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Introduction

In Sections 1-6 we develop systematically the formal, elementary aspects
of obstruction theory for the extension of cross-sections of Serre fibre spaces.
The basis of our treatment is a definition due to W. Barcus of the obstruction
cocycle that is phrased completely in terms of global, homotopy properties of
the fibre space. (Recall that the classic definition given by Steenrod for
fibre bundles uses also the local structure of the bundle.)

In the later sections we turn to the higher obstructions, and develop further
a method for their computation that was sketched in [4], utilizing a "Post-
nikov decomposition" for the fibre space. Since in this paper we stay in the
context of general fibre spaces, our answer is rather theoretical and approaches
completeness only for the second obstruction case.

1. Notations

We shall use cubical singular homology [11] since we shall need a few simple
faes about the homology of fibre spaces. Homology should be taken with
integer coefficients unless mentioned otherwise. We could have used axiomatic
homology theory [3] if it were coupled with an axiomatic homotopy group
theory and perhaps an additional axiom concerning the homology of fibre
spaces. However, the methods used are inspired by the axiomatic theory
and do not explicitly refer to the way the homology groups are defined.

It will be assumed that all spaces occurring in this paper are arewise con-
nected and come with a definite basepoint. Homology and homotopy
groups shall be taken with respect to this basepoint. All maps considered
between spaces will map the basepoint on basepoint. If f is a map X -- Y, f
will denote also the various maps induced on relative homotopy or homology
groups by f with subscripts to identify the particular map. i will always
denote an inclusion map. 0 will always denote a boundary homomorphism,
with subscripts to identify the various ones occurring in a diagram. will
denote an onto mapping, - a one-to-one mapping, an isomorphism or
homeomorphism. If a diagram involving homotopy or homology groups
and mappings is written down, it will be assumed, unless mentioned other-
wise, to be commutative. The proof is usually quite easy and is left to the
reader.

A fibre space, denoted by (E, B, F, p), or F -- E B will be defined by a

Received March 8, 1958; received in revised form March 20, 1959.
This research was supported in part by OOR, U. S. Army.

9



10 ROBERT ttERMANN

map p’E B, satisfying the covering homotopy condition with respect to
finite polyhedra [11, p. 443]. The base B will be assumed simply connected.
If b0 resp. e0 is the basepoint of B resp. E, p(e0) b0, the fibre F p-l(b0),
and e0 is the basepoint of F.

2. First definitions
Let (E, B, F, p) be a fibre space. A map f:B E is said to be a cross.

section if pf is the identity on B. A cross-section f determines homomorphisms
]:-(E) - (F), j 1, 2, ..., in the following way" r.(E) is naturally
isomorphic to f(r(B)) @ i(r(F)) [14, p. 92]. ] is defined as the proiection
of r.(E) on i((F)) followed by C1.
The fibre space is said to be isomorphic to the product B X F if there is a

fibre-preserving homeomorphism E - B X F. An obviously necessary and
sufficient condition for this is that there is a map q:E F such that qi
identity on F. If such a q exists, one easily sees that

2.1

LEMMA 2.1. Suppose ’(B) 0 for j < n and r(F) 0 for j < m,
m and n >- 1, and that the fibre space (E, B, F) admits a cross-section f. Then

H(E) I(H(B)) @ i(g(f)), for 1 <= j <-_ m - n 2.

i"H F ----> H E is one-to-one for j <= m + n 2.

Proof. From spectral-sequence theory [12, p. 268],

p’H(E, F) H(B, bo) for 1 <__ j <= m + n 1.

For x e H.(E), fp(x) x e kernel p image i. f is one-to-one because f is
a cross-section. To see that i is one-to-one, we have

H+I(X) il H+I(X,F) 0 H(F) i H(X)

Iti+(B) Hi+(B,

pl is onto; hence i is onto, and 0 (Hi+(X, f)) 0 kernel i.
Using Lemma 2.1, we define a map :H.(E) H.(F), 1 __< j =< m + n 2,

such that ]i identity, and one has a diagram

r(E) ] r(F)

H(E) ] H(F)

for 1 -<_j-_< m-n- 2
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(h will from now on denote the Hurewicz homomorphism from homotopy to
homology groups.)

