F’, where F is as in (iii). Condition
.(iv) follows because (g (f ap)-)- <= (f ap)-since g __> 0 and
(f ap)- O.
Note that for any function q _>- 0

.(4.4) lim [D,(q, q) n,(Tq, q)] 0 [1 lim_ n,(Tq, q)]

almost everywhere in the set where k0 Tq since the difference on
the left side of (4.4) is equal to

(q +’" + T-iq- T+q Tk+nq) /_o Tq,
which tends to zero by Lemma 2 and the fact that the denominator tends to
infinity. To see that (i) is satisfied we would like to show

(4.5) limn-. [D,(q, p) D,(T q, p)] 0

on the set G where =0 Tp .
Now D(Tq, p)/D(q, p) D,(Tq, q) which tends to 1 as n tends to in-
finity, by (4.4), on the set H where =0 Tq . Since the supremum
of D(q, p) is finite almost everywhere on G by Lemma 3, we have that (4.5)
holds almost everywhere on H a G. But on G H, =o Tp and
=0 Tq , and thus each of the terms in (4.5) tends to zero separately.
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This establishes (4.5). That (i) holds follows from the fact that we can
write the difference Dn(h, p) Dn(f, p) as the sum of terms exhibited
(4.5), i.e.,

n(f, p) nn(h, p) D(f, p) D(TVf, p) + D,(VVf, p) D(h, p)

and
Dn(TVf, p) D(h, p)

D(TV(ap (f- ap)-), p) Dn(ap (f- ap)-, p)- Dn(fv - TdN_I -... - TN-ldl, p)

Dn(fN "- dN-i "- "- dl, p).

LEMMA 5. If on a set J of finite measure, where J is contained in the set
where =o TkP , we have that inf D(f, p) < a, then given > 0 there
exists a function g such that if we let h ap + (f ap)+ g, then

(i) the limits superior and inferior of D(f, p) are, respectively, the same
as those of D,(h, p), almost everywhere on J,

(ii) f (f ap)- (h ap)- >-- f(f ap)+- ,
(iii) (h ap) + <= s ou J J’ where #(J’) < ,
(iv) h ap + <= (f ap +.
The proof is the same as that of Lemma 4.

Proof of Theorem 1. We note that we may suppose without loss of gen-
erality that f is nonnegative. Note further that if the assertion of the theorem
is proved on the set where p > 0, we can deduce from it the complete theorem,
for if the limit of Dn(f, p) did not exist on the set K where Tkp O, then
_.,o Tf _=o Tp on K. The limit of n,( Tf, Tp) exists on K
by the part of the theorem we are supposing proved, and

lim_. D Tf T p lim_ D(f, p)

on K because E’0 Tf ET=0 TP on K.
Assume there is a set L of nonzero measure where the limit of D(f, g)

does not exist. Keep in mind that =0 Tp on L. Then there exist
positive constants al, a, and b, and a set of the form

M Is’lira inf_. D(f, p) < a < a < lira sup_ D(f, p), p > b/
which has finite and positive measure. We will now derive a contradiction.
First apply Lemma 4 to f, and let r h (the h of Lemma 4). Because of
(i) of Lemma 4 we can apply Lemma 5 to r, and we let r be the h of that
lemma. Because of (i) of Lemma 5 we can apply Lemma 4 to r to obtain
r, etc. Thus we obtain a sequence of functions {r.}. Choose > 0 as
follows"

min [#(M)/8, (a a)b/8,

%/’-t(M)b.(a.- al), t(M)b.(a- a)].
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We shall prove

f (r, a p)- 1
ri-1 alp)- - t(M)b(a2- al)

for i even and greater than or equal to 2. To prove (1"), we shall first prove

(2*) fM--M (r-’- aP)+ >
--M

(a2-- a)p-- tt(M-- M’)

where tt(M’i) <= .
(2") follows from Lemma 4 (iii), since (iii) implies that (r_l a p)- _<_
on M Me, and hence that ri_ a2p A- _>- 0 on M M, and thus
that the integral of (r_ a2 p A- (a. a)p + )+ over M M is greater
than or equal to that of (a: a)p over the same set, from which follows
(2"). Now (2") together with Lemma 5 (ii) gives

f (ri_ alp)- f a p)-

JM--M

>= (a2- a)b(t(M) ) (#(M) ) ,
from which we get easily (1"). Note further that, if r0 f,

(3*) f (r-- ap)- <__ f (r_-- a,p)- for i odd,

since by (iv) of Lemma 4 we have that (r a. p)- <= (ri-1 a. p)-, for
i odd. Now we combine (1") and (3") to get that ](f ap)- ,
which is a contradiction.
The finiteness of the limit follows from Lemma 3. This concludes the proof

of the theorem.
We conclude by pointing out that we can prove our theorem for ratios of

sums of transforms of two measures (this was brought to our attention by
J. L. Doob). We will call the variation of a completely additive set function
its norm, and we will call the Radon-Nikodym derivative with respect to
of the absolutely continuous component of a, da/d, where a and/ are two
such set functions.

THEOREM 2. Let U be a positive linear operator from the space of finite
completely additive set functions on a measurable space into itself with norm less
than or equal to one. Let a and be in the domain of U, with >= O. Then

klim_, dEk=o U a//dEk=o Ukfl
exists U almost everywhere, for every t >= O.
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Proof. Note first that if , and i are completely additive set functions,
absolutely continuous with respect to some measure #, then
d,/d (d.),/d)/(d/d). To see that Theorem 2 follows from Theorem 1,
define the measure by

0c u[ + ’]

where a’ is the sum of the positive and negative variations of a and
-’k0 ck 1, c > 0. Then if f is any member of LI(), define Tf as fol-
lows. Let f be the set function with

((A) [ fd,

and let
Tf dU/d,.

Then T is linear, positive and has norm less than or equal to one, and so
Theorem 1 is applicable and yields Theorem 2. This concludes the proof.
We remark that Theorem 1 may be obtained from Theorem 2 by defining

U(A A T(da/d) d, as in Theorem 1.
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