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Introduction

Let I be finite-dimensionM Mgebm with unit element over field K.
Let {e}= be mximM set of nonisomorphic primitive idempotents of ,
nd let {c}= be the Crtn invrints of . This pper gives reltion-
ships mong the Crtn invrints of n Mgebr with unique minimM
fMthful representation ( UMFR algebra). Similar relationships re given
for n Mgebr belonging to certain subclasses of the class of UMFR Mgebrs.
These results will generMize those obtained by R. M. ThrM1 [6] for one of
the subclasses. The enumeration of these subclasses will be that used in n
erlier paper [7] in which some properties of the subclasses were studied.
1 contMns the definitions nd notations for the pper including the defi-

nitions of certain sets of integers ssocited with ech of the integers
i 1, -.., n nd certMn decomposition numbers ssocited with the prim-
itive ideals e of nd their socles. 2 gives relationships mong these
sets of integers nd decomposition numbers when the ssocited left ideM
e is weakly subordinate. 3 gives relationships mong certain of the
Crtn invrints of ny algebr in which there re weakly subordinate
left ideMs. 2’ nd 3’ give the corresponding results for right ideals. 4
gives the relationships that hold for the Crtn invrints of UMFR l-
gebr nd gives similar results for the vrious subclasses. 5 restates the
results in terms of the Crtn mtrix C() (c).

1. Definitions and notations

Let be a finite-dimensional algebr with unit element over a field K.
When referring to ideals of N or to -modules, the term isomorphic will mean
isomorphic when considered as N-modules. If e and f are idempotents,
then e and f are isomorphic if and only if Ne f (or equivalently e f).
Let

be decomposition of the unit element of into the sum of mutually orthog-
onal primitive idempotents such that e. e if and only if i h. Let

= le nd = f

be the corresponding decompositions of N into the direct sums of primitive
left ideals and primitive right ideals, respectively. Let e denote el for
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i 1, n. Then the set {e} n_-i is a maximal set of nonisomorphic primi-
tive idempotents, and every primitive left ideal of I is isomorphic to one
of the Ie, and every primitive right ideal of 9.I is isomorphic to one of the

Let be the indecomposable representation of [ which has ?le as its
representation module, and let 1I be the indecomposable representation of ?I
with e ?1 as representation module. Let be the irreducible representation
of I with module !Ie/ei, where is the radical of ?l. is equivalent to
the representation with module ei N/e. The i are the nonequivalent
components of the left regular representation, and the 1Ii are the nonequiv-
alent components of the right regular representation. Every irreducible
representation of ?I is equivalent to one of the . (See [2], [3], and [5].)

Let ci be the number of irreducible constituents of which are equivalent
to ., and let j be the number of irreducible constituents of 1I which are
equivalent to .. It is known [1, p. 106] that ci i. The integers
cii are known as the Cartan invariants of ?I, and the matrix C([) (cii) is
the Cartan matrix of [. The Cartan invariant cir. can be characterized in a
number of additional ways" the number of constituents of any composition
series of /e which are isomorphic to ?le./e. the number of constituents
of any composition series of ei N which are isomorphic to e ?l/e; the
composition length of e. 9.Ie as an e 9.Ie-module (see [1, p. 106]).
For any primitive ideal , the socle () of is the sum of all minimal

subideals of , (see [4, p. 63], [7, 5]). For each ?Iei let

be a decomposition of (R)(?Iei) into the direct sum of minimal subideals of
ei such that 9,. ----- le/e for all j and lc. For each ei ?I let

(R)(e ) n__ X
be a decomposition of (R)(e ) into the direct sum of minimal subideals of
e ?l such that 9.. ----- e ?I/e for all j and lc.

DEFINITION. Let 2: {/c ]g 0} and II {/ [ # 0}. If 2: is a
set with only one element, denote it by (i), and if II has one only element,
denote it by r(i).

If a primitive left ideal ?le is dual to a primitive right ideal f?l, then
and fN are dominant ideals. An algebra in which every primitive ideal is
dominant is a quasi-Frobenius algebra. Assume g[e is dual to e. ?l. Then
g[e has a unique minimal subideal which is (9.1e) and whose representation
of N is equivalent to .. Dually, e-g[ has a unique subideal whose repre-
sentation is equivalent to . Thus, Z {j} and II {i}, and so (i) j
and r(j) i. If 9Xe and ei ?I are dual, then the representations of 1 that
they generate are equivalent. In terms of the Cartan invariants this im-
plies that for all lc
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(2) Cik G(i)k ck() and c"

DEFINITION. Let Z {i e is dominant} nd H {i e is dominant}.
(Since an algebra need not have dominant ideals, these sets may be empty.)

2. Weakly subordinate left ideals

An ideM (left or right) is subordinate to n ideal ’ if there exists sub-
ideal * of ’ such that *. An ideM is weally subordinate to set
of ideals {} if there exists set of ideals = with each . a subideal
of some , such that is isomorphic to some submodule of the direct sum. If an ideal is weakly subordinate to a set of ideals, then it is
weakly subordinate to a set of mutually nonisomorphic ideals [7, Theorem 1].
An ideal is subordinate to a set of ideals if it is subordinate to an ideal of

which is their direct sum.
Consider the case of a primitive left ideal weakly subordinate to set of

dominant ideals. Then is isomorphic to one of the e, i 1, n,
and both and the set of dominant ideals may be chosen from among the
e, i 1, n. If e is weakly subordinate to a set of dominant ideals,
let be the subset of the integers 1, n such that [e is weakly sub-
ordinate to {e e} and is not weakly subordinate to {e k X} where
X is any proper subset of . In this notation e is weakly subordinate to
{elc } if and only if e is isomorphic to a submodule of the left
?l-module

(3) ,+
where for ech e, h is the smallest possible integer. By setting h 0
for M1 , the summation in (3) cn be extended so that

= e.
THEOREM 1. e is weakly subordinate to a set of dominant ideals if and

If e is weakly subordinate to a set of dominant idealsonly if c .
le k +}, then

(5)

(6)

Proof. The first statement is merely a rephrasing of an earlier result [7,
Theorem 4].
Assume that e+ is weakly subordinate to {e 1 e +d, a set of dominant

ideals. Since 9.Ie+ _------ , where 9Yt is a submodule of t given by (3),
every minimal subideal of e is isomorphic to a minimal subideal of one of
the ek, 1 e+ (see proof of [7, Theorem 4]). For /c ++, .le is dual to
e:) 9A, and thus the minimal subideal of 9ge is isomorphic to
Thus, 2: c {(k) l/ I,d. From the minimality of + it follows that
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and, therefore, (5) is proved. (6) follows from (5) and from the fact that
(a(/)) k for/ e.
COnOLLARY. Let e be wealcly subordinate to a set of dominant ideals.
has a single element j, i.e., {j}, if and only if Ie is weakly subordinate

to the single dominant ideal ?Ie()

Note that the g. are defined for any i and j, but the h are defined only
for those i such that Ie is weakly subordinate to a set of dominant ideals.
If i is such that ?Ie is weakly subordinate, then for every j

(7) g" hi() and h- g().

Hence, the number hi of times e appears as component ot J is exactly
the number g() of components .()-in

2. Weakly subordinate right ideals

The case in which is a primitive right ideal weakly subordinate to a set
of dominant ideals is exactly dual to the left ideal case. The definitions
and results will merely be stated.

If e ?I is weakly subordinate to a set of dominant ideals, let I, be the set
of integers such that e ?I is weakly subordinate to {e 9.Illc e } but not to
e N llc e X}, where X is any proper subset of . Thus, e N is weakly
subordinate to {e ?ll/c e I,} if and only if e [ is isomorphic to a submodule
fft of the right N-module

(3’)

By setting ] 0 for all lce I,, the summation in (3’) can be extended so
that

e I is weakly subordinate to a set of dominant ideals if and
If e ?I is weatcly subordinate to a set of dominant ideals

(4’)

THEOnE 1.
only if H H.
{e ?I }, then

(5’)

(6’)

COROLLARY. Let e I be weakly subordinate to a set of dominant ideals.
Then H has a single element k, i.e., II k}, if and only if e I is weakly
subordinate to the single dominant ideal e() I.

As before, the relationships among the nd/ re

(7’) , ],( and ] c-
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3. Caftan invariants for left ideals

DEFINITION. If Ie is weakly subordinate to {1e,[lc e}, then let d-
be the number of irreducible constituents equivalent to . of the representa-
tion whose module is

THEOREM 2. Zf Ne is wealdy subordinate to the set of dominant ideals
lek l e Pi}, then for any j 1, n

(8) 1. c + di hi Ci

(9) 2. Cil Z, hi ci

(10) 3. c hi c for all j if and only if i H.

Proof. 1. Since . appears c. times in ek (or, more precisely, appears
c times as an irreducible constituent in the representation generated by
/e), . appears h c. times in . z_,= e. Thus, since

. appears hi c times in O)i. Since Y --- 9ge, . appears c. times
in 93. Since d. is the number of times that i appears in J/, it
follows that c + di -" hi c.

2. Since for all i and j, d. _-> 0, (9) follows from (8).
3. If c h ck- for all j, then d. 0 for all j. Thus, Y/ 0,

and hence )* ). But, since e is a primitive ideal, it cannot be iso-
morphic to a sum of more than one primitive ideal. Therefore, Y is a single
ideal 9e, and ?Ie [e, which implies i lc. Thus, i H, i.e., .Ie is
dominant. The converse of (10) is immediate.

In each of the following special cases a set of relations similar to (8), (9),
and (10) can be obtained as corollaries to Theorem 2. However, only the
formulas corresponding to (8) will be explicitly stated.

COROLLARY. If e is subordinate to {le[ lc ei}, )le dominant, then
c] -k di c, j 1,..., n. If e is wealcly subordinate to a

single dominant ideal ?le, then c -k d h ck, j 1,..., n. If e
is subordinate to a single dominant ideal [e, then c-k d c, j 1,

3. Cartan invariants for right ideals

If e ?I is weakly subordinate to/Ael/ }, then let i" be the number of
irreducible constituents equivalent to of the representation whose module
is i/!gt. If, in the preceding section, c- is replaced by -, d. by -,
hj by ], etc., then the results hold for a primitive right ideal e weakly
subordinate to ek /I/c e qi}. For example, (8) of Theorem 2 becomes
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However, for every i and j, c [1, p. 106].
general that ]i h or i. d..
matrices of the form

But it is not true in
For example, let I be the algebra of all

where
IV 010 V2

al 0 0 a4 0 0

V1 a5 a 0 and V as al 0

and the as are elements of the field K. Let x denote the matrix in which
ai 1 and a. 0 forj i. Then {x}9=1 form a basis of , and x} 4_-
are a maximal set of nonisomorphic primitive idempotents. Then, with
respect to this mximal set, the numbers c, dii, etc., cn be esily calcu-
lated. It is seen that ds 1 while 8 0, nd hs 1 while 0.
By using the numbers di nd hi long with the Crtan invrints ci the

results for right ideals re as given below.

THEOREM 2’. If e is weakly subordinate to a set of dominant ideals
e k e }, then for any j 1, n

(9’) 2. c c,

(10’) 3. c , c for all j ff and only ff i e Z.

As in 3, only the formulas corresponding to (8’) of Theorem 2’ will be
stated in the corollary.

CoroLlarY. If e is subordinate to {e k e }, e dominant, then
c i c, j 1,..., n. If e is weakly subordinate to a
single dominant ideal e , then c c, j 1,..., n. If e [
is subordinate to a single dominant ideal e , then c c, j 1,

n.

4. Cartan invariants of UMFR algebras
In a previous paper [7] properties of various subclasses of UMFR algebras

(algebras with unique minimal fithful representations) have been studied.
The definitions of some of these classes will be repeated here, and the Carton
invrints of algebras in these classes will be studied in this section.

1. is UMFR if nd only if every primitive ideal (left or right) is wekly
subordinate to a set of dominant ideals of .

This characterization of the UMFR algebras was given by Thrll [6,
Theorem 5]. It has been shown that the dominant ideals my be chose
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mutually nonisomorphic [7, Theorem 1]. In the language of Theorems 1
and 1’, another characterization of the UMFR algebras can be obtained:
I is UMFR if and only if for every i, 21i c 21 and II c II.

2. I is type A if and only if every primitive ideal is subordinate to a set
of dominant ideals, i.e., is subordinate to an ideal which is the direct sum of
dominant ideals. The dominant ideals in the set cannot necessarily be
chosen nonisomorphic.

If I is a UMFR algebra, then ?I is type A if and only if for all i and k,

(11) h _-<f and ]i _-<f (hence, also g =< f() and Oi _-< f()),

where fk, given by (1), is the number of primitive idempotents isomorphic
to ek in any decomposition of the unit element [7, Theorem 5].

3. is type AC if and only if every primitive ideal is subordinate to a set
of mutually nonisomorphic dominant ideals of .

4. ?I is type B if and only if every primitive ideal is weakly subordinate
to a dominant ideal of

5. is type AB if and only if every primitive ideal of ?I is subordinate to a
set of isomorphic dominant ideals of l, i.e., is subordinate to an ideal of
which is the direct sum of isomorphic dominant ideals of

6. ?I is type ABC if and only if every primitive ideal is subordinate to
dominant ideal of
From the corollaries to Theorems 1 and 1’ it follows that if ?l is a UMFR

algebra, then .I is type B if and only if, for every i, 21 and II are sets with
one element. Thus, for an algebra of type B two functions can be defined.

DEFINITION. If 9A is type B, then define functions a and r from 1, n}
into itself as follows: a:i--+ a(i); r:i--+ r(i); where a(i) and r(i) are the
unique elements of 21 and II, respectively.

This generalizes the functions and defined by Thrall [6] for algebras of
type ABC.

THEOREM 3. If ?l is a UMFR algebra, then for every i and j

(12) cii <= =1 gik cjk

with equality holding for all j if and only if i e II; and

(13) ci- =< }-’=10’k c,,,

with equality holding for all i if and only if j 21.

Proof. By (9), (7), (2), and (5) it follows that cir. _-< k h c.
E gi() c Ek’ gi() c() E r. gi ce. Since gk 0 for
the final summation can be extended, and thus ci <= "= g ck. The
condition for equality follows immediately from (10).
The proof of (13) is dual to that of (12) and uses Theorem 2 with suitable

changes iu subscripts.
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COROLLARY 1. If I is type A, then for each i and j

(14) ci _<- f ci zf() c,

(15) ci vfc nf,() c.

Proof. The first part of (14) follows from (9) and (11), and the second
part follows from (12) nd (11) summing only over Z. The proof of (15)
is dual to thut of (14).

Although the summations in Corollary 1 could be extended to run from 1
to n, the resulting inequalities would in general be less accurate estimates
for c since fi 1 for all i. Similarly, the estimates in Corollary 1 may be
less accurate than those in Theorem 3, but (14) and (15) involve only the
c’s and the f’s.
ConoLnY 2. If is type AC, then for eery i and j

(16) ci c
with equality holding for all j if and only if i e H; and

(17) c , c,

with equality holding for all i if and only if j

Proof. (16) can be proved either from Theorem 3 or by use of Theorem 1
and the corollary to Theorem 2. The proof of (17) is dual.
Note that for algebras of type AC, (16) and (17) give relationships among

the c alone.

ConoLhaY 3. If is type B, then for every i and j

(18) c
with equality for all j if and only if i H; and

(19) c () c(),

with equality for all i if and only if j

Proof. From Theorem 3 and the corollary to Theorem 2, it follows that
c g()c(), where e is the dominant ideal to which e is weakly
subordinate. But, if e is wekly subordinate to e, z(i) z(). Thus,
(18) is proved. The proof of (19) is dual.

ConoLaY 4. If is type AB, then for every i and j

(20) c 5 f(())c(),

(21) c1 fi(())c).

Proof. Corollary 4 follows immediately from Corollary 3 and (11).
As noted concerning Corollary 1, the estimates (20) and (21) may be less
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accurate than (18) and (19), but only the cj’s and f’s are involved in (20)
and (21).

COIOLLAn 5. /f is type ABC, then for every i and j

(22) cj <- cj()

with equality for all j if and only if i e II; and

(23) c- =< c(),

with equality for all i if and only if j .
Proof. The proof is immediate from Corollaries 2 and 3.
Inequalities (22) and (23) were proved for ABC algebras by Thrall [6,

Theorem 3]. Theorem 3 and its corollaries generalize these results to the
UMFR algebras and its subclasses.

5. Cartan matrices of UMFR algebras
Since the various summations in Theorems 2 and 3 can be extended to run

from 1 to n, it is possible to restate these results in matrix form. In addition
to the Cartan matrix C(9/) (c-), define D(9.I) (d), H(t) (h-)
and G(I) (g.).

THEOaEM 4. If 71 is a UMFR algebra, then

(24) C() + D() H()C() G()C()’,

(25) C(N) _<_ H(I)C(9) G()C(N)’,

with equality if and only if I is a quasi-Frobenius algebra.

If N is quasi-Frobenius, the G(N) and H(I) are permutation matrices.
The matrix C(N)’ is the transpose of C(.I), and the relation "<-" is defined
elementwise.
The relationship between the matrices H(N) and G(N) is given by a matrix

T(N) (ti-) where

1 if ieII, s(i) =j or iII, i=j,

0 if ieII, s(i) j or ieII, ij.

Then the relationship is G(N) T(9.I) H(N).
A similar set of matrix relations for C(N) can be obtained in terms of

/(N) (-), (gA) (].) and G(N) (.).

THEOREM 4’. If I is a UMFR algebra, then

(2’) c() + ()’ c()q()’ c()’()’,
(5’) c() __< c()/7()’ c()’()’,
with equality if and only if I is a quasi-Frobenius algebra.
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