DEFINITION. Suppose A c B. Put EA p-l(A). Suppose f’A -- EA
is a cross-section of the fibre space (E. A, F). The homotopy obstruclions to
extending f to a cross-section over B are the homomorphisms

w(f)’rj(B, A) --. rj_l(F), j 2, 3,

each w(f) defined as the composition lop-1,

’(B, A) r(E, E.) 0
’j_I(E.) rj_l(f).

If H(B, A) 0 H(A) for 1 =< j < m, and r.(F) 0 forj < n, then
the homology obstructions are the homomorphisms

v(f)’H(B, A) --> Hj_I(F), 2 <= j <-_ m -4- n 2,

each v(f) defined as the composition

H B A P Hi(E, E. ---O H_I E. -]--, H_I F

One has a diagram

r(B, A) ..w(.f)) r._l(F)

H.(B, A) v( f ); H._(F).
Example 2.1. Suppose B E, the n-cell, A S_1, and the fibre space

(E, B, F) is isomorphic to the product, i.e., there is a map q’E ---. F with
qi identity. We then have a diagram

r.(B, A) r.(E, Ea) 01 r._(Ea)

O2 101
r._l(A)

p2

] r’-l(F)

i ///id.
q

’-I(F)

r_(E) ql, r_l(F).
We prove that w(f) 0 p-[ qfO2. This relation holds for any A and B.
By 2.1,

] q qfp2, qfOp qfp: O ]01 + q01.

Now q ql il ;hence q01 qil 01 O, Q.E.D.
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Returning to the case B En, we see that the image of the generator under
the map w(f):r,(E,, S,_1) -- -,_I(F) is just the negative of the element of
rn-l(F) represented by the map qf: Sn_I ---+ F.
To justify the name given to w(f) we prove

rIHEOREM 2.2. If f is extendable to B, all w(f) O.

Proof. Suppose fB denotes an extension of f to B.

r.(E, E) 02 r._(E)-- -b’-(F)

r.(B, A) r.(E, EA) 0 (F)_(E)
_

i.e., ]01 ] O: il O.
We summarize now some known results on the homotopy groups of path

spaces.
If X is an arcwise connected space with basepoint x0, (X) will denote

the space of loops based at x0. From the space of paths over X, we derive
an isomorphism :(X) _(X), j 1, 2, .... Further, if A X,
there is an isomorphism :(X, A r_(X, A_ such that

i ir_(A) T-j_I(-X) -). -_(X, 2A r_:(2A

[9, p. 745].
If y t2(X), y-1 is the path defined by y-l(x) y(1 x) for 0 =< x _-< 1.

The map y-- y.y- (with multiplication that usually defined for paths) is
--1inessential. If In’tX 2X is the mp y -- y and m’X X ]X ---+ X is

the map (y, z) - y.z, then the induced mps

In’r-(2X) -- r-(X), m" -(X) (R) r(X) --+ ’(X)

re defined by

In (a) --c, m(a (R) ) m() + m(), for a,/3 r.(X).

If fl, f are maps X - Y, f, f the induced maps X -- tY, g the map
2X -- Y defined by g(x) y(x).f(x-), then we have that

g(a) f’(a) f(a) for a r.(tX).

If A X, and f/A f2/A, then g(A.) is contractable; hence there is a

map g" r.(tX, lA -- r.(tY) such that
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Now as application,-if P -/E B is a fibre space, we can construct a fibre

space fF fE fB, p’ and i’ the maps induced by p and i. If A B,
and f is a cross-section A -- , f"fA -- fN is a cross-section of the loop-
space fibering. We have

’j(B,A) :w(f)) ’_I(F)

-_ gtB, A w f’
’_ F

If fl, f:B ---> E are cross-sections such that fl/A f/A, construct the map
g:2B ---> 2E as above. For b e B,

p’g(b) p(f’(b).f’(b-)) p’f’(b).p’f’(b-) b.b-,
i.e., p’g is inessential, and

g((B)) kernel p’ image i’, and g’((B, A)) kernel p image/.

Define d(f, f):(B, A) (F) as the composite

(B, A) _(B, A) _(E) _(F) (F).
The collection of d(f, f), j 1, 2, are called the difference obstructions
to deforming fl onto f. over B.
LEMMA 2.3. We have

(E) ] ]

r(E, E) (B, A).
We start from the diagram

o--1

j(2E) pl; (2B) g j(2E) j(2F).

(UF, UE) (UB, UA).
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One easily sees that it suttices to prove that i-lgpil ] ... To prove
this, for x e r.(ftE),

x f pl(x)’ i]’(x) f p(x) if(x)’-’
i.e., i];(x) if(x) fl p(x) f p2(x), aud

g =f -A.
Then

i-lgpi x i-lgp x .--1 .-!gp(fl p(x) if(x))
i-gpfl pl(x) i-l(f pt f2 p,)(x) i-(i](x) --](x))
f(x) f2(x).

3. Functorial properties
Suppose (E, B, F) and (E’, B’, F’) are fibre spaces, g a fibre-preserving

mapping E -- E’ that covers a mapping gB’B -+ B’. Suppose that A c B,
A’ B’, g,(A) A’, f and f’ are cross-sections of E and E’ over A and A
such that

A -g" A’

g in.duees a mapping ’F -- F’. One has a diagtm

r(B, A) w(f)> r_(F)

gB] g"

r(B A’ w(f’ 7rj_l(F’).

This is the functorial property of the obstructions.

4. Generalized cell complexes
DEFINITION. A sequence of subspaces B0 (b0) c Bt ... B is

called a generalized cellular decomposition, GCW complex for short, if
H/(B,, B,_) 0 forj n, n 1, 2, ..-.
adapted to the decomposition if

H/(A n B,., A n B,__) 0

H(A u B,,,, A u Bn_t) 0

A subspaee A is said to be

for j n,

for j n.

If B, is the n-skeleton of a CW cell decomposition of B, the above property
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is of course one ()f the main theorems of the theory of CW complexes. One
recognizes that a CW subcomplex is adapted to the decomposition in the
above sense. There exist other examples however" Let B be the space of all
C paths going from the north to the south pole of a unit 2-sphere. Let Bn
be the space of all paths of length __< r + (n )2. The above property
of the decomposition is one of the results of the Morse theory [10].

If A is a subspace adapted to a GCW decomposition, put B, u A.

C(B, A) H,(n ).

Define O"C,(B, A) Cn_(B, A) as the boundary operator of the triple
(, ._, _). One proves easily thnt 0 0, i.e., (C,(E, A), 0) is
a chain complex. There is a standard process which we outline without
proof (see [3, Chapter 3]), showing that the nt homology group of this chain
complex is isomorphic to H.(B, A ).

Let Z,(B, A) be the cycles of this chain complex, B,(B, A the boundaries.
We have

U(, o)H( o) Hn( _) H(B,, n--1) Hn-l(n-1, n--2).

One proves that kernel i 0. Image i kernel 0 Z,(B, A). Define
0 i "Z,.(B, A) Hn(B, 0). One proves that kernel 0 B(B, A)
and that 0 is onto, i.e., 0 establishes the desired isomorphism.
Suppose now that f is a cross-section of the fibre space over _. Consider

the homotopy obstructions to extending f over , or rather consider just
one, the first nontrivial one,

w(f) "n(, n--i) n_l(F).

By the relative Hurewicz theorem [12],

C,,(B, A) H(n ,-1) ,(,
Definitively then, w(f) will denote the map

C(, A) _(’),

i.e., w(f) is a cochain of the chain complex (Cn(B, A), O) with coecients in
(F), and will be called the obstruction to extending f, already given on Bn_,

to the n-skeleton.
To justify this name, we must show that, in case the GCW decomposition

of B is given by an ordinary simplicial decomposition of B and the fibre space
is a fibre bundle, this definition gives a negative of the standard one [14, p.
149]. This is quite easy;in view of the functorial properties of both obstruc-
tions, it suces to show that they coincide for the case where B En, the
n-cell, and the fibre space is isomorphic to the product. The discussion in
Example 2.1 does precisely this.

L:MMA 4.1. w(f) O, i.e., w(.f) as a cochain is a cocycle. (See also [1].)
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We must prove w(f) O. We have

C,+(B, A) r,+([L,+, [,) -,+(+ ,) 0__ ’,(E,,).

Then 0 i4 0, which implies w(f)O ]02 p-{lh-lO fi 03 i4 05 pTh
Now, suppose fx and f2"/)n-x -- E are cross-sections that agree on/)_.

Construct the difference obstruction (see Section 2) in dimension n 1,
d(fx, f2) rn_x(/)n_, /)-2) --- r,._(F). It is un (n 1 )-cochain of B rood A,
wih coeificients in rn-(F).

LEMMA 4.2. d(fl, f2) w(f) w(f2), i.e., d(f f)O w(f) w(f.).

Proof. Using Lemma 2.2, we write the diagram,

from which the proof easily follows.
Example. Suppose B Sn. Define then B. (b0) for j < n, B S,

A the empty set. We halve

w(f) :C(S) 7n(Sn bo) T’n(E, F) -- rn_t(F).

w(f), the obstruction to constructing a cross-section of the fibre space, is then
determined by the homotopy transgression homomorphism, i.e., it is, in this
simple case, describable in terms independent of the decomposition of the
base.

5. The homology obstruction and the first homotopy obstruction
Lemmas 4.1 and 4.2 describe the known formal properties of the obstruc-

tion cocycles [14]. We pass from homotopy to homology by means of the
Hurcwicz homomorphism. The homology obstruction is to be u map

v(f) C(B, A) -- Hn_I(F)
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leading to a diagram

5.1

,-i(F)

C,(B,A) h

"v f

H,_I(F).

To define such a map one must impose certain conditions on f.

DEFINITION. Suppose (E, B, F), A, f:n-1 E are as before, r.(F) 0
forj < m, Hj([n_l) OforO < j < p, andn mq-p- 2. The homo-
logy obstruction to extending f to B,, is defined as the composite

Obviously the diagram 5.1 holds. One proves, easily, just as for the
homotopy obstruction, that the cochain is a cocycle. O(f) denotes its co-
homology class.
We investigate now to what extent O(f) is independent of the cellular de-

composition of B.
There is a diagram

5.2

H,(B,A) H,([,[o) H,,(E,o) 04, H,,_(o) H,_(E).

Suppose now A is (q 1)-connected. Let 6 be the canonical homo-
morphism H" (B, A H_(F)) -- Horn (H(B, A) H_(F)). Then, if
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n =< m -t- q 2, there is a map ]’H++_I(E.t) -- H,,_1(F) which fits into dia-
gram 5.2, i.e.

li+,_t(Et) ]I+.), H,_,(F).

As a result we have

T_orM 5.1. Wih the above notations, {f N m + q 2 and + p 2,
he (O(f)) i iven as he compoile

H, CB, A) H+(E, E) It+_,(Ej) ]+> H,_t(F).

In particular, ((f)) is independent of the GCW decomposition of B
used in its definition and is describable in terms of the homology properties of
the fibre space (E, B, F) and the map f:A E only. For example, when A
is the empty set, +(O(f))’Hn(B, bo) Hn_(F) is just the transgression
homomorphism of the fibre space, + classical result [14, p. 178].

Supplement for cohomology. If

+’H-(F; H+_t(F)) ttom (H+_I(F), H+,_t(F))
H+-t(F, Hn_I(F)) such that (u) is the identityisonto, i.e ifthereisau+

map H+_t(F) H+_I(F), then (f) is p ft (u), where

P*H(E, Ex H_(F))

(The proof, lef go the reader, follows upon writing down the dual eohomology
diagram to diagram 5.2.)

If F is (n 2)-connected, the above conditions are automatically satisfied;
v(f), isomorphic o (f), is called the primar obstruction eoeyele mod A, (f)
the characteristic cohomolo clas of the fibre space mod A. The expliei
deseriion of o(f) given by the Supplement is just the generalization of the
Hopf Extension Theorem [14, Part III]. One fundamental problem for the
higher obstruction eohomology classes is to describe explicitly, if possible,
their independence of the cellular decomposition of the base. Even for the
fibre bundle ease, his has been done partially only for the second obstruction
[8], although ig is possible by means of the theory of semisimplieial complexes
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to prove the independence, without however giving any hint as to compu-
tation.

6. Sufficient conditions for the existence of sections

LEMMA 6.1. Suppose the base B of the fibre space is a CW complex [17],
with A a subcomplex, Bo c B1 c the skeleton subcomplexes. Suppose
f:B,,_l u A ----> A, n >- 2, w(f) e C" (B, A r._l(F)) are as before. Then
w(f) 0 is also sufficient for the extension of f to B, u A. Suppose, secondly,
that C e C"(B, A; rn_(F)), is another cocyle cohomologous to w(f). Then, f
restricted to Bn-2 u A can be extended to a cross-section f’: B._ u A --. E such
that w ff C.

For the proof, see [1].

THEOREM 6.2. (X, B, F) is a fibre space; F is j-simple, for j <= n 1;
B is a CW complex with subcomplexes Bo (b0) B1 Bn
with H(B, B,_) 0 for j n; f B,_ ---. E is a cross-section. Then, con-
sidering Bo B as a GCW decomposition of B,if the homotopy obstruction
w(f) to extending f to Bn is zero, f is actually extendable to B..

Proof. Let Bn, be the j-skeleton of Bn. Suppose that f can be extended
to a cross-section

f
_

B.,_ u Bn_ -- E.

We prove that the obstruction cohomology class

(f_) e H(Bn B,_ rs-(f))
is 0.

It will then follow from Lemma 6.1 that there is a cross-section

f._" B.,_ u B._ -- E,

agreeing with f._ on B.,._ u B._, such that w(fy_) O, extendable there-
fore over Bn,y U Bn-1 By induction on j, f can then be extended over B..
Now, (f._l) is automatically zero if j n. We deal then with the case

j n. We have the diagram

hi
Hn(Bn,n u Bn-1, Bn,n-1 u B.-1) r,,(B.,n u B._ B.,_ u B._,) w.(f.._)

H.(Bn,. o B,,_, B._) h

h
H,,(Bn B._) ..

r(B.,. u B._ B._I) r_(F)

r.(B,, B,_) w(f), .,,_(F).

._(F)
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If we succeed in proving that h2 is an isomorphism, it is clear from the above
diagram that (fn-1) is determined by w(f), i.e., is zero. (Every element of
Hn(Bn, Bn_l r-i(F)) is determined by the corresponding element of
Horn (I-I, (Bn, Bn-i), rn-(E)) since all H.(Bn, Bn_) are zero for j h.)
To prove that h. is an isomorphism, we prove that

Hy(Bn,, U Bn_l Bn-1) 0

for j < n, i.e., we prove that i:Hs(B,,,) -- H(B, B_) is an isomorphism
for j < n. To prove this, we utilize the exact Mayer-Vietoris sequence
associated with the proper triads (B,, u B_I, Bn,, Bn_) and
(Bn,n, B,n,, Bn_,,) [3, p. 39]. (The triads are proper since they are formed
of subcomplexes of CW complexes.)

H.(B._I,.) - Hj(Bn_,n) (R) Hj(Bn,n)

li ,[i1
H(B,_I,.) -+ H(B,,_) (R) H(B.,.) -+

H(B.,.,) -+ Hj_I(B.,_,,) H_I(B._a,.) H_(Bn,n)

H(B.,. u B.-1) -+ H_I(B,_) ---> H_(B._I) (R) Hj_(Bn,n).

Now, il, i, i, and i4 are isomorphisms; hence by the "Five Lemm"
so is i.

Remark. This result is a consistency condition; if this notion of GCW
complex had any value in obstruction theory, one would expect Theorem 6.2
to be true.

7. The higher obstructions and Postnikov systems

F *- E B will be a fixed fibre space with B a simply connected CW com-
plex. F, the fibre, is supposed connected. B (k >__ 1) will denote the k-
skeleton of B. r will denote the abelian group r(F).
We recall some known facts about Postnikov systems for spaces and gen-

eralizations to fibre spaces. For a given space F, the pair (F, g) of a space
F and fibre map g F F will be called an n-Poslnikov map for F
providing

7.1. g" (F) (F,,) is an isomorphism for k n, and rz(Fn) 0
for k > n.
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It follows that
r(F’) 0 if ]c __< n,

rk(F) for k > n.

Similarly, the triple (En, Fn, hn), where

Fn -- En P )B and F,E E,

are fibre spaces, leading to a commutative diagram

E >E

P[ P

B d B,

will be called an -Polikov map for ghe fibre space N providing

7.2. h resgrieted go F, i.e., in ghis diagram, is an n-Posgnikov map for F.

Ig follows easily ghag

7.a. h’(N) (N) is an isomorphism for N , and

For the given n-Postnikov map F’ gF, F, the characteristic class of
the fibre space g k+ H+(Fn, n+l), is called an n-Postnikov invariant

of F. Similarly, for the given n-Postnikov map F’ E, h) E for the fibre
space E, the characteristic class k+ H+e (E, n+) Of the fibre space h
will be called n n-Postniov invariant for E. Then, k+ restricted to the
fibre F is an n-Postnikov inwriant for the space F, and h (k+) 0. In
certain cases this alone serves to calculate this invariant [4].
The calculation of all possible Postnikow mps for, and inwriants for, the

space F is equivalent to calculating the obstruction classes, in the classical
sense of Eilenberg, of 11 mps of spaces into F. Our point of view will be to
consider this calculation as known (although at present only fragmentary
information is known) and try to see how the calculation of the obstruction
classes for cross-sections of E cn be reduced to the calculation of these in-
variants of F and additional "twisting" invariants of the fibre space.
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With this meaning for h,, En, and k"+2, let f:Bn+l -- E be a cross-section
of the fibre space, w(f) e H+2(B, rn+l) the obstruction cohomology class to
extending it over B+2. hnf:Bn+ En is a cross-section, and, in view of the
condition rk(Fn) 0 if ]c > n, it can be extended to a section f"B En
We have proved in [4] that

7.4. w(f’)

This gives us a method, already exploited in [4], for "calculating" w(f).
One assumes that E and h are given in terms of f, that their cohomology
properties are accessible, and that k+ can be calculated in terms of these
properties.

8. Second obstruction

We continue with a fibre space F E B, and in addition suppose that
r(F) 0ifk < morm < lc n.

LEMMA 8.1. Let f:Bn+ E be a cross-section, G an abelian group, and
a H(F, G) Then there is a unique a e E, G) such that i* (a) a and
f*(a) O. This class is the same for any two sections that agree on B,,.

Proof. We have the exact sequence [11]

p* i* Hm+l(H(B, G) = H(E, G) H(F, G) B, G)

where r is the transgression. We know that r 0 since f is a cross-section.
There exists a’ e H(E, G) with i*(a’) a. We have

2
H’(B, G) Hm(B+ G) H(Bm G).

Put
a a’- p*i*f*(a’).

Clearly a satisfies both conditions. As for uniqueness, suppose a" e H(E, G)
also satisfies both conditions. Then, i* a" a) O, i.e., a" a p* b
forb eH(B, G). 0 f*p*(b) i(b);hence b 0.

Using this lemma, we can construct an n-Postnikov map h,’E E, with
E B N K(, m). To see this, let a(f) H(E, ) be the unique class
such that f*(a(f)) 0 and a(f) restricted to F is the fundamental class of
Hm(F, ) (i.e., the class which, as a homomorphism Hm(F, Z) , is

Hm(g(m, m), ,)the inverse of the Hurewicz isomorphism) Let
be the fundamental class of this Eilenberg-Mac Lane space, and let
g’E K(v, m) be a map such that g*(m) a(f) [13]. Then g restricted
to F is an n-Postnikov map for F. Let h,’E B X K(v, m) E be the
map which is the product of p and g. ha SO constructed is an n-Postnikov
map for the fibre space E.

Let k+ n+ E.e H +) be the corresponding Postnikov invariant. Let
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)’B -- E, bc the inclusion map on the first factor, and let f"B -- E be an
extension of hnf. Let ’En - K(v,, m). be the projection on the second

n ’) ,f’factor. .ne (f’)* O, i.e. is homotopic to a point mapping. This
means that f’ and X re homotopic, as cross-sections; hence

LEMMA 8.l’. With the above notations, )*(k"+’) w(f).

Further progress now is dependent on how H*(En, r+) is determined
in terms of H*(B, r+l) and H*(K(r,,, m), n+l). In [4] we sketched how
this can be done if n+ is a ring, and H*(En r+l) is a tensor product. This
was applied to the case where F is an m-sphere. We give another

Example. F P.(C), the complex projective space of real dimension
2k, n 2k, m 2. It is well known that

.(P(C)) Z (theintegers) if j 2or2k + 1.

0 if 2<j<2k+l.

Then E,, B X K(Z, 2). H* (K(Z, 2), 2) is a polynomial ring generated
by cup products of the fundamental class e H(K(Z, 2), Z). The first
Postnikov invariant of P(C) is TM (cup product k + 1 times, with the ring
structure of Z).

HLEMMA 8.2 With the above notations, a(f) e (E, Z) as in Lemma 8.1,
a e H(P(C), Z) a generator, define an additive homomorphism

’H*(B, Z) (R) H*(P(C), Z) -- H*(E, Z)
by

(b (R) a) -- p*(b)
_

a(f) , 0 <= j <=
Then, 0 is an additive isomorphism.

Proof. Note that the fibre in the fibre space P(C) -- E -- B is totally
nonhomologous to zero [11, p. 472]. One can almost apply a result of Serre
[11, p. 473], except that does not preserve cup products. But notice that
Serre’s proof does not actually require that do so.

H+-(Then a(f)TM =o p*(b) a(f) , where the classes b. B, Z)
can be considered as the "twisting invariants" of E. Note then that

kn+2 k+l k=0 bi (R)

is the Postnikov invariant of E by Theorem 3.1 of [4]; hence, by Lemma 8.1,

w(f) )*(k+) b0.

Pulling back to E, we have

p*(w(f)) -a(f)+ + =p*(b) a(f) .
This is the formula for the second obstruction given by Kundert [6].
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9. Reduction mod
The computation of obstruction classes for a fibre spce F -- E -- B is of

course dependent on the computation of the homotopy groups of F. At least
since Serre’s work [11], [12], when calculating the homotopy groups of a space,
it has been most efficient to calculate the groups reduced modulo the prime
numbers. One can ask then how the computation of the obstruction classes
can be fitted into this program. We will not carry out the details required to
adapt the (9-Theory paper [12], but sketch how the earlier results in [11] cn
be used.

If f:B+ -- E is cross-section, a prime number, w(f), the obstruction
class reduced mod l, denotes the image of w(f) in H"+(B, r+(F) (R) Z)
under the coefficient homomorphism rn+ -- n+ (R) Z. These classes have
all the formal properties of w(f) due to the functorial nature of the tensor
product. In particular, one cn prove the analogue of Theorem 5.1" If
r. (R) Z 0 for j n, w(f) is the image under transgression of the "fund-
mental class rood l" of H+(F, ’n+ (R) Z), i.e., the class corresponding to
the Hurewicz isomorphism rood l" H,+(F, Z) -- n+(F) (R) Z [11].
The method given in Section 8 works to calculate the "second obstruction

rood l", i.e., the case where -(F) (R) Z 0 for j < m, m < j <__ n.
We illustrate with the case F S,, an m-sphere, with m odd. (The case

m even would require the mchinery of primnry cohomology operations rood n
power of [16], a refinement we will not go into here.) The relevant homotopy
information is the following" For m odd, 0 [11],

.(S) (R) Z 0 for n <j <:n+ 21- 3,

Z for j m+ 21- 3.

Put n m + 21 4. The role played by the cohomology operation Sq in
the Liao formula for the secondary obstruction for a sphere bundle [7] is re-
placed here by the Steenrod reduced power operation (P [15], defined rood Z.

Let g’E --+ K(Z, m) be defined as before, with g*() a(f). Define
h’E -- En B X K(Z, m) as before. By means of the Gysin sequence
[11, p. 470] for the fibre space S, -. E -- B, one proves that

(Pi(a(f)) p*(b) + ((Pi(a(f)) a(f),

where all classes are reduced mod l, and ’HJ(E, Zz) -- HJ-’(B, Zz) is the
"integration over the fibre" homomorphism. Then the class

k 5)() b ((9(a(f)) (R) e H’+2(E,, Z)

satisfies (a) h*(k) 0, and (b) k restricted to K(Z, m) is the "Postnikov
invriant reduced rood l". The anulogy with 7.4 and Theorem 8.1 leads to
the result w(f) b, i.e.,

p* (w(f)) (P (a(f)) p*(q’ (a(f)) a(f).
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10. The difference of two secondary obstructions
We work with the notations of Section 8. f:Bn+l -- E is a cross-section;

E hn p X g) B X K(m,m) K(m,m);k"+2 eHn+(E, +l) isan
n-Postnikov invariant for the fibre space.
Suppose fl:Bn+ -- E is another cross-section. Then i* (a(f) a(f)) 0

and a(f) a(fl) p*(b) for some b H’(B, r,). Hence f* (a(f)) b.
Let, e H (K(, m), ) be the fundamental class. Then (ah) * (,) a(f).

b f(a(f)) *’-* *

Let 3,b’B -- K(rm, m) be a map such that 3" () b. