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1. Introduction
It should prove helpful to the reader if we begin with some brief remarks

not strictly pertaining to the content of the paper. The general topic is the
concept and theory of "normal" endomorphisms of a loop. This topic was
begun in Chapter IV, 4 of the author’s book, A Survey of Binary Systems [1].
Most of the references in the paper are to [1], and these take the form "[SIVA]"
"Lemma 3.1 of [SVII]", and so on. The paper is so designed that the reader
can follow the earlier sections with only a general knowledge of loop theory
but will need progressively more of the lore of Moufang loops. It is, however,
the special knowledge which supports the concepts studied in the paper.
Accordingly, we shall now discuss the content of the paper with a minimum
of definitions and with little regard to order. We adopt a notation appropriate
for the discussion, with no intention of using it in the rest of the paper.
The four main classes of "normal" endomorphisms to be studied in this

paper are

K1

K2

K
K4

The seminormal endomorphisms.

The weakly normal endomorphisms.

The normal endomorphisms.

The strongly normal endomorphisms.

Each of these is defined in 2. Class K3 was defined in [SIV.4] in terms of
"normalized, purely non-abelian" loop words. We use the same definition
here but prove some helpful lemmas (Lemmas 2.1, 2.2) about the defining
class of loop words. The remaining classes K were studied originally in
response to a question (proposed in a letter from Reinhold Baer) as to whether,
in the case of a group, Ka was precisely the set of all endomorphisms com-
muting with the inner automorphisms. The answer turns out to be affirma-
tive (Corollary to Theorem 3.2), and the introduction of the new classes
allows us to place this result among the elementary ones. The method of
proof is as follows: For any loop (by definition and Theorem 2.1),

(1.1) KI K2D KD K4.

For a group, K1 and K4 are easily seen to consist of all endomorphisms com-
muting with every inner automorphism of the group.
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Let us note parenthetically at this point that multiplication and addition
of single-valued mappings 0, of a loop L into itself are defined in the natural
manner: For every x in L,

(1.2) x(O) (xO)dp, x(O "4-oh) (xO)(xch).

The (right) complement, 0’, of 0 is defined by

1.3) 0 A- 0’ 1 the identity mapping.

The inner automorphism group of a group G has as its natural analogue the
inner mapping group of a loop L; but the inner mapping group need not con-
sist of automorphisms. Commutators (x, y) and associators (x, y, z) are
defined by

(1.4) xy [yx](x, y), (xy)z [x(yz)l(x, y, z).

In what follows let 0 (but not necessarily 0’) denote an endomorphism of a
group G or loop L, according to the context. For a group, the usual definition
of normality is

@.1. commutes with every inner automorphism of G.

For a loop, one might try

.1. commutes with every inner mapping of L.

If L is a Moufang loop, .1 is equivalent (Lemma 7.2) to the set of identities

(1.5) (x, y)0 (xO, y) (x, yO),

(1.6) (x, y, z)O (xO, y, z) (x, yO, z) (x, y, zO).

In particular, @.1 is equivalent (as is well known) to (1.5). We use the
identities (1.5), (1.6) (for an arbitrary loop) to define the class K1. In
particular, K1 is a multiplicative semigroup, a property shared with the other
classes K. However, so far as is known, the elements of K (or K2) need
not satisfy .1. The elements of K3 do satisfy .1.
For a group, a property known to be equivalent to @.1 is

@.2. ’ is an endomorphism of G.

However, if we let .2 denote the corresponding property for a loop L, we
get a class in general incomparable with K1 .--Connected, but not in general
identical with this class, is the following"

Ko The demi-seminormal endomorphisms.

Class K0 consists of all endomorphisms satisfying a weakened form of (1.6):

(1.7) (xO, y, z) (x, yO, z) (x, y, zO).

For a group, K0 contains every endomorphism and hence is frequently larger



than K1. For a commutative Moufang loop, K0 is a (nontrivial) ring con-
sisting of every 0 having the property that both O’ and 1 nu 0 are endomor-
phisms (Theorem 8.1). For an arbitrary Moufang loop, the additive loop
generated by K0 is a group (Lemma 7.8) with remarkable properties. Itow-
ever, K0 cannot seriously be considered as a class of "normal" endomorphisms.
For a group, each of (R).1, .2 is equivalent to the following strengthened

form of (R).2:

@.3. O’ is an endomorphism of G and 00’ (= 0’0) is centralizing (i. e., maps
G into its centre).

The corresponding property .3 is used to define the class K4. Thus, as
stated earlier, K1 and K4, in the ease of a group, both consist of the en-
domorphisms satisfying (R).1.

It might be remarked here that K4 seems the most appropriate class to be
used for the theory of direct decomposition of loops. First let us note one
ditficulty: it is not immediately evident that K4 is closed under multipliea-
tion. To prove that K4 does possess multiplieative closure it seems necessary
to establish at least some of the properties of Ks or K2. Theorem 3.1 deals
with this matter rather thoroughly.
To get back to direct decomposition, a class, K, of "normal" endomorphisms

suitable for the theory of direct decompositions should, ideally,
a contain all decomposition endomorphisms,
(b) contain all centralizing endomorphisms and the sums of these with any

member,
(e) contain all centre automorphisms (i. e., automorphisms 0 for which O’

is centralizing),
d contain the complement of each of its members,
e be closed under multiplication.

In addition, the elements of K should
f map normal subloops into normal subloops,
g map centre elements into centre elements.

Both (f) and (g) will be automatic if the elements of If also
(h) commute with inner mappings.

And I would add the requirement that, for all 0, in K,
04 40 nu (0, 4), where (0, 4) is a centralizing endomorphism.

In connection with (i), see Theorem 3.3 and the appended remarks.
For K4, (a)-(d) are obvious, (h) and (i) can be proved quite simply,

and (e) then follows easily from (i). And K is probably the smallest in-
trinsically defined class with properties (a)-(i) which is likely to be proposed.
For Ka, all of (a)-(h) except (d) were proved in [SIVA]. I would not

have conieetured the truth of (d), but it is indeed true (Theorem 4.1).
And (i) holds not only for Ks, but also for K.
The relation of K, K to (d) and (f), and of K1 to (i), is still uncertain

for loops in general. Except for (d), (f), (h) (which implies (f)), and (i),
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the rest of (a)-(i) are all true. For a Moufang loop L, K1 satisfies (a)-(i)
moreover, K1 generates a ring S with the property that every endomorphism
0 of L which is in S is also in K1 and has its complement O’ in K as well (Theo-
rem 7.1 ). Theorem 7.1_ is a true generalization of a theorem of Heerema
[3] on normal endomorphisms of a group; the proof, however, has to contend
with the fact that inner mappings of a Moufang loop need not be automor-
phisms.--No comparable theorem is known for loops in general (even with
K1 replaced by K4); indeed, such a theorem would have to involve a modified
concept of "ring", presumably a neoring in the sense of [4].
Now let us turn for a moment to a discussion of the definitions of K,

K2, K3. We recall that K1 was defined by (1.5), (1.6). And K2 is defined
by adding to (1.5), (1.6) a finite set of identities of a similar sort. (They
are not very pretty!) We remark that although (1.5), (1.6) have a super-
fieial symmetry--and have an invariant significance for the special ease of
Moufang loops--the symmetry is not real. For example, in the definition
(1.4) of the commutator (x, y), we might reasonably replace the right-hand
side by any one of

(y, x)[yx], [yx](x, y), [y(y, x)]x, y[(x, y)x],

or by other combinations which will occur to the reader. The resultant effect
on K1 is (in general) by no means clear. Similar remarks apply to the
sociator and to the other functions used in the definition of K.. One answer
is to use all such functions, after a careful examination of the appropriate
meaning of "all such". This prepares us for the definition of K3 .--I cannot
resist remarking that this motivation (perhaps like most motivations) bears
little relation to historical facts. I believe that I came to the definition of K3
partly through (1.5), but mainly through the theory of rings and, in par-
ticular, through observation of the effect of derivations on ring commutators
and ring associators. There is also a tenuous connection with cohomology
operators.
To return to K. The additional defining identities for K were chosen

mainly for their relevance to additive properties of endomorphisms (with
the theory of commutative Moufang loops as a guide). The particular ob-
jective was to prove (i). There is, however, no very strong reason why one
should not add to the definition the finitely many identities necessary to
ensure (h).
And now Ka again. Although the defining identities for Ka have a pleasing

symmetry, they re infinite in number. However (Theorem 6.2) the follow-
ing condition characterizes the elements 0 of K3

.4. 0 and O’ are seminormal endomorphisms of L, and 00’ is a strongly
normal endomorphism of L which maps L into C L and L’ into Z L

Here L’ is the commutator-associator subloop of L, Z(L) is the centre of L,
and C(L) is the Moufang centre (4) of L. Condition P.4 may be translated
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into a finite set of identities to be satisfied by the mappings 0, 0’,
and x’ of L. For another condition equivalent to .4, see Theorem 6.1.
So far, we have avoided the question as to whether two of the K may not

coincide for all loops. (To be exact, we did remark that, for a group, K0
consists of all endomorphisms.) For a Moufang loop, K Ka (Theorem
7.3); whether the same result holds for all loops is still unknown. In 8 we
examine the containing relations

K K+ (0 _<- i < 4),

for eommutstiw Moufsng loop L. If i # 2, L can be chosen so that

K K+
8nd L esn 81so be chosen so 8s to possess 8n endomorphism not in K0. Never-
theless, K2, K, 8nd K4 csnno differ grestly, regsrdless of the psrticulsr
type of loop which rosy be in question. For 8ny loop, the squsre of each
element of K is in K4 (Corollsry to Theorem 3.1), 8nd every element of K
is 8 sum of two elements of K4 (Theorera 5.1). Moreover, if L is 8 loop for
which K; contsins K4 properly, then L possesses 8n 8ssocistor which lies in
the centre of L 8nd generstes 8 group of order three.This 18s remsrk is
trivis1 eorollsry of .4 which, nevertheless, deserves mention.
One fins1 remsrk. I would hszsrd 8 guess thst 8n 8nslogue of the defini-

tion of K would prove useful in the study of (general) 81gebrss. Here
refer, not to .4, but to the definition (see 2) in terms of words.

2. Four definitions of normality of endomorphisms

Let G be a multiplicative loop. We define the operations of left division
(\) nd right division (/) by

(2.l) x(x\y) y, (y/x)x y

for all x, y in G. And we define the commutator (x, y) and the associator
(x, y, z) by

(2.2) zy (yx)(x, y), (xy)z [z(yz)](x, y, z)

for all x, y, z in G. Equivalently,

(2.3) (x, y) (yx)\(xy), (x, y, z) [x(yz)]\[(xy)z].

An endomorphism 0 of G will be called seminormal provided it satisfies the
identities

(2.4) (x, y)O (xO, y) (x, yO),

(2.5) (x, y, z)O (xO, y, z) (x, yO, z) (x, y, zO)

for all x, y, z in G.
For the purpose of providing certain expansion formulas we define functions
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p(x, y, z), q(x, y, z), Pi(w, x, y, z), and Qi(w, x, y, z), where i 1, 2, 3, as
follows:

(2.6) (xy, z)

(2.7) (x\y, z)

(2.8) (wx, y, z)

(2.9) (y, wx, z)

(2.10) (y, z, wx)

(2.11) (w\x, y, z)

(2.12) (y, w\x, z)

(2.13) (y, z, w\x)
for all w, x, y, z in G.

[(x, z)(y, z)].p(x, y, z),

[(x\l, z)(y, z)].q(x, y, z),

[(w, y, z)(x, y, z)].Pl(w, x, y, z),

[(y, w, z)(y, x, z)].P.(w, x, y, z),

[(y, z, w)(y, z, x)].P3(w, x, y, z),

[(w\l, y, z)(x, y, z)].Ql(w, x, y, z),

[(y, w\l, z)(y, x, z)].q2(w, x, y, z),

[(y, z, w\l)(y, z, x)].q3(w, x, y, z)

An endomorphism 0 of G will be called weally normal provided is semi-
normal and also satisfies the following eight identities for all w, x, y, z in G"

(2.14) p(x, y, z)O p(xO, y, z) p(x, yO, z);

(2.15) q(x, y, z)O q(x0, y, z) q(x, yO, z)

(2.16) Pi(w, x, y, z)O P(wO, x, y, z) P(w, xO, y, z), i 1,2,3;

(2.17) Qi(w, x, y, z)O Q(wO, x, y, z) Q(w, x0, y, z), i 1,2,3.

We note in passing that the .class of seminormal endomorphisms and the
class of weakly normal endomorphisms are each defined in terms of finite
set of identities. The definition of a weakly normal endomorphism is (quite
obviously) lacking in symmetry; and this is also true of the definition of a
seminormal endomorphism, in view of the asymmetry in (2.3). By contrast,
the definition of a normal endomorphism (given in [SIV.4] and repeated below)
is highly symmetric but involves a countably infinite set of identities.

Before defining a normal endomorphism, we shall prove two simple lemmas
on loop words.. Let n be a positive integer, and let Fn be the free loop [SI.3]
on n free generators X1, Xn. By a loop word W we mean an element
of Fn. If al an are arbitrary elements of a loop G, W,(al an)
denotes the image of Wn under the uniquely defined homomorphism of F
into G which maps X upon ai for i 1, 2, n.

LEMMA 2.1. Let G be a loop with centre Z, and let W be a loop word. Then

(2.18) Wn(Xl Cl, Xn Cn) Wn(Xl xn)Wn(Cl Cn)

for all x in G and ci in Z.

Sketch of proof. We first observe that Wn(cl, c) is in Z for all c
in Z. Next we define H to be the subset of F consisting of all W in F for
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which (2.18) holds. Then we verify that H contains each of the generators
X1, Xn, and that H is closed under multiplication and under the two
division operations. It follows that H Fn. This completes the proof of
I,emma 2.1.
We recall that the commutator-associator subloop G’ of a loop G may be

characterized in either of the following ways:
(a) G’ is the subloop of G generated by the set of all commutators (x, y)

and associators (x, y, z), where x, y, z range over G;
(b) G’ is the smallest normal subloop K of G such that the quotient loop

G/K is an abelian group.

LEMMA 2.2. If Wn is an element of the free loop Fn on n free generators, each
of the following statements implies the other two:

(i W is an element of the commutator-associator subloop Ft
(ii) Wn vanishes on every abelian group. That is, if al, an are ele-

ments of an abelian group, then

(2.19) Wn(a, an) ].

(iii) If G is a loop with centre Z, then

(2.20) W,(x c x Cn) W,(x ,... Xn)

for all xi in G and ci in Z.

DEFINITION. A loop word Wn will be called purely non-abelian if it possesses
one of the equivalent properties (i)-(iii) of Lemma 2.2.

Proof. (i) -- (ii). Assume that Wn satisfies (i). Let al,... a, be
elements of an abelin group A, and let 0 be the homomorphism of F upon A
which mapsXupona,i 1,2,...,n. ThenWn0 Wn(al,.." ,an).
Since F 0 is a subgroup of A and hence an abelian group, the kernel of 0
contains F’. Since W is in F’n, Wn 0 1. Then Wn satisfies (ii). Thus
(i) implies (ii).

(ii) - (iii). Since the centxe of a loop is an abelian group, the implication
is clear from Lemma 2.1.

(iii) -+ (ii). We first observe that Wn(l, 1) 1 for any loop word.
Consequently, if (2.20) holds, we set x 1 for each i and deduce that
W(c, Cn) 1 for all c in Z. The special cse that G is an abelian
group then gives (ii). Hence (iii) implies (ii).

(ii) - (i). Let 0 be the natural homomorphism of F upon Fn/Fn. Then
X 0, Xn 0 are elements of the abelian group F/F’n, so, if we assume (ii),

W,, 0 W.,,(XI O, ..., X, O) 1.

Hence W lies in the kernel of 0, that is, in F’n. Thus (ii) implies (i). This
completes the proof of Lemma 2.2.
We need one further notion. A loop word W Wn(X, Xn) will be
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called normalized if it reduces to the identity element whenever one of the Xi
is replaced by the identity element. To illustrate this concept, let us con-
sider the loop word f4 defined by

(.1) (X X2)(X X4) [(Xl Xs)(X2 X4)].f4(Xl, X2, Xs, X4).

We observe, using any one of the criteria of Lemma 2.2, that f4 is purely
non-abelian. However,

f4(x, x, , x) (x, x, x4),

so f4 is not normalized. In this connection the following two remarks seem
worth recording:

(a) The loop word f4 turns up quite naturally when one is trying to decide
whether the sum of two given endomorphisms of a loop G is also an endo-
morphism of G. The fact that f4 is not normalized seems to complicate this
problem a good deal.

(b) The concepts of being purely non-abelian or normalized can of course
be applied to associative words (that is, to elements of free groups instead
of free loops), and the theory which follows has a natural analogue in group
theory. It is significant that the associative word corresponding to f4 is a
product of the purely non-abelian words (X2, X3) and ((X2, X3), X4),
each of which is normalized as an element of the free group on its own argu-
ments, but not normalized as an element of the free group on X1, X2, X3,
x4.

Returning to the topic on hand, we observe that the defining identities
for seminormal or weakly normal endomorphisms can all be put in the form

(2.22) W(x "’’, Xn)O Wn(Xl O, ..., Xn),

where n is a suitably chosen positive integer, Wn is a normalized purely non-
abelian loop word, and the elements Xl, ..., Xn are required to range over
the loop G. For example, the identities (2.4) are equivalent to a pair of
identities of type (2.22) with n 2, where for W2 we use in turn the loop
word (X1, X:) and the loop word (X, X). Both of these words are easily
seen to be normalized and purely non-abelian. Similarly, the identities
(2.5) are equivalent to three identities of type (2.22) where n 3 and W
is normalized purely non-abelian. And a like fact is true about the identities
given by each of (2.14)-(2.17). Indeed, the definition (2.11) of the function
Q, for example, was influenced by the desire to ensure that the loop words
W4 QI(X1, X., X3, X4) and W4 QI(X, X, X3, X4) were not only
purely non-abelian but also normalized. Now we are ready for a definition:
An endomorphism 0 of a loop G will be called normal provided (2.22) holds

for every choice of a positive integer n, a normalized purely non-abelian loop
word Wn and elements x Xn of G.
We see at once that a normal endomorphism is both weakly normal and

seminormal. In addition, since F’ is countable for each positive integer n,
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the set of inequivalent defining identities for a normal endomorphism is
eountably infinite. The definition is highly symmetric in that it involves
all normalized purely non-abelian loop words. We may note as well that
(2.22) can be given a more symmetric form (comparable with (2.4) or (2.5))
in which the right-hand side is replaced in turn by each of

Wn(Xl x2 O, Xn), Wn(Xl Xn O).

To see this, we need only observe that if Wn is a normalized purely non-abelian
word, and if i --. i’ is a permutation of 1, 2, n, the loop word V,, defined
by

Vn(Xl Xn) Wn(Xl, Xn’
is also normalized purely non-abelian.
Our final definition must be preceded by some brief remarks. If X, t are

two single-valued mappings of a loop G into itself, we define their ordered
product X and their ordered sum X -t- as follows:

(2.23) x(Xt) (xX)t, x(X + .) (xX)(x.)

for all x in G. The system (S, -t-, ), consisting of the set of all single-
valued mappings of G into G under the operations just defined, is a semigroup
under and a loop under --. Moreover,

(2.24) X(.+,) =X.+X.
for all X, t, in S, and

(2.25)

for all X, t in S provided 0 is an endomorphism of G.
and the identity mapping, 1, are defined as follows:

The zero mapping, O,

(2.26) x0 1, xl x

for all z in G. Each element X of S uniquely determines a (right-hand)
complement, Xt, such that

(2.27) the identity mapping.

An element X of S is called centralizing provided that GX is contained in the
centre Z of G.
We define an endomorphism 0 of G to be strongly normal provided that
(i) 0’ is an endoInorphism of G;
(ii) 0t0 is centralizing.

Here 0’ is the complement of 0 (cf. (2.27)).
THEOREM 2.1. Let 0 be an endomorphism of a loop G. Then each of the

following statements (after the .first) implies those which precede it:
0 is seminormal.

(ii) 0 is weakly normal.
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(iii) 0 is normal.
(iv) 0 is strongly normal.

Proof. In view of the preceding discussion, we need only prove that (iv)
implies (iii). Accordingly we assume (iv). Let W be a normalized purely
non-abelian loop word, and let xl, x2, Xn be arbitrary elements of G.
Then, since 1 0 + 0’ and since 0, 0’ are endomorphisms of G,

Wn(X.l. O, x2, ..., Xn) [Wn(Xl O, x2, ".., xn)O][Wn(Xl 0, x2, ..., Xn)Of]

W(x 0, x O, x O) W,(x 00’, x 0’, x,, 0’).

Since 0 (0 - 0’) 0 0 -t- 0’0, and since 0’0 is centralizing,

0 (x O)cXl

for some c in Z. Therefore, since W is purely non-abelian,

Wn(Xl 02, x2 0: Xn O) Wn(Xl O.c, X2 O, Xn O)

Wn(Xl O, x2 O, Xn O)

W(x, x, Xn)O.

Since 0 + 00’ 0(0 + 0’) 0 (0 + 0’)0 0 -t- 0’0, then 00’ 0’0.
Accordingly, since 0’0 is centralizing, and since W is both purely non-abelian
md normalized,

W(x 00’, z 0’, ..., x. 0’) Wn(1, z 0’, ..., x,, 0’) l.

Now we have
Wn(Xl O, X2, Xn) Wn(Xl z2, Zn)O,

which shows that 0 is normal. This completes the proof of Theorem 2.1.
The following theorem is informative but is not essenti,l for the sequel"

THEOREM 2.2. Let G be a loop. Then
Every centralizing endomorphism of G is strongly normal.

(ii) If O, O’ are a pair of complementary decomposition endomorphisms of
G (that is, a pair of idempotent cndomorphisms of G such that 0 - O’ 1),
then 0 and O’ are strongly normal.

3. Elementary properties
.In order not to interrupt the flow of the discussion which follows we begin

by recalling a few standard definitions.
To each element x of a loop G correspond two permutations R(x), L(x)

of G, the right and left multiplication by x, respectively, defined by

(3.1) yR(z) yx, yL(z) zy

for all y in G. The set of all right and left multiplications of G generates the
multiplication group, gJ G The inner mapping group, G isthesubgroup
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of )(G) consisting of all a in (G) such that la 1 where 1 is the identity
element of G. The inner mapping group is generated by the set of all permuta-
tions R(x, y), L(x, y), T(x), where x, y range over G. Here

R(x, y) R(x)R(y)R(xy)-1, L(x, y) L(x)L(y)L(yx)-1,
(3.2)

T(x) R(x)L(x) -1.
The nucleus, N N(G), of G, consists of all c in G such that

(3.3) (c, x, y) (x, c, y) (x, y, c) 1

for all x, y in G. The nucleus is a subgroup of G. The centre, Z Z(G),
consists of all c in N such that

(3.4) (c, x) 1.

Now we turn to the study of the four classes of endomorphisms defined
in 2.
LEMMA 3.|.. Let , , b be single-valued mappings of a loop G into itself

such that
() o + ;
(b) some two of O, , b are endomorphisms of G.

A necessary and sucient condition that the third mapping be also an endo-
morphism of G is that

(3.5) [(xO)(x)][(yO)(y)] [(xO)(yO)][(x)(yO)]

for all x, y in G.

Remarlc. In terms of (2.21), (3.5) is equivalent to

f4(x0, xd, yO, yO)

Proof. First assume that 0, are endomorphisms of G. Then the left-
hand side of (3.5) is equal to (x) (y) and the right-hand side of (3.5) is
equal to (xy)/. Therefore (3.5) is necessary and sufficient in order that
be an endomorphism of G.
Next assume that 0, are endomorphisms of G. Then the left-hand side

of (3.5) is equal to

(xb)(yb) (xy)b [(xy)0][(xy)] [(xO)(y0)][(xy)O].

Therefore (3.5) is necessary and sufficient in order that be an endomorphism
of G.

Similarly, if , are endomorphisms of G, then (3.5) is necessary and
sufficient in order that 0 be an endomorphism of G. This completes the proof
of Lemma 3.1.

LEMMA 3.2. Let 0 be the complement of the endomorphism 0 of the loop G.
Then the following identities ensure that O’ is an endomorphism of G:
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(i) (xO, xO’, y) 1,
(ii) (xO’, yO, yO’) 1,
(iii) (xO’, yO) 1,
(iv) (y0, xO’, yO’ 1,
(v) (xO, yO, zO’.yO’) 1,

for all x, y in G.

Proof. By the definition (2.27), 0 + 0’ 1. Since 0 and 1 are endomor-
phisms, we need only prove (3.5) with replaced by 0’. Using (i)-(v) in
order, we get

[(xO)(xO’)][(yO)(yO’)] (x0){(x0’)[(y0)(y0’)]}

(zO){[(xO’)(yO)](yO’)}

(xO){[(yO)(xO’)](yO’)}

(xO){ (yO)[(xO’)(y0’)]}

-[(xO)(yO)][(xO’)(yO’)]

for all x, y in G. This completes the proof of Lemma 3.2.

LEMMA 3.3. If 0 is a normal endomorphism of a loop G, then 0 commutes
with every inner mapping of G.

Proof. See Lemma 4.1 (ii) of [SIVA].

LEMMA 3.4. Let G be a loop with commutator-associator subloop G’, centre
Z. Let O, be seminormal endomorphisms of G. Then

(i) 0+ =+ o;
(ii) 04 is a seminormal endomorphism
(iii) aO aO for every a in G’;
(iv) aO4 a40 for every a in G’.

Remarlc. In connection with (i), we do not claim that 0 + 4 is an endo-
morphism.

Proof. This has been proved in [SIV.4], ostensibly for normal endomor-
phisms, but the proof really uses the hypothesis of seminormality except for
one point. We need to observe for the present lemma that the product of
two seminormal endomorphisms is seminormal, as is obvious from the defini-
tion.

LEMMA 3.5. Let G be a loop with commutator-associaor subloop G’, centre
Z. Let O, be walcly normal endomorphisms of G. Then each of the following
statements implies the other"

(i There exists a centralizing endomorphism K of G such that 0 .
(ii) aO a for every a in G’.

Proof. (i) -- (ii). If is a centralizing endomorphism, G is an abelian
group. Hence G’ 1. Therefore, if (i) holds, and if a is in G’,
a aO a aO. Thus (i) implies (ii).
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(ii) -- (i). Define the mapping K by 0 + K. Suppose temporarily
that is a centralizing mapping of G. Then, for all x, y in G,

[(xO)(x)][(yO)(y)] [(xO)(yO)][(x)(y)].

Hence, by Lcmma 3.1, K is a (centralizing) endomorphism of
In order to prove that K is centrMizing, we must show that

(x,,, y, z) (x, y, z) (x, y, z) (x, y)

for all x, y, z in G. Since the details are similar in each case, we shall be con-
tent to show that (ii) implies that (x, y) 1 for all x, y in G. We first
observe that x (xO)\(x4)) for all x in G. Thus, by (2.7),

(x, z) [(x\, z)(x,, z)].q(x, x, z).

Since is seminormal (in fact, weakly normal),

(z, z) (x, z).

Since (x, z) is in G’, and since ah aO for each a in G

(x, z) (x, z).
Since 0 is seminormal,

(x, z)O (xO, z).
Therefore

(xe, z) (xo, z).

Similarly, but using this time the full hypothesis of weak normality, we prove
that

q(xO, x4, z) q(xO, x, z) q(xO, x, z)O q(xO, xO, z).
Therefore

(, z) [(xO\., z)(xO, )].q(0, 0, ) (xo\o,

This completes the proof of Lemma 3.5.

THEOREM 3.1. Let G be a loop with commutator-associator subloop G’,
centre Z. If 0 is an endomorphism of G, each of the following statements implies
all the others:

(i) 0 commutes with every inner mapping of G, and xO xO rood Z for
every x in G.

(ii) 0 is seminormal, and xO - xO mod Z for every x in G.
(iii) 0 is wealcly normal, and aO aO for every a in
(iv) 0 is normal, and aO aO for every a in
v 0 is strongly normal.

COnOLLaY. The square of every wealcly normal endomorphism is strongly
normal.

Proof. Let O’ denote the complement of 0. Thus 1 0 - 0’, 0 0 - 00’,
00’= 0’0.
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(v) --* (i), (ii), (iii), (iv). If 0 is strongly normal, 00’ is a centralizing
endomorphism. Thus zO =- xO mod Z, and, moreover, aO aO for every
a in G’. In addition, 0 is normal, weakly normal, and seminormal. And,
by Lemma 3.3, 0 commutes with every inner mapping of G. Hence (v)
implies all the other statements.

(iv) -- (iii) -- (ii). Certainly (iv) implies (iii). If (iii) holds, then,
by Lemma 3.5, 00’ is a centralizing endomorphism. Thus xO xO mod Z
for every x in G. Moreover, 0 is seminormal. Hence (iii) implies (ii).

(ii) -- (v). If (ii) holds, then, since xO zO mod Z for every x in G,
the mapping 00’ 0’0 is centralizing. We use this fact, together with the
seminormality of 0, to prove the conditions (i)-(v) of Lemma 3.2. For
example, (i) of Lemma 3.2 holds since

(xO, xO’, y) (x, xO’O, y) 1;

and (v) of Lemma 3.2 holds since

xO, yO, xO’ yO’ xO, y, xO’ O yO’ O 1..

The others are proved quite similarly. Hence O’ is an endomorphism, and
00’ is a centralizing endomorphism. This means that 0 is strongly normal.
Itenee (ii) implies (v).

(i) (v). If (i) holds, then 0’0 is a centralizing mapping of G, and 0
commutes with every inner mapping of G. We use these facts to prove the
identities (i)-(v) of Lemma 3.2. First consider (i) of Lemma 3.2. This
identity can be written as (x0) (xO’) ]y (xO) (xO’) y] or as

(xO)R(xO’, y) xO.

Since 0 commutes with every inner mapping,

(xO)R(xO’, y) xR(xO’, y)O xOR(xO’O, yO).

However, R(xO’O, yO) is the identity mapping of G, since, for every z in G,

[z(xO’O)](yO) z[(xO’O)(yO)]

by virtue of the fact that 0’0 is centralizing. Consequently, (i) of Lemma
3.2 is true. The remaining identities of Lemma 3.2 are proved with a similar
use of inner mappings. Hence (i) implies (v).

This completes the proof of Theorem 3.1. The corollary follows from
Theorem 3.1 and Lemma 3.4 (iii). For if 0 is weakly normal or even semi-
normal, aO a( O) for every a in G’.

THEOREM 3.2. Let G be a loop with centre Z, nucleus N. Let 0 be a nu-
clearizing endomorphism of G, that is, an endomorphism mapping G into N.
Let O’ denote the complement of O. Then each of the following statements implies
all the others:

(i) xO, yO’ 1 for all x, y in a.
(ii) (x, y)O (xO, y) for all x, y in G.
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(iii)
(iv)
(v)
(vi)
(vii)
(viii)

is an endomorphism of G.
commutes with every inner mapping of G.
is seminormal.
is weatcly normal.
is normal.
is strongly normal.

COROLLAnY. If G is a group, and if 0 is any endomorphism of G, each of
the statements (i)-(viii) implies all the others.

Proof. We first observe that the corollary is the special case of Theorem
3.2 in which G N.
The implications

(viii) - (vii) - (vi) - (v)

follow from Theorem 2.1. The implication

(vii) (iv)

follows from Lemma 3.3. The implications

(v) --> (ii), (viii) (iii)

are a consequence of the definitions of seminormal and strongly normal
endomorphisms, respectively. Hence it will suttiee to prove the following"

(A) (i) - (iii).
(B) (iv) -- (ii) (i) -- (viii).
Proof of (A). Since 0 -1- O’ 1, and since 0, 1 are endomorphisms of G,

we see from Lemma 3.1 that O’ will be an endomorphism of G if and only if G
satisfies the identity

[(xO)(xO’)][(yO)(yO’)] [(xO)(yO)][(xO’)(yO’)].

Since (J0 is part of N, this identity is easily seen to be equivalent to

(xO’) (o) (o)(xO’).

ttence (i) is equivalent to (iii).
Proof of (B). First we assume (iv). Then, since GO is part of the group

N,
xOT(y) xT(y)O xOT(yO) (yO)-’(xO)(yO) (xO)(xO, yO),

and
(xO)y y[xOT(y)] y[(xO)(xO, yO)] [y(xO)](xO, yO),

showing that
(xO, y) (xO, yO) (x, y)O.

Therefore (iv) implies (ii).
Before assuming (ii) we note that, since (x, yz) 0 (xO, yO. zO), and since

GO is a group, a known identity for commutators in a group gives

(3.6) (x, yz)O (xO, zO)(zO)-(xO, yO)(zO).
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Now we assume (ii). From (3.6),

1 (y, y)O (y, y0.y0’)0 (yO, yO’O)(yO’O)-l(yO, yO2)(yO’O).

However, by (ii),
(yO, yO2) (y, yO)O (yt, yO) 1.

Therefore, by (ii) again,

1 (yO, yO’O) (y, yO’)O (yO, yO’).
Thus we see that

y (yO)(yO’) (yO’)(yO)
for every y.
We use this last fact in (3.6) to get

(x, y)O (x, yO’.yO)O (xO, yO2)(yO)-l(xO, yO’O)(yO).

However, by (ii),

(xO, yO) (x, yO)O (xO, yO) (x, y)O,

allowing us to conclude, first, that

1 (yO2)-l(xO, yO’O)(yO:),
and thence that

1 (xO, yO’t) (x, yO’)O (xO, yO’).

Hence (ii) implies (i).
Finally we assume (i). Consider any x in G, and set c xOO’ xOrO.

Then, by hypothesis, c is in N. Moreover, for any y" since c xOO, then
(c, yO) 1, and, since c xO’O, then (c, y0’) 1. Hence

cy c[(y0)(y0’)] [c(yO)](yO’) [(yO)c](yO’)

(yO)[c(yO’)]- (yO)[(yO’)c]--[(yO)(yO’)]c

yc.

This means that c is in the centre Z. Since c xOO’ is in Z for each x, the
mapping ’ is centralizing. Since (i) implies (iii) (by (A)), ’ is an endo-
morphism of G. Therefore 0 is strongly normal. That is, (i) implies (viii).

This. completes the proof of Theorem 3.2.
When G is a group (in view of the Corollary to Theorem 3.2) any one of

the statements (i)-(viii) of Theorem 3.2 can be used to define a "normal"
endomorphism of G. The usual definition is (iv) (with "mappings" replaced
by "automorphisms"). The equivalence of (iii), (iv) for groups is certainly
well known;and the equivalence of (iv), (viii) for groups is probably known
also. On the other hand, the equivalence of (iv), (vii) for groups is cer-
tainly new, and a direct proof would probably be very difficult.
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THEOREM 3.3. If O, are weakly normal endomorphisms of a loop G, then
the commutator-mapping (0, ), defined by

(3.7) 0 0 + (0, ),

is a centralizing endomorphism of G.

Remarks. 1. Theorem 3.3 generalizes Specht’s Lemma (W. SeECT,
Gruppentheorie, p. 227, Satz 7) in two respects. Specht stated his lemma
(a) only for groups, and (b) only for the case that 0 and are idempotent.

2. As the proof will show, Lemma 3.5 may also be regarded as a generaliza-
tion of Specht’s Lemma.

Proof. Since 0, are (a fortiori) seminormal, Lemma 3.4(iii) tells us
that aO a0 for every a in G’. Since the product of two weakly normal
endomorphisms is easily seen to be weakly normal, Lemma 3.5 now allows
us to conclude that (0, ) is a centralizing endomorphism of G. This com-
pletes the proof of Theorem 3.3.

4. The complement of a normal endomorphism
One of the conclusions that may be drown from the Corollary to Theorem

3.2 is the (well-known) fact that the complement of normal endomorphism
of a group is itself a normal endomorphism. Our first use of the lemma which
follows will be to prove the corresponding fuct for loops.

LEMMA 4.1. Let W, be any normalized purely non-abelian loop word. Let
0 be a normal endomorphism, with complement ’, of a loop G. Then

(I) If x x. are arbitrary elements of G,

(4.1) Wn(xl 0’, x2, Xn) Wn(Xl x2, Xn)Of,

(4.2) Wn(xl 00’, x., Xn) Wn(Xl x., ..., Xn)O0’.

(II) If either
(a) n is even, and x, Xn are arbitrary elements of G, or

(b) n is odd, and xl x are elements of G subject only to the restric-
tion that (if n > 1) some two are equal,

then

(4.3) W(x x2, Xn)O0’ 1.

Proof. Since 1
mapping which satisfies

(4.4)

(4.5)

In the course of the proof we shall need the loop words Pn+, Q.+ defined
by
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(4.6) Wn(XY, Z., Zn)

[Wn(X, Z2 ,..., Z)W,(Y, Z2 ,..., Zn)]Pn+l(X, Y, Z2 ,..., Zn),

(4.7) Wn(X\Y, Z, Zn)

[Wn(X\I, Z2 Zn)Wn(Y, Z2 Z,.)]Qn+I(X, Y, Z2 ..o, Zn).

We observe here that P,+, Qn+ are normalized and purely non-abelian.
Our first step is to prove the following"

A If n is even,

(4.8) Wn(Xl x2, Xn) 1 Wn(Xl , x2, Xn)

for all Xl x x in G.

Proof of (A). By Lemma 3.4, since 0 is a normal endomorphism,

(4.9) aO aO

for every a in G’. Moreover,

(4.10) Wn(Xl "*’, Xn)O Wn(XI O, "’’, Xn O) Wn(Xl ’’’, Xn)On.
Since W(x,..., x) is in G’, and since n is even, we deduce from (4.9),
(4.10) that

(4.11)

for all x in G.

(4.12)

for all xi in G.
phism,

Wn(xl ..., Xn)O Wn(Xl Xn)O

By (4.11) and (4.5),

Wn(x ..., xn) 1

Again, by (4.11), (4.7), and the fact that 0 is an endomor-

(4.13) Q+(x, y, Z2, "’’, Zn)O Q+l(X, y, z2, ..., Zn)O

for all x, y, z:, z in G.
We see by (4.5) that x xO:\xO for all x in G. Thence, by (4.7),

(4.14) W,(x, z2, z)

[Wn(x02\l, z2 ,..’, zn)Wn(xO, z2 ,..., zn)]Qn+i(xO2, xO, z2 ,..., Zn).

Using (4.11), along with the fact that 0 is a normal endomorphism, we get

Wn(xO’\l, ze, ..., z) W(x\l, ze, z)O

Wn(X], Z2 ,’’’, Zn)O
Wn(xOl, z2 ,’’*, Zn).

Similarly, by use of (4.13),
Q,+l(XO2, xO, z2, z) Q+(x, xO, z2,..., z)O

Qn+(xO, xO, z2, Zn).
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On making the two indicated changes in the right-hand side of (4.14), we
get a product which is equal, by (4.7), to

Consequently,
W(xO\xO, z, ..., Zn) .
Wn(x, z, ..., z) 1

for all x, z2, zn in G. And this, taken along with (4.12), completes the
proof of (A).

(B) If n is odd, and if some two of xl x are equal,

(4.15) W(x ..., x) ..
Proof of (B). We may assume without loss of generality that n > 1.

Then the loop word Un-1 defined by

V_(X, Z Zn) W(X, X, Z Z)

is normalized and purely non-abelian. Since n 1 is even, we deduce from
(A) that

U_(x, z, z) 1

for all x, z, z in G. This proves (4.15) for the case that xl x2.

The proof for the remaining cases is quite similar.

(C) If n is odd, then

(4.16) W,(xl 0’, x., ..., x) W,(xl x, ..., x,,)O’,

(4.17) W(Xl, x2 x,.) Wn(Xl x2, xn)

for all x in G.

Proof of (C). Since n + 1 is even, we may apply (A) to any loop word
Vn+l. If P+ is defined by (4.6) and Vn+ by

Yn.-bl(X, Y, Z2 ,..., Zn) ]-)n_[_l(Y, X, Z2 ,..., Zn),

we deduce in particular that

(4.18) Pn+I(Y, X, Z, Z,)Ck 1 Pn+t(Y, xck, z, z,)

for all x, y, z2, z in G. Since x (x0) (xO’), (4.6) yields

W,,(x, z. z)
(4.19)

[W(xO, z, ..., z)W(xO’, z2, ..., z)]P+(xO, xO’, z, z).

Since t is a normal endomorphism,

Pn+(XO, XO’, z2 z,) Pn+l(X, xO’0, z2 zn) 1

by (4.4), (4.18). In addition,

W,,(xO, z, z,,) W,,(x, z., z,,)O.
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Therefore, by (4.19),

(4.20) Wn(x, z., Zn) [Wn(x, z., zn)O]Wn(XO’, Z., Zn)

for all x, z2, zn in G. Since y (yO)(yO’) for all y in G, (4.20) implies
that

Wn(XO’, Z2, Zn) Wn(X, z2, ..., Zn)O

for all x, z., z in G. That is, (4.16) holds. By (4.16), (4.4), and the
normality of 0 we immediately get (4.17), completing the proof of (C).

(D) If n is even, then (4.16), (4.17) hold for all x in G.

Proof of (D). Since n 1 is odd, we may apply (C) and (B) to any loop
word Vn+l. We deduce in particular that

Pn+l(X, xq, z2, Zn) Pn+I(X, x, z2, Zn) 1.

Consequently, as in the proof of (C), the equation (4.19) leads to the equa-
tion (4.20). Moreover, (4.20) implies (4.16) and hence (4.17). This
completes the proof of (D).

In view of (C), (D), we have proved (I) of Lemma 4.1. And in view of
(A), (B), we have proved (II) of Lemma 4.1. This completes the proof of
Lemma 4.1.

THEOREM 4.1. If 0 is a normal endomorphism of a loop G, the complement,
0’, of 0 is also a normal endomorphism of G. Moreover, 0 is the complement
of 0’: 0 (0’)’.

Proof. By (4.1) of Lemma 4.1, 0’ will be normal if 0’ is an endomorphism.
And 0 will be an endomorphism if the identities (i)-(v) of Lemma 3.2 are
valid. To prove (i) we apply Lemma 4.1 to the associator word

getting
w(x,, x., x) (x, x., x),

(xO, xO’, y) (x, xO’O, y) (x, x, y)O0’ 1.

The proofs of (ii), (iii), (iv) are quite similar. To prove (v) we need the
word P3 of (2.10). (Note that, despite the subscript, P3 is a (normalized,
purely non-abelian) word W.) We have

(xO, yO, xO’.yO’) [(xO, yO, xO’)(xO, yO, yO’)]P(xO’, yO’, xO, yO).

By the normality of 0 and by application of Lemma 4.1, each of the three
factors is equal to 1. This proves (v). Thus O’ is an endomorphism.
Finally, since

(xO, xO’) (x, x)O0 1

for all x in G, we have O’ + 0 0 -Jr- O’ 1, whence we see that 0 (0’) r.
This completes the proof of Theorem 4.1.
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5. The Moufang centre

The Moufang centre, C C(G), of a loop G is defined to be the set of all
elements a in G such that

(5.1) (ax)(ay) a2(xy)

for all x, y in G. Passing reference to the Moufang centre is made in [SVI.11.
Here we need to study the concept more closely.

LEMMA 5.1. The Moufang centre C C(G) of a loop G is a subloop of G.
An element a o.f G is in C if and only if
(5.2) ax xa,

(5.3) (ax)(ya) [a(xy)]a

for all x, y in G.

Remark. A loop is called a Moufang loop if (5.3) holds for all elements
a, x, y of the loop. Thus, we have a corollary of Lemma 5.1: the Moufang
centre of a loop is a commutative Moufang subloop.

Proof. We shall make use of the set P of all ordered pairs (0, ) of permu-
tations 0, of G such that

(5.4) (xO)(yO) (xy)

for all x, y in G. Clearly P is a group under eomponentwise multiplication.
That P is appropriate for the proof of Lemma 5.1 may be seen as follows:

Let us call an element a of G a P-element provided there exists at least one
permutation of G such that (L(a), ) is in P. Equivalently,

(5.5) (ax)(ay) (xy)4

for all x, y in G.
with

By (5.1), an element a of G is in C if and only if (5.5) holds

(5.6) L(a2).
On the other hand, from (5.5) with x a, we derive (5.6).
P-elements are precisely the elements of C.
Taking first x 1 and then y 1 in (5.5), we find that

(5.7) L(a),
That is, the

(5.8) 0 L(a)R(a).

By (5.5), (5.7), (5.8), a P-element a satisfies (5.2), (5.3). Conversely,
an element a satisfying (5.2), (5.3) is a P-element.

Let a be a P-element, and let x be any element of G. From (5.5), (5.7)
we get

L(a)L(ax) L(x) L(x)L(a) 2.
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From this and the fact that P is a group we deduce that ax is a P-element
precisely when x is. Since, in addition, ax xa for all x in G, we have proved
that C is a subloop of G. This completes the proof of Lemma 5.1.
For the next lemma we need the concept of the upper central series {Z}

ofaloopG. HereZ0 1, Z1 Z the centre ofG, and, fori >= 0, Z+I
is the uniquely defined subloop containing Z such that Z+I/Z is the centre
of G/Z. For the properties of central series see [SVI].

LEMMA 5.2. Let 0 be a normal endomorphism of a loop G with commutator-
associator subloop G’, upper central series {Z}, and Moufang centre C. Set

00’, where O’ is the complement of . Then is a normal endomorphism of
such that

(i) G’cZ, (ii) Gc chgs..

Proof. By Theorem 4.1, 0’ is a normal endomorphism of G. It is easily
verified (and an explicit proof is given in [SIVA]) that the product of two
normal endomorphisms is a normal endomorphism. Hence 00’ 0’0
is a normal endomorphism. We complete the proof in several stages.

(A) If W, is a normalized purely non-abelian loop word, then

(5.9) Wn(xy, z2, z)$ [W(x, z2, zn)$][Wn(y, z., Zn)()]

for all x, y, z, z in G. Analogous formulas hold when the product xy
appears in any other position on the left side of (5.9).

Proof of (A). If n is even, each of the three terms in (5.9) is equal to 1
by Lemma 4.1. Certainly, then, (5.9) holds for even n. If n is odd, so
that n + 1 is even, and if Pn+ is the loop word defined by (4.6), then

Pn+l(x, y, z2, Zn) 1

by Lemma 4.1, whence (5.9) holds for odd n. This proves (5.9) in all cases.
As to the concluding sentence of (A), we recall that if i -- i’ is a permutation
of 1, 2, n, and if

Vn(Xl X2 ..., Xn) Wn(Xl’ X2,

then Vn is a normalized purely non-abelian loop word.
proof of (A).

This completes the

(B) The loop G is commutative. Moreover, (G, G) 1.

Proof of (B). Applying Lemma 4.1 to the commutator word, we see that

(5.10) (x, y) 1 (x, y)

for all x, y in G.

C) The formulas
(5.11) (x, x, y)6 (x, y, x) (y, x, x) 1,
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(5.12)

(5.13)

(5.14)

(5.5)

(5.16)

(wx, y, z) [(w, y, z)b][(x, y, z)],

(y, wx, z) [(y, w, z)][(y, x, z)],

(y, z, wx) [(y, z, w)][(y, z, x)],

1 [(x, y, z)][(y, x, z)] [(z, x, y)][(y, x, z)],

(x, y, z) (z, x, y) (y, z, x),

hold for all w, x, y, z in G.

Proof of (C). By applying Lemma 4.1 to the word W. (X, X, Y),
we get (x, x, y) 1 for all x, y in G, and similarly for the rest of (5.11).
The formulas (5.12), (5.13), (5.14) are special cases of (A). By (5.11)
und (5.12),

1 (xy, xy, z) [(x, xy, z)][(y, xy, z)].
By (5.13) nd (5.11),

(x, xy, z)4) (x, y, z)4, (y, xy, z)ch (y, x, z)4.
Therefore

1 [(x, y, z)][(y, x, z)].
Similarly, by (5.11), (5.14), (5.12), and (5.11),

1 (yz, x, yz) [(yz, x, y)][(yz, x, z)] [(z, x, y)][(y, x, z)].

This proves (5.15); and (5.15) implies (5.16).
(D) G’4Z.
Proof of (D). As a special case of (B), we have

(5.17) (G’, G) 1.

To complete the proof of (D), we must show that if a is a commutator or
associator of G, then a lies in the nucleus N of G. By (5.10), if a (x, y),
then a 1 e N. There remains the case that a (x, y, z) for some x, y, z
in G. In view of (5.12), the mapping

z (x, u, )

is an endomorphism of G for each pair u, v of elements of G. Hence

(a, u, v) ((x, u, v), (y, u, v)6, (z, u, v)O)
((x, u, ), (, u, ), (z, u, )).

However, by applying Lemma 4.1 to the loop word

w ((x, x, x), (x, x, x), (x, x, x)),
we deduce in particular that

W(x, y, z, u, v, v)4 1
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for all x, y, z, u, v in G. Therefore

(a, u, v) (a, u, v) 1
for all u, v. Similarly

(u, a, v) (u, v, c) 1,

whence we see that a lies in N. This completes the proof of (D).

(,) z,..

Proof of (E). To prove (E) we must show that

(G,x,y) -= (x,G,y) (x,y,G) (G,x) 1 modZ

for all x, y in G. But these congruences are clear from (D), (B), and the
normality of .
() c c.
Proof of (F). Let x be n rbitmry element of G, nd set c . To

prove (F) we must show that

(5.18) (cy)(cz) c(yz)

for all y, z in G. We shall transform the left-hand side of (5.18) into the right-
hand side. By the normality of 6, together with (5.14), (5.11), (5.16),

(c, y, cz) (x, y, cz)6 [(x, y, c)6][(x, y, z)]

[(x, y, x)][(y, z, x)61 (y, z, x)

(y, z, c).

Moreover, by (D), (y, z, c) is in Z. Hence

(5.19) (cy)(cz) c[y(cz)](y, z, c).

Next, by (5.10) and (5.11), (c, G) (x, G)6 1, and (c, c, G) (x, x, G)6
1. Therefore (5.19) becomes

(cy)(cz) c[y(zc)](y, z, c) c[(yz)c] c[c(yz)] (cc)(yz).

This proves (F).
We note that (D) implies (i), and that (E), (F) imply (ii) of Lemma 5.2.

This completes the proof of Lemma 5.2.

LEMMA 5.3. Let 0 be a normal endomorphism, with complement 0’, of a
loop G. Then 00’ is a strongly normal endomorphism of G.

Proof. We have shown already that 0’ and are normal endomorphisms.
Next we prove that

+(+) (+)+, (+)+=+(+
(5.20)

( + t) +=+ ( + ), +=+
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for all seminormal endomorphisms c, /of G. To begin with, by Lemma 4.1,
(x, x, x) 1, and hence

(x, xa, x) (xa, xdp, x) (xa, x, x4)) (x, x, x)4)a 1

for all x in G. This is enough to prove the first three equations of (5.20).
The last comes from the fact that (xa, xO) (x, x)Oa 1 for all x in G.
From (5.20) together with the equations (4.4), (4.5), nd 0 (0’),

we deduce that

o+o’= (o+)+o’= o+(+o’)
(5.21)

+ (o + o’) + [(o’) + o].

In partieular, the eomplements of 4 and 0 are given by

(5.22) 4/ 0 + 0’ (0’) -k- 0,

(5.23) (0z) + 0’;

and these complements are normal endomorphisms by Theorem 4.1.
Since 00’ 0’0, we see from (5.22), (5.23) that

(5.24) 4x’ [(0’) -1- O] 0(0’) -t- 04,

(5.25) o(o)’ o( + o’) oo’+ o.
Since, in addition, 0 and O’ are normal endomorphisms, we see from (5.24),
(5.25), and Lemma 3.4 that

(5.26) a’ a(4) - 04)) aOZ(OZ)

for every a in G’.
By (5.26) and Lemma 3.5,

(5.27) 4x’= 02(0)’ + ,
where is a centralizing endomorphism. However, by the Corollary to
Theorem 3.1, 0" is strongly normal, whence 0z(0z) is centralizing. Hence
4’ is centralizing, 4 is strongly normal; and the proof of Lemma 5.3 is com-
plete.
We are now in a position to state

THEOREM 5.1. If 0 is a normal endomorphism of a loop G, then 0 can be
expressed in at least one way as a sum of two strongly normal endomorphisms

of G. In particular, 0 0 + 00’; and 0, 00’ are strongly normal endomorphisms
of G.

Proof. The theorem follows from the Corollary to Theorem 3.1 and from
Lemma 5.3.
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6. Characterizations of normality
Under the hypotheses of Lemma 5.2, the subloop

(6.1) M G
of G is, in particular, by (ii) (of Lemma 5.2), a commutative Moufang loop.
In addition, by (i) or (ii),

M’ G’ n M c Z(G)n M Z(M),
and therefore

(6.2) M Z,(M).

Thus it is clear that the following lemma is ppropriate to our present study"

LEMMA 6.1. Let W, be a normalized purely non-abelian loop word. Let
be a homomorphism of a loop G such that M G is a commutative Moufang

iloop satisfying (6.2) where {Zi( )} is the upper central series of M. Then
either

(i) W,(x x,) l for all x x in G; or

(ii) n 3, and there exists an integer t, depending only on W: and having
the value 1 or 2, such that

(6.3) W,(x, y, z) [(x, y, z)]

for all x, y, z in G.

COROLLARY. The conclusions (i) or (ii) are valid when 00’ where 0 is
a normal endomorphism of G.

Proof. The remarks preceding Lcmm 6.1 show that the corollary follows
from Lemm 6.1.
Now consider an arbitrary but fixed positive integer n. As shown in Bruck

[2] (p. 316, Theorem 9A) there exists a unique "freest" commutative Moufang
loop H such that
() H is generated by n elements gl, g,
(b) H Z2(H);
(c) if al, a,. are elements of a commutative Moufang loop M satis-

fying (6.2), the mapping
gi-- ai (i i, n)

can be extended (uniquely) to homomorphism of H into M.
In addition, ifn 3, H’ 1, and, ifn _-> 3, H’isan abelian group of

exponent 3 with a minimal basis consisting of the associators

(g, g, g), 1 <= i < j < ] <= n.

We begin by considering the element

(6.4) W W,(gl, "’",
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of H. Since Wn is purely non-abelian, w is in H’. Hence, if n < 3, w 1,
and, if n >= 3,

(6.5) w

for uniquely defined integral exponents in the range 0, 1, 2.
that n > 3, and consider any triple i, j,/c with

Now suppose

By (c), H possesses a unique endomorphism which leaves each of g, g, g
fixed and maps the remaining generators on 1. Since W. is normalized, this
endomorphism must map w on 1. Thus

i (gi, g1, g)a(i,,k)

for each such triple i, j, k; and hence w 1.
set a(1, 2, 3);then

(6.6) w (gl, g., g3) t,

Finally, suppose n 3, and

and 0, 1, or 2. Thus the only case in which w 1 is that in which n 3
andt-- lor2.

In view of property (c) of H, we now can specify the values of Wn on any
commutative Moufang loop M subject to (6.2). Since is a homomorphism
of G upon a loop,

Wn(Xl Xn) Wn(Xl ", Xn )

for all Xl Xn in G. This is enough for the proof of Lemma 6.1.
Now we are ready for a characterization of normal endomorphisms.

THEOREM 6.1. The conditions (I), (II) below are both necessary and su-
cient in order that the endomorphism 0 of the loop G be a normal endomorphism
of G:

I 0 and its complement, 0’, are endomorphisms of G such that the associator
identity

(x, y, z) (x, y, z)

holds both for 0 and for 0’, and for all x, y, z in G.
(II) 00’ is a normal endomorphism of G such that the loop M G is

a commutative Moufang loop satisfying M Z(M) where {Z(M)} is the
upper central series of M.
When (I), (II) hold, O’ is a normal endomorphism of G, is a strongly normal

endomorphism of G, and M C Z where C is the Moufang centre of G and
Zi} is the upper central series of G.

Proof. (A) Necessity. Let 0 be a normal endomorphism of G. Then, by
Theorem 4.1, 0’ is also a normal endomorphism. Therefore (I) holds. More-
over, (II) holds by Lemma 5.2 and the Corollary to Lemma 6.1. In addition,
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M c C n Z2, and is strongly normal by Lemma 5.3. Consequently, the
properties stated in the last sentence of Theorem 6.1 are all true.

(B) Suciency. We now assume that (I), (II) are true. If Wn is a
normalized purely non-abelian loop word, we must prove that

(6.8) Wn(Xl O, X2, ", Xn) Wn(xl x2, Xn)O

for all xl, x in G. Hence we fix our attention on some such Wn.
The equations (4.4), (4.5) are valid on the ground that 0 is an endo-

morphism. By (4.5), (4.6), and the normality of , we have

W,(xl O, x2, Xn) (AB)C
for all xi in G, where

A W,(xl 02 x., x,), B Wn(x., x., Xn)4’,

C P,.,+(xl 0, xj, x2, x,)4,.

If B 1 for all xi, then, by (4.6), C 1 for all x also. In the contrary case,
by Lemma6.1, n 3. Thenn + 1 4, and thus, by Lemma 6.1again,
C 1 for all xi. Thus C 1 in all cases. At this point we replace
x., x by x. O, ..., Xn O, respectively. Since 0 is an endomorphism, we
get the formula

Wn(Xl X2, Xn)O
(6.9)

Wn(xl 02, x2 {9, Xn {9)[Wn(Xl x2 {9, Xn
for all xi in G.
On the other hand, if we operate in turn on the left-hand side of (6.8) by

the endomorphisms {9 and {9’, and use the facts that 1 {9 q- O’ and is normal,
we get

Wn(Xl O, x2, Xn)
(6,10)

Wn(Xl 02, x2 {9, Xn O)[Wn(Xl x2 0’, Xn Ot)ii)]
for all xi in G.
By comparison of (6.8), (6.9), (6.10), we see that (6.8) will hold if and

only if

(6.11) Wn(Xl, x20, ’’., XnO) Wn(Xl, x2{9’, ’’’, XnOf)(

for all x in G. According to Lemma 6.1, (6.11) will be true for all x and for
each choice of Wn provided that the identity

(6.12) [(x, yO, zO),,] [(x, yO’, zO’)4,]

holds for all x, y, z in G and for 1, 2. Clearly we need only prove (6.12)
for 1.

Since (6.7) holds for 0, and since 00’, we have

(x, yO, zO)4, (xO, yO, zO)O’ (x, y, z)O0’ (x, y, z)4,.
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Similarly, since (6.7) holds for 0’, and since

(x, yO’, zO’) (x, y, z).

This proves (6.12) for 1 nd completes the proof that the endomorphism
0 is normal. And now the proof of Theorem 6.1 is complete.
We observe that the conditions (I), (II) of Theorem 6.1 could be im-

provedfrom n aesthetic stndpointby strengthening them. In pr-
ticulr, it seems a little odd to have to refer the normality of 0 to the nor-
mlity of . The following theorem meets this objection nd others:

THEOREM 6.2. Let 0 be a single-valued mapping of a loop G into itself.
Then the following two conditions are necessary and sufficient in order that be
a normal endomorphism of G:

(I’) and its complement, ’, are seminormal endomorphisms of G.
(II’) ’ is a strongly normal endomorphism of G which maps G’ into

Z and G into C, where G’ is the commutator-associator subloop, Z is the centre,
and C is the Moufang centre of G.

Proof. By Theorem 6.1, (I’) and (II’) are certainly necessary. More-
over, (I’) implies (I). Before comparing (II’) and (II) we note that, if is
a strongly normal (or even seminormal) endomorphism mapping G into a
commutative loop and G’ into Z, then maps G into Z2. Hence (II) im-
plies that M GO is in C o Z2 and (consequently) satisfies M Z(M).
Therefore (II’) implies (II). Hence (I’), (II’) are sufficient. This com-
pletes the proof of Theorem 6.2.

7. Special loops
We now obtain a more intimate view of the various types of "normal"

cndomorphisms by studying them for special classes of loops. We begin by
relating endomorphisms to the inner mapping group. (The generators of
the latter are given by (3.2).)
A loop G is called diassociative if, for each pair x, y of elements of G, the

subloop generated by x, y is associative (and hence a group).

LEMMA 7.1. Let 0 be an endomorphism of a diassociative loop G.
and sufficient condition that

A necesary

(7.1.) T(x)O OT(x)

for all x in G is that

(7.2) (x, y)O (xO, y) (x, yO)

for all x, y in G.

Proof. Let x, y be arbitrary elements of G. By diassociativity,

(7.3) yT(x) z-yx y(y, x),

(7.4) (x, y) (y, X)-1.
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In view of (7.3), we see that (7.1) holds for all x if and only if

(y, x)O (yO, x)

for all x, y. In view of (7.4), the latter condition is equivalent to (7.2). This
proves Lemma 7.1.
As previously noted, a loop G is called Moufang if and only if

(7.5) (xy)(zx) [x(yz)]x

for all x, y, z. For the theory of Moufang loops, see [SVII], [SVIII].

LEMMA 7.2. Let O be an endomorphism of a Moufang loop G. A necessary
and sujcient condition that commute with every inner mapping of G is that

be seminormal.

Proof. By Moufang’s Theorem [SVII.4], G is diassociative. Hence
Lemma 7.1 applies. For the rest of the proof, and for subsequent use, we
need the following identities, taken from Lemma 5.4 of [SVII]. These are
valid in every Moufang loop G:

(7.6) R(x-1, y-) L(x, y) L(y, x)-l;
(7.7) xL(z, y) x(x, y, z)-l;

(7.8) (x, y, z) (x, yz, z) (x, y, zy) (x, y, zx)

(7.9) (x, y, z) (xy, z, y)-l;

(7.10) y[x(x, y, z)-] (yx)(y, x, z).

By (7.7), a necessary and suticient condition that

(7.11) L(z, y)O OL(z, y)

for all y, z in G is that

(7.12) (x, y, z)t (xO, y, z)

for all x, y, z. Next we note that (7.10) can be written in the form

(x, y, z)- (y, x, z)L(x, y)-.

Thus, if the equivalent identities (7.11), (7.12) are valid, we also have

(7.13) (x, y, z)O (x, y0, z)

for all x, y, z. Finally, from (7.13) and (7.9), we get

(7.14) (x, y, z)O (x, y, zO)

(Added December 23, 1958) I wish to thank Charles Wright for pointing out that I
have nodded here; (7.13) does not follow from (7.11) in the manner suggested. Never-
theless, Lemma 7.2 is true: a valid proof will be given in an Appendix at the end of the
paper.
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for all x, y, z. Therefore if (7.11) holds for all y, z, then

(7.15) (x, y, z)O (xO, y, z) (x, yO, z) (x, y, zO)

for all x, y, z in G. Conversely, (7.15) implies (7.12) and hence (7.11).
On the other hand, by (7.6), we see that (7.11) holds for all y, z if and

only if R (x, y) O OR (x, y) for all x, y.
Combining these results with Lemma 7.1, we see that the identities (7.2),

(7.15) are necessary and sufficient in order that 0 commute with every inner
mapping of G. Since (7.2), (7.15) are the defining identities for a semi-
normal endomorphism, the proof of Lemma 7.2 is now complete.
Next we turn to additive properties of endomorphisms. The following

lemma is quite obvious from Lemma 3.1:

LEMMA 7.3. Let O be an endomorphism of a diassociative loop G. A neces-
sary and sufficient condition that 0 - 0 be an endomorphism of G is that GO
be commutative.

It will be convenient to specialize temporarily to the consideration of
power-mappings and power-endomorphisms of a loop. A loop G is called
power-associative provided that, for each x in G, the subloop generated by x
is a cyclic group. If G is power-associative, we may associate with each
integer n a power-mapping, (n), of G, defined by

(7.16) x(n) x

for all x in G. The power-mappings form an associative ring, since

(7.17) (m -n) (m) - (n), (ran) (m)(n)

for all integers m, n. However, we have the following:

LEMMA 7.4. Let G be a diassociative loop. A necessary and sucient condi-
tion that every power-mapping of G be an endomorphism of G is that G be com-
mutative.

For the proof, apply Lemma 7.3 with 0 1. The next two lemmas have
a little more substance.

LEMMA 7.5. Let G be a diassociative loop. If the power-mapping (n) is
an endomorphism of G, then the complement (1 n) is also an endomorphism
of G. Moreover, for all x, y of G,

(7.18) (x, y) (x, y) (x, y).

Proof. For (7.18) we apply Lemma 7.1 with 0 (n); diassociativity
ensures the truth of (7.1). The fact that (1 n) is an endomorphism is
essentially due to Baer (see Lemma 5.2 of [SVII]). The connection with
normal endomorphisms of groups should also be clear.

LEMMA 7.6. Let G be a Moufang loop, and let the power-mapping (n) be an
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endomorphism of G. Then (n) and its complement (1 n) are seminormal
endomorphisms of G. If n 0 or 1 mod 3, then (n) is a strongly normal
endomorphism of G, and (hence) (n n2) is a centralizing endomorphism of G.
If n 2 mod 3, (n2) and (n n2) are slrongly normal endomorphisms of G,
and (n n2) maps G into its Moufang centre. In addition, (n n3) is a
centralizing endomorphism of G.

COROLLARY. If, under the hypotheses of Lemma 7.6, n 2 mod 3, then a
necessary and sufficient condition that (n) be normal is that (n n2) map the
commutator-associator subloop G’ of G into the centre Z of G.

Remark. Lemma 7.6 and its corollary allow us to show rather easily that
seminormal endomorphisms need not be normal. However, by delaying this
question until later, we shall be able to say a good deal more.

Proof. We shall need the following facts:
(a) Every power-mapping of a Moufang loop G commutes with every inner

mapping of G.
(b) If H is a commutative Moufang loop, the cube-mapping (3) is a cen-

tralizing endomorphism of H.
Both (a) and (b) are proved in [SVII]. For (a), see Lemm 3.2 and

formula (4.1) of [SVII]. For (b), see Lemma 5.7 of [SVII].
By comparing (a) with Lemma 7.2, we see that power-endomorphisms of

the Moufang loop G are automatically seminormal. We set 0 (n). By
Lemma 7.5, since 0 is an endomorphism, so is the complement 0 1 0.
Hence so are 00 0-- 02andr 1 -. Since 0, are seminormal,

(x, y)O (xO, yO) (x, y)O2,
and hence

(x, y) (x, y) (x, y)(O 02 1

for all x, y. Thus (G, G) 1. Since G is Moufang, the Moufang centre,
C, of G consists of all c in G such that (c, G) 1. Therefore we have shown
that G is part of C.

Since G is a commutative Moufang loop, the power-mapping k (k)
is a seminormal endomorphism of G for every integer k. From this fact,
combined with (b), we deduce that 3 is a centralizing endomorphism of G.
We now must treat two cases.

First suppose that n 0 or 1 mod 3. Then n n 3k for some integer
k, and hence 2 k(3). In this case, is a centralizing endomorphism of G.
However, since is seminormal, and 3 coincide on G’. Thus we see, first,
that G’ 1 and, secondly, that is centralizing. Since 0, 0 are endo-
morphisms and 00 is a centralizing endomorphism, then 0 is strongly
normal.
Next suppose that n 2 rood 3. In this case, n 1 rood 3, and n n -1 rood 3. Consequently, by the preceding considerations applied with n re-

placed by n and n n, respectively, the endomorphisms 02 and 0 02
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are strongly normal. Since 02 has complement 1 02, then 0 03 0(1 02)
is an endomorphism. Since, also, 0 03 (1 - n) and 1 + n 0 rood 3,
we see that 0 03 is centralizing. This last fact could also be obtained di-
rectly by use of seminormality.
The corollary comes by consideration of Theorem 6.2. We already know

that 0 and 0’ are seminormal endomorphisms, and that 00’ is a strongly
normal endomorphism mapping G into C. The sole remaining condition for
the normality of is that map G’ into Z. This completes the proof of Lemma
7.6 and its corollary.

In our subsequent study of the additive properties of endomorphisms it
will prove interesting to relax the requirement of seminormality. Some
terminology is convenient, but we introduce the following with some mis-
givings" An endomorphism 0 of a loop G will be called demi-seminormal if and
only if

(7.19) (xO, y, z) (x, yO, z) (x, y, zO)

for all x, y, z in G. We note that the condition mukes no reference to com-
mutators; in addition, (7.19) requires less thun (2.5). If , are demi-
seminormal endomorphisms of a loop G, then so is 0; moreover,

(7.20) (x, y, z)O (xO, yO, zO) (xO3, y, z) (x, yO3, z) (x, y, z03),
(7.21) (xO, y, z) (x, yO, z) (xO, y, z)

for all x, y, z in G. If, in addition, either
a G is Moufaug, or

(b) G is diassociative and O is seminormal, then

(7.22) (xy, xO2, y) 1

for all x, y in G. In case (b), (7.22) follows immediately from the fact that
(xy, x, y) 1 by diassociativity. To prove (7.22) in case (a), we recall
that (7.9) is valid in any Moufang loop and that Moufang loops are diassocia-
rive. Thus

(xy, xO2, y)- (x, y, xO2) (x, yO, x) 1.

The hypotheses of the next lemma are phrased so as to ensure (7.22).

LEM 7.7. Let O, be demi-seminormal endomorphisms of a loop G, and
assume that either (i) G is Moufang, or (ii) G is diassociative and O (or 0’)
is semiformal. Then a necessary and sufficient condition that 0 + be an endo-
morphism of G is that

(7.23) (xO, y) 1

for all x, y in G.

Proof. We actually prove the lemma under the hypothesis that G is di-
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associative and (7.22) holds. If, in (ii), it is 02 which is assumed seminormal,
a slightly different "right-left-dual" proof is required.
By Lemma 3.1, 0 q- will be an endomorphism of G if and only if

(7.24) [(xO)(xq,)][(yO)(y,)] [(xO)(yO)][(xch)(ydp)]

for all x, y in G. We denote the left- and right-hand sides of (7.24) by L and
R, respectively, and begin by transforming L. Since

(z, yO, y,) (z4,, y, y) 1

for all y, z in G, we take z (xO)(x) and get

L M-(y) where M [(xO)(xch)](yO).

Since, in addition,
(xO, xrh, yO) (x, x, yO2ch) 1,

we have M (xO).N and hence

L [(xO).N](y+) where N (x+)(yO).

Next we transform R. Since

(xO.yO, xch, ych) (x.yO, x, y) (xy, xOrh, y),

we use (7.22) to get

R S.(yq) where S [(xO)(yO)](xO).

This is the only point at which we use (7.22). Next, since

(xO, yO, xdp) (x, yO2q), x) 1,

we haves xO T and

R= [(xO).T](y4,) where T= (yO)(xch).

And now, by comparison with (7.25), R L if and only if (y0, x) 1.
Equivalently, 0 q- will be an endomorphism of G if and only if (7.23) holds
for all x, y in G. This completes the proof of Lemma 7.7.

It will help to prepare the reader for the next lemma if we first discuss a
difficult question. (A similar question can be posed for loops in general,
but we keep to a ease for which we have adequate tools.) Let G be a Moufang
loop with inner mapping group ,, and let (S, q-) be the additive loop gen-
crated by the set of all seminormal endomorphisms of G. Consider an endo-
morphism 0 of G which is contained in S; is 0 seminormal? If , consists
entirely of automorphisms of G, the answer is clearly affirmative; indeed,
in this case, every element of S commutes with every element of . But
what can we say in case , does not consist entirely of endomorphisms? The
easier course is to avoid this possibility. The price to be paid (combine
Lemma 2.1, Theorem 2.1 of [SVII] or see Bruck [2]) may be presented as
follows:
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If G is a Moufang loop with nucleus N, then N is a normal subgroup of G.
A necessary and sucient condition that the inner mapping group of G consist
entirely of automorphisms of G is that GIN be commutative of exponent 3.

It is known that if G is the multiplieative loop of the Cayley division algebra
over the field of reals, then G is Moufang, and N consists of the real numbers.
Therefore GIN is not commutative.--This example has obvious generaliza-
tions.
A more rewarding attack on our question is to start from the obvious fact

that seminormal endomorphisms arc demi-seminormal. We begin as follows:

LEMMA 7.8. Let G be a Moufang loop, and let (L, Zr-) be the additive loop
generated by the set of all demi-seminormal endomorphisms of G. Then L, -+-)
is a group, and (L, is a semigroup. Moreover,

(i) If x, y are in G, the subset xL u yL u (xy)L of G generates a subgroup
H(x, y) of a.

(ii) /f 0 - for elements o, , b of L, some two of which are endo-
morphisms of G, then the third will be an endomorphism of G if and only if
(7.26) (xO, y) 1

for all x, y in G.
(iii) If 0 is an endomorphism of G contained in L, a necessary and sucient

condition that the complement, 0’, be an endomorphism of G is that

(x, y)0 (x0, y) (x, y0)

for all x, y in G. When the condition holds, (0’)’ 0.
(iv) If P, -- is a commutative subgroup of L, -- which is generated

by a multiplicative semigroup M of endomorphisms of G, then P, -, is an

(ordinary, two-sided distributive) associative ring.
(v) If Q, --) is a subgroup of L, - which is generated by a multiplica-

tire semigroup M of endomorphisms of G, then a necessary and sucient condi-
tion that (Q, -, be a ring of endomorphisms of G is that (7.26) hold for all
0, in M and x, y in G. When (Q, -, is a ring of endomorphisms of G
(and Q is part of L), then (7.26) actually holds for all 0, in Q and x, y in G.

(vi) If K is the set of all endomorphisms of G which are contained in L and
map G into its Moufang centre C, then (K, -, is a ring. If 0 is an endo-
morphism of G contained in L, then OK is part of K, and

is an endomorphism of G for every K in K.
all x, y in G, then KO is part of K.

If, in addition, 0 satisfies (7.27) for

Proof. In order to prove at one stroke that L and the P, Q of (iv), (v) are
multiplicative semigroups, we begin with the following proposition"

(*) If (R, +) is an additive loop generated by a multiplicative semigroup
M of endomorphisms of a loop G, then (R, is a semigroup.
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Proof of (*). We do not require that G be Moufang. If 0 is in M, con-
sider the set R’ of all a in R such that aO is in R. Since 0 is an endomorphism,
we may use the "restricted" right distributive law (2.25) for mappings; and
we are able to conclude that (R’, nu) is a subloop of (R, +). However, R’
contains M, and M generates (R, -t-). This tells us that RM is part of R.
At this point, if a is in R, we consider the set of all in R such that a is in R.
This time, since the left distributive law (2.24) is "unrestricted", we deduce
in the same manner that aR, and thence that RR, is part of R. Since multi-
plication of mappings is associative, we have proved (*).

Next, let S be the set of all single-valued mappings of a loop G into itself.
For each nonempty subset T of S and for each element x of G, let xT denote
the subset of G consisting of all elements xa where a ranges over T. If
T, -t- is a subloop of (S, + ), then, for each x, xT is a subloop of G, and the

mapping a -- xa is a homomorphism of (T, -t-) upon xT. Combining these
homomorphisms as x ranges over G, we see that each subloop (T, -t-) of
(S, -t-) is isomorphic to a subdirect product of the subloops xT of G. These
simple remarks will render our task easy.
Now we impose the condition that G be Moufang. First let M be the

multiplicative semigroup of all demi-seminormal endomorphisms of G. Thus
M generates (L, -) and, by (*), (L, is a semigroup. For each x in G we
have

(7.28) (xM, xM, G) 1

since
(xO, x, y) (x, x, yOch) 1

for all x, y in G and 0, in M. Similarly, for all x, y in G,

(7.29) ([xy]M, xM, yM) 1,

since, as in the proof of (7.22), if x, y are in G and O, 4,, ; are in M,
([xy]O, x4,, y’) (xy, xOch, y) (x, y, xOch,) -1

(x, yOh, x)-1= 1.

Next we choose some x, y in G and set

A (xy)M, B xM, C yM.
Since (7.28), (7.29) hold for all x, y in G, we have

(A, A, G) (B, B, G) (C, C, G) (A, B, C) 1;

and this is the hypothesis of Theorem 4.2 of [SVII]. Therefore we may con-
clude that A u B u C is contained in a subgroup H of G. However, for each
z in G, the subloop generated by zM is zL. Consequently, H contains

(xy)L u xL u yL.
This proves (i). In particular, xL is a group for each x, so (L, ) must be
group.
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Let us note at this point that L contains the identity mapping. Thus the
group xL contains x, and the group H(x, y) contains both x and y.

Hereafter, that is to say, in the proof of (iv), (v), (vi), M will denote the
appropriate generating set. Our proof now consists in some simple observa-
tions about groups. We prove (ii), (iii) together as follows: An element a

of L is an endomorphism of G if and only if a induces an endomorphism of
each group H(x, y). And an identity such as (7.26) or (7.27), where the
elements of L involved are understood to be fixed, holds for all x, y in G if and
only if it holds as x, y range over each group H(p, q). Therefore (ii), (iii)
are valid since we know them to be true when G is a group. The only point
at issue in (iv) is the right distributive law for all elements of P. We choose
two elements a,/ of P and observe that the mapping

is an endomorphism of the abelian group (P, +) and maps the generating
set M into 0. This proves (iv). At this stage, (v), like (ii) and (iii), need
only be reduced to a proposition about groups. In essence, we have to prove
that, if x, y are elements of G such that xM t yM ,J (xy)M generates an abelian
groupmwhere M generates (Q, + )--and such that

(7.30) (xy)O (x)(yO)

for every 0 in M, then (7.30) holds for every in Q. This is obvious. Finally,
we observe that (vi) follows directly from (i)-(v) and the fact that C con-
sists of those elements of G which commute with every element of G. This
completes the proof of Lemma 7.8.

It will prove fruitful to recall another concept. A permutation a of a loop
G is called a pseudo-automorphism of G provided that there exists at least one
element c of G, called a companion of a, such that

(7.31) [(xy)a]c (xa)[(ya)c]

for all x, y in G. By Lemma 3.2 of [SVII], every inner mapping of a Moufang
loop G is a pseudo-automorphism of G. Hence the following lemma is highly
relevant to the question raised before Lemma 7.8:

LEMMA 7.9. Let G be a Moufang loop, and let (L, +) be the additive group
generated by the demi-seminormal endomorphisms of G. Let a be a pseudo-
automorphism (for example, an inner mapping) of G. If L’ is the set of all
0 in L such that 0o 0, then (L’, --) is a subgroup of (L, --).

Proof. In the proof of Lemma 7.8 we showed that (7.28) held for all x in G,
where M was the set of demi-seminormal endomorphisms of G. From this
and Lemmas 4.3, 4.1 of [SVII], we get

(7.32) (xL, xL, G) (xL, G, xL) (G, xL, xL) 1

for every x in G. And (7.32) is more than enough for our purpose.
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Suppose now that 0 -4- for elements 0, , of L, some two of which
are in L’. Let x be any element of G. By (7.32),

By (7.31),
(x.)c [(x.O)(x.)]c (xO)[(x.)cl.

(x.)c {[(xO)(x)].}c (xO.)[(x)c].

Therefore, by comparison, all three of 0, , are in L’. This completes the
proof of Lemma 7.9.
Now we are ready to settle the question we raised earlier.

THEOREM 7.1. Let S, -4-) be the additive group generated by the set of all
seminormal endomorphisms of a Moufang loop G. Then

S S, -d-, ") is a ring.
(ii) An endomorphism 0 of G is in S if and only if 0 is seminormal.
(iii) The complement of a seminormal endomorphism is a seminormal endo-

morphism.
(iv) If R is the set of all seminormal endomorphisms of G which map G into

its Moufang centre C, then R (R, -4-, is an ideal of S. The quotient ring
SIR is commutative.

(v) If 0 is a seminormal endomorphism of G, then 0 is a strongly normal
endomorphism of G, 0 0 is a strongly normal endomorphism of G belong-
ing to R, and b 0 0 is a centralizing endomorphism of G.

COnOLLARY. The strongly normal endomorphisms of a Moufang loop G
generate the same ring S as do the seminormal endomorphisms of G.

Remarks. 1. When G is a group, Theorem 7.1(i) reduces to Theorem 1
of Heerema [3].

2. The Corollary to Theorem 7.1 suggests an interesting conjecture about
loops in general.

Proof. Let M denote the set of all seminormal endomorphisms of G.
(i) We pply Lemma 7.8. M is a multiplicative semigroup contained

inL. Also0-4- A- 0 for 0, in M, since

(xO, xdp) (x, x)Odp 1

for all x in G. Hence (S, -t-) is a commutative subgroup of (L, A-); and
hence, by Lemma 7.8(iv), S (S, A-, is a ring.

(ii) By Lemma 7.9 and Lemma 7.2, every element of S commutes with
every inner mapping of G. By Lemma 7.2 again, every endomorphism in S
is in M.

(iii) This follows from Lemma 7.8(iii) and from (ii) of the present
theorem.

(iv) R, as the intersection of the ring S with the ring K of Lemma 7.8(vi),
is clearly a subring of S. Moreover, if 0 is a seminormal endomorphism, OR
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and RO are part of S and of K, and therefore of R. Hence R is an ideal of
S. To prove that SIR is commutative, we need only show that

(7.33) 0 0 -t- (0, )
where (0, ) is in R, under the assumption that 0, are in M. Equivalently,
for each pair x, y of elements of G, we must show that (0, ) satisfies
(xy) (x) (ya) and (xK, y) 1. This can be settled inside the group
H(x, y) of Lemma 7.8(i); and it is true since 0, induce normal endomor-
phisms in each group H(x, y).

(v) The complements of 0 and 0 are 1 0 and 1 02, respectively.
Thus 0(1 0) and 0(1 02) are seminormal endomorphisms of G.
Noting that 0 coincides with 02 on any commutator and with 03 on any as-
sociator, we conclude that maps G into the Moufang centre C, and that
is centralizing. Then 02(1 02) 0b is centralizing, so 02 is strongly normal.
In addition, we verify that

(1-) =3+(0-2).

The second term on the right is centralizing, since b is. And 3 is centralizing
since the cube mapping (3) induces a centralizing endomorphism of the com-
mutative Moufang loop G. Therefore (1 ) is centralizing, and we con-
clude that is strongly normal. This proves Theorem 7.1. The corollary
is immediate from (v).
We should perhaps point out that the mapping (, of (7.33) is a centraliz-

ing endomorphism of G. Indeed, if 0, , and (0, ) are seminormal endo-
morphisms, linked by (7.33), of an arbitrary loop G (not necessarilyMoufang),
then (, ) maps G’ into 1 and hence maps G into Z. It will be recalled that
our procedure in connection with Theorem 3.3 was quite different: In order
to show that (, ) was an endomorphism, we first had to show that (, )
was a centralizing mapping; and for this we needed the hypothesis that 0
and were weakly normal.
By combining Lemmas 7.8, 7.1, 7.9, Theorem 7.1 can be broadened as

follows:

THEOREM 7.2. Let G be a Moufang loop, and let ($1, +) be the additive
group generated by all demi-seminormal endomorphisms of G which satisfy
(7.27). Then (St, +, is a ring. If is an endomorphism of G contained
in S then 0 satisfies (7.27), O’ 1 0 is an endomorphism of G contained
in S1, and 00’ maps G into its Moufang centre C.

It will be observed that we have had no need for the concept of a weakly
normal endomorphism of a Moufang loop. The next theorem gives a simple
explanation:

THEOREM 7.3. Every weakly normal endomorphism of a Moufang loop G
is a normal endomorphism of G.
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Proof. Let 0 be a weakly normal endomorphism of G. Then 0 is semi-
normal, and hence, by Theorem 7.1, 0 02 is a strongly normal endo-
morphism which maps G into its Moufang centre C. According to Theorem
6.2, the only additional condition for the normality of 0 is that map the
commutator-associator subloop G’ into the centre Z of G. We shall verify
this condition.
We shall have to return to the definition of weak normality in 2. Let

us first consider formula (2.8). Since 0 is seminormal,

(wO.xO, y, z) (wx, y, z)O
for all w, x, y, z in G. Evaluating each side of this equality by (2.8) and
comparing, we get

(7.34) Pl(wO, xO, y, z) P(w, x, y, z)O.
Since 8 is weakly normal, we may use (2.16) with i 1; this allows us to re-
place the left-hand side of (7.34) by

P(w, x, y, z)O2.

Therefore, since 0 02, we have P 1. From this and (2.8),

(7.35) (wx, y, z) [(w, y, z)][(x, y, z)]

for all w, x, y, z in G.
The rest of the proof uses properties of commutative Moufang loops which

will be discussed in detail in the section which follows. Setting

W wO, X x, Y y, Z z,
we deduce from (7.35) and the seminormality of that

(7.36) (WX, Y, Z) (W, Y, Z)(X, Y, Z)
for all W, X, Y, Z in the commutative Moufang loop G+. This means (see
(8.8) below) that G+ coincides with its distributor subloop D. As a conse-
quence (see (8.10) below),

Thence, since is seminormal and G is commutative Moufang, we deduce
quite directly that G’ is part of the centre Z of G. This completes the proof
of Theorem 7.3.

In deriving (7.35), we did not need the full hypothesis that 0 was weakly
normal. However, (7.35) is essentially a formula for the commutative
Moufang loop (7. In any diassociative loop, the six functions Pi, Qi of
formulas (2.8)-(2.13) can (quite trivially) be reduced to three; in a com-
mutative Moufang loop they can be reduced to one.

8. Commutative Moufang loops
Let G be a commutative Moufang loop. It will be convenient to begin by

assembling a number of facts and formulas concerning commutative Moufang
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loops. The proofs of these are spread over most of 2-6 of [SVIII], and too
much space would be required to give exact references.
The associator satisfies the identities

(8.1) (x, y, z) (y, x, z)- (z, y, x)-,
(8.2) (x, y, z) (x, y, z) (x, y, z) (x, y, z),

(8.3) (x, y, z) l,

(s.) ((w, , ), , z) ((, z, ), , x) -,
(s.5) (wx, , z) (w, , )(x, , z)((, , ), , x) ((x, , z), x, w)
for all w, x, y, z in G and for every integer n. Moreover,

(8.6) (wx)(yz) [(wy)(xz)]h(w, x, y, z)

for all w, x, y, z in G, where

(8.7) h(w, x, y, z) (w, x, y)-(x, y, z)(y, z, w)-i(z, w, x).

The following fact is needed for (8.5), (8.7) IfK is a commutative Moufang
loop generated by fie or less elements, then the commutator-associator subloop K
is an abelian group. This assures us, in particular, that the right-hand sides
of (8.5), (8.7) are unambiguous.
The distributor, D D(G), of a commutative Moufang loop G, is the set of

all elements d in G such that

(8.8) (xy, z, d) (x, z, d)(y, z, d)

for all x, y, z in G. The distributor is a characteristic normal subloop of G
which contains (often properly) the second term Z(G) of the upper central
series of G. An clement d of G is in D if and only if one of the following
formulas holds for all w, x, y, z in G:

(s.9) ((, , ), w, d) ;
(s.0) ((w, , ), z, d) 1;

(8.11) ((d, w, x), y, z) ((d, w, y), x, z) -.
To repeat: if one of (8.8)-(8.11) holds for fixed d in G and all w, x, y, z in G,
then all of them hold.
We are now ready to begin a study of the endomorphisms of a commutative

Moufang loop.

LEMMA 8.1. Let , be endomorphisms of a commutative Moufang loop G.
A necessary and sucient condition that be an endomorphism of G is that

(8.12) (xO, x, yO) (xO, x, y)

for all x, y in G.
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Proof. By comparing (8.6) with Lemma 3.1, we see that 0 -t- will be an
endomorphism of G if and only if

(8.13) h(xO, xO, yO, yO) 1

for all x, y in G. By (8.7), (8.1), condition (8.13) can be written as

f(x, y) f(y, x)
where

f(x, y) (xO, x4,, yO)(xO, x,, yd)-1.
In view of (8.2), we see that

f(x-, y) f(x, y), f(y, x-) f(y, x)-.
Therefore, if + is an endomorphism, we have

f(x, y)2 f(x, y)f(x-, y) f(y, x)f(y, x-) 1

for all x, y. In view of (8.3), this implies f( x, y) 1, an equation equivalent
to (8.12). Conversely, if f(x, y) 1 for all x, y, then (8.13) holds for all
x, y, and therefore 0 + is an endomorphism. This completes the proof of
Lemma 8.1.

LEMMA 8.2. Let 0 be an endomorphism of the commutative Moufang loop G.
Then each of the following statements implies the other two:

0 is demi-seminormal.
(ii) 1 -t- O and 1 0 are endomorphisms of G.
(iii) The identity

(8.14) (x, xO, y) 1

holds for all x, y in G.

Proof. By Lemma 8.1, 1 -t- 0 will be an endomorphism of G if and only if

(S.15) (x, xO, y) (x, xO,

for all x, y in G. Replacing 0 in (8.15) by 0 1) 0 0( 1) and using
(8.2), we see that 1 0 will be an endomorphism if and only if

(S.1O) (x, xO, y)- (x, xO, yO)

for all x, y in G.
If (i) holds, all four of the associators in (8.15), (8.16) can be put in the

form (x, x, yb) vhere 4 0 or 02. Since G is diassociative, we see that (i)
implies (ii).

If (ii) holds, then (8.15), (8.16) hold for all x, y. Combining these with
(8.3), we deduce that (iii) holds. Hence (ii) implies (iii).

Finally, let us assume (iii). Then, by (8.1), (8.14), (8.5), we have

(8.17) 1 (xO.yO, xy, z) pq(p, xO, yO)(q, yO, xO)
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for all x, y, z in G, where

p (xO, xy, z), q (yO, xy, z).

Again, by (8.1), (8.5), (8.14),
p- (xy, xO, z) (y, xO, z)((y, xO, z), y, x).

The last factor is 1 by (8.1), (8.2), (8.4), (8.14), since it equals

((, , x), , x)- ((, , x), , z) .
Thus for p and similarly for q,

p (xO, y, z), q (x, y0, z) -.
Now we see that if, in (8.17), x is replaced by x-, then p and q are replaced
by their inverses whereas the other two factors are unchanged. This tells
us, in view of (8.3), that pq 1 or

(xO, y, z) (x, y0, z)

forallx, y, zinG. Inviewof (8.1),weseethat (i) holds. Thus (iii) implies
(i), nnd the proof of Lemma 8.2 is complete.

If is a demi-seminormal endomorphism, we see from (8.2) that -0 is
also demi-seminormal. If, in addition, is a demi-seminormal endomor-
phism, then, by Lemma 8.1, 0 + is an endomorphism, and, by (8.5),

(8.18) (x(0 + ), y, z) (x0, y, z)(x, y, z)

for all x, y, z in G. By combining (7.20), (8.18), we find that

(s.19) (x0, , z)[(, , z)]- (x( o), , z)
for every demi-seminormal endomorphism 0 and all x, y, z in G. If

(8.20) o 0 + (o, ),

then (7.21 ), (8.18) yield

(s.2) (x(O, ), , z)
for all demi-seminormal endomorphisms 0, and all x, y, z in G. These re-
sults yield the following theorem"

THEOREM 8.1. The demi-seminormal endomorphisms of a commutative
Moufang loop G form a ring, E, namely the unique maximal ring of endomor-
phisms of G which contains the identity endomorphism of G. Moreover

(i)
(ii)
(iii)
(iv)

0 is in E if and only if O, 1 q- O, and 1 0 are endomorphisms of G.
An element 0 of E is seminormal if and only if 0 03 is centralizing.

If 0 and are in E, then (0, is centralizing..

If 0 is in E, then 30 is centralizing.

Apply Lemma 8.2 and formulas (8.18)-(8.21) and (8.1)-(8.3).
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By Theorem 7.1, applied to the commutative Moufang loop G, the set R
of all seminormal endomorphisms of G is also a ring; and R is a subring of the
ring E of Theorem 8.1. We also note that the set F of centralizing endo-
morphisms of G is an ideal of R and of E, and that ElF is a commutative
ring of characteristic 3.

Since the structure of commutative Moufang loops is fairly well developed,
it seems reasonable to expect answers to the following questions" Does there
exist a commutative Moufang loop G possessing an endomorphism 0 which is

not demi-seminormal?
(ii) demi-seminormal but not seminormal?
(iii) seminormal but not weatly normal?
(iv) weakly normal but not normal?
(v) normal but not strongly normal?
In view of Theorem 7.3, (iv) must be answered in the negative. We shall

show, on the other hand, that (i)-(iii) and (v) have affirmative answers.
We begin with the following lemma, which shows how to construct certain
"inner" demi-seminormal endomorphisms.

LEMMA 8.3. Let G be a commutative Moufang loop with distributor D. To
each d in D and p in G there corresponds a demi-seminormal endomorphism
0(p, d) of G, defined by

(8.22) xO(p, d) (x, p, d)

for all x in G. Moreover,

(8.23) (p, d)0(q, d’) 0

for all p, q in G and d, d’ in D. In particular, a necessary and sucient condi-
tion that O(p, d) be seminormal for all p in G and d in D is that D Z2(G).

Proof. That 0 O(p, d) is an endomorphism follows from (8.8); that it
is demi-seminormal follows from (8.11), (8.1). Again, by (8.10),

(x,y,z)0 1

for all x, y, z in G; and this is enough to prove (8.23). By (8.23), 03 0.
Thence, by Theorem 8.1(ii), 0 will be seminormal if and only if 0 is centraliz-
ing. If, for some d in D, 0(p, d) is centralizing for every p in G, we deduce
that

(d,x,y) 1 modZ

for all x, y in G; and thence that d is in Z.(G). We noted earlier that Z2(G)
is part of D. Therefore 0(p, d) will be seminormal for all p in G, d in D pre-
cisely when D Z.(G). This completes the proof of Lemma 8.3.
By the criterion discussed in 7, every inner mapping of a commutative

Moufang loop G is an (inner) automorphism. If we set

L(p, q) 1 -
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for some p, q in G, then L(p, q) will be demi-seminormal precisely when
is a demi-seminormal endomorphism. By (7.7), (8.1),

x (x, p., q)

for all x in G. Consequently, a necessary and sufficient condition that L(p, q)
be demi-seminormal for all p, q in G is that G D, or, equivalently in view
of (8.10), (8.1), that G n Z2(G).
Lemma 8.3 and the remarks of the preceding paragraph show that (i) and

(ii) may be answered in the affirmative by producing a commutative Moufang
loop G such that D(G) Z2(G). Now consider the commutative Moufang
loop H constructed in [SVIII.1]. It is pointed out in [SVIII] that H is a
commutative Moufang loop of exponent 3, that 1 Z(H) Z.(H), and
that H’ is both infinite and part of D(H). This disposes of (i), (ii). The
same loop H will dispose of (iii). For if 0 (- 1) is the inverse mapping
of H, then 00’ (-2) 1; 0 is seminormal but not normal, since He is
not part of Z2(H) and therefore 0 is not weakly normal either.
To dispose of (v) we choose a commutative Moufang loop G such that

G Z2(G) Z(G); such loops were discussed in the proof of Lemma 6.1.
In this case the inverse mapping (- 1 is normal; but it is not strongly normal,
since, in view of (8.3), the mapping 2) is not centralizing.

Appendix

(Added December 23, 1958)

As pointed out in footnote 2, the proof of Lemma 7.2 contains a hole; in
order to obtain a valid proof, we are forced to probe much more deeply. For
this reason it will be convenient to derive Lemma 7.2 in the following stronger
form:

LEMMA 7.2*. Let G be a Moufang loop, and let 0 be an endomorphism of G
with complement 0’. Then each of the following three statements implies the other
two:

0 commutes with every inner mapping of G.
(ii) 02 and O0 are wealcly normal endomorphisms of G, and GO is com-

mutative.
(iii) 0 is seminormal.

In addition, each of (i)-(iii) implies the following:
(iv) ’ is a seminormal endomorphism of G, and O O.
(v) 02 and 4) are strongly normal endomorphisms of G.

Proof. Let K denote the set of all endomorphisms 0 of G which commute
with every inner mapping of G. We begin by noting that an endomorphism
0 of G is in K if and only if

(1) (x, y)O (xO, y) (x, yO),

(2) (x, y, z)0 (zO, y, z)



NORMAL ENDOMORPHISMS 83

for all x, y, z in G.

(3)

for all x, y, z in G.

(4)

for all x, y, z in G.
Moufang loop,

for all x, y, z in G. Indeed, by Lemma 7.1, (1) holds for all x, y in G if and
only if 0T(x) T(x) 0 for all x in G; and, by the (valid) first part of the proof
of Lemma 7.2, (2) holds for all x, y, z in G if and only if OL(z, y) L(z, y)O
for all" y, z in G. Since, in a Moufang loop, R(x, y) L(x-1, y-) for all x,
y, we see that (1), (2) hold identically if and only if 0 is in K; that is, satis-
fies (i).
We shall have frequent use for the obvious fact that K is closed under

multiplication.
(iii) -- (i). If 0 is seminormal, then 0 certainly satisfies (1), (2). Hence

(iii) implies (i).
(ii) -- (iii). We assume that (ii) holds and indicate how to prove (iii).

To prove (iii) we must prove (1), (2), and each of the identities (7.13), (7.14).
However (as correctly shown in the proof of Lemma 7.2), (7.13) is equivalent
to (7.14). Moreover, as shown in the proof of Lemma 7.1, (1) is equivalent
to the identity (x, y)O (xO, y). We shall prove (7.13) in detail and indicate
how to prove the remaining identities.
To prove (7.13) we use (2.9). Since 0 0 + 6 and since 0, are weakly

normal endomorphisms, (2.9) yields

(y, xO, z) (y, xO2.x4,, z)

[(y, xO2, z)(y, x, z)]P2(xO, x, y, z)

[(y, x, z)O][P.(x, x, y, z)4O1
Therefore we may prove (7.13) by showing that

P2(x, x, y, z)ch 1

We do this as follows" By (2.9) again,

(y, x, z) (y, x, z)2.p2(x, x, y, z)

Since is an endomorphism and G is a commutative

(y, x, z) (y, x, z)2

by properties of the associator in a commutative Moufang loop (see [SVIII.2]).
Hence, by applying to both sides of (4), we get (3). This proves (7.13).
For the rest of the proof that (ii) implies (iii), we employ formulas (2.6),

(2.8) in a similar manner.
(i) -- (ii). Finally we assume that (i) holds, that is, that 0 is in K. Our

main objective is to prove (ii). In the course of the proof we show that 0’
is in K, that (0’)’ 0, and that 0 and are strongly normal. Thus when
(ii) has been proved, we will have completed the proof of Lemma 7.2*. Our
proof requires several steps.

(A) If x, y are in G, the subloop generated by x, xO, and y is a group.
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Proof of (A). Since 0 is in K, and since G is diassociative,

(xO, x, y) (x, x, y)O 10 1.

Hence, by Moufang’s Theorem (see [SVII.4]) the three elements x0, x, y
generate a group. This proves (A).

B The formulas
(5)

(6)

hold for all x, y in G.

(x, yO’) (x, y)O’,

(xO, yO’) (x, y) 1

Proof of (B). By definition, y yO. yO’. Hence yO’ y-lO. y. By (A),
the elements y-10, y, x lie in a group. Hence, by formulas from group theory,

(X, yO’) (X, y--lO’y) (X, y)(x, y-10)((X, y-10), y).
Since 0 is in K, the last two factors may be replaced by p0 where

p (X, y--l)((X, y--l), y) (X, y)--l(x, y--ly) (X, y)-1.

Hence, if c (x, y), we have

(x, yO’) c.c-lO c-lO.c.(c, c-O) cO’.{(c, c-l)0} cO’.

This proves (5). By (5) and the fact that 0 is in K, we have

xO, yO’ cO0’ c
where c (x, y). However, since 0 is in K, and since 0 0 ,

cO c cO xO, yO cO,
whence c 1. This proves (6) and completes the proof of (B).

C O’ is in K, and O’ O.

Proof of (C). Since xO’ x-O x for all x, we have

(xy)O’- (xy)-lO’xy {y-O’X-O}’xy

for all x, y. Moreover, since 0 is in K,
(y-10, X-O, xy) (y-, X--Io, xy)O 10 1

by (A). By this and by two uses of (A),

(xy)O’= (y-lO){x-lO.xy} --y-O.(xO’.y) (y-O.xO’)y.

By (B), (y-0, x0’) 1. By this and by (A),

(xy)O’ (xO’.y-O)y--- xO’.(y-O.y) xO’.yO’.

Therefore O’ is an endomorphism of G.
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To prove that 0’ is in K, we shall show that 0’s s0’ for every inner map-
ping
is a pseudo-automorphism of G; that is, there exists an element p of G such
that

(7) [(xy)a]p (xa)[(ya)p]

for all x, y of G. Since xO’ x-iO.x, and since 0a s0, we use (7) to get

(xO’a)p- [(x-lO.x)(]p- (x-iO()(x(.p) (x-lO)(x’p).

It follows in particular from (7) that x-la (xa) -1. Moreover, by (A),
the elements xaO, xa, p lie in a group. Hence

(xa)p [(xa)-e.xa]p

Therefore xO’a xoO’ for all x, whence we see that 0 is in K.
Finally, since(x0, xOr) (x, x) lby(B),weseethat 1 0 +0’

O’ - O, whence (0r)r 0. This proves (C).

D G is commutative. Moreover, the identities

(8) (x, y, z) (xO, y, z)O

(9) (x, y, z)

hold for all x, y, z in G.

Proof of (D). By (B), G is commutative. We proceed to prove (8).
Since O0r, and since is in K, certainly

(x, y, z) (xO, y, z)O’

for all x, y, z in G. Next we use the identity (7.10). Since L(x, y)-I
L(y, x) for all x, y (by (7.6)), we may write this as

(10) (x, y, z)- (y, x, z)L(y, x).

We also recall that (xa)-I x-la for every x in G and every inner mapping
of G. Therefore, by (10) and the fact that 0, 0’ are in K,

(x, yO, z)O’ (yO, x, z)-lL(yO, x)O’ (y, x, z)-loo’L(yO, x).

Since G is a commutative Moufang loop,

(y, x, z)- (x, y, z)

by properties of the associator in a commutative Moufang loop (see [SVIII.2]).
By this and the fact that ’ is in K,

(x, yO, z)O (x, y, z)L(y, x) (x, y, z)L(y, x).

However, by (7.7),

(x, y, z)L(yO, x) {(x, y, z)((x, y, z), x, yO)-l}O.
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By further properties [SVIII.2] of the associator in a commutative Moufang
loop,

((x, z), x, x, (x,
x, (x,

lq) 1.
Hence

(x, yO, z)O’ (x, y, z)
for all x, y, z in G. Combining this with (7.9) we get

(x, y, zO)O’ (xy, zO, y)-lO’ (xy, z, y)-Id (x, y, z)4,

for all x, y, z in G. This completes the proof of (8).
Since 0 is an endomorphism of G,

(x, y, z)dp (x, y, z)O0’ (xO, yO, zO)O’

for all x, y, z in G. By this, (8), and the fact that 00’ 0’t?,

(x, y, z)4 (x, y, z)O3O (x, y, z)O2dp

for all x, y, z. This proves (9) and completes the proof of (D).

(E) d and 0 are strongly normal.

Proof of (E). We need the formulas

(11) (02) -4- O’,
(2) ’ 0 + 0’

for the complements of 02 and . We obtain these as follows: By (A), if
z, y are in G, the elements x, zO, y lie in a group. Equivalently,
since x xO.xO’, the elements xO’, xO, y lie in a group. In particular, on
replacing x, y by xO, xO’, respectively, we see that x, xO2, xO’ lie in a group.
However, by (B) and the fact that 0, 0’, are in K, each two of x4,, xO2, xO’
commute; therefore the three elements lie in an abelian group. Now we
see that

=0+0’=(o+)+0’=0+(+0’) =+(0=+0’),
whence 11 ), (12) follow immediately.
Next we wish to prove that

(13) a a024
for every element a in the commutator-associator subloop G’. Since 0,
are endomorphisms of G, we need only verify (13) when a is an arbitrary
commutator or associator of G. However, if a is a commutator, (13) follows
from the fact (see (D)) that Gb is commutative; and, if a is an associator,
(13) follows from (9).
For a in G’, by (13),

a024, a6 a[O + (02)’]b (aO2)[a(O2)’r].
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From this and 11

1 a(O )’ a( + 0’) (a2)(aO’).
Therefore

(14) (a2)-1= aO’ aO
for every a in G’, the second equality coming by interchange of 0 and 0’.
In view of (14),

(a2) -2 (a0)(aO’) a(0 + ’) a
for a in G’. However, since G2, like G, is commutative Moufang,

(a2)-2 a
(See [SVIII.2].) Thus

a a a( - ’ a’) a4

for a in G’.

(a)

for every a in G’. In view of (15), 4@’ maps G’ upon 1.
Since 00’ and (hence) ’ are in K, then ’ is in K. Consequently,

since G’4,4/ 1, the defining relation (2) of K tells us that the subloop G’
is part of the left nucleus of G. For a Moufang loop, the left nucleus coin-
cides with the nucleus ([SVII], Theorem 2.1);hence G4’ is part of the nu-
cleus of G. In addition, by (1), G’ commutes elementwise with G. Hence
G4’ lies in the centre of G. Therefore ’ is centrMizing, and is strongly
normal.

If a is in G’, we use (11), (13), (14), (15) to get

at(t)’- at2(-t-t’) (aO2)(aO) (a)(ab2)-I 1.

Therefore 02(0), maps G’ into 1. Consequently, by the same arguments as
employed in connection with , we see that 02 is strongly normal. This
completes the proof of (E).
To sum up: by assuming (i) we were able to prove (E), (D), and (C).

Thus (i) implies (ii) (so that (i), (ii), (iii) are equivalent), nd, moreover,
(i) implies (iv) and (v). This completes the proof of Lemma 7.2* and re-
pMrs the hole in the proof of Lemma 7.2.
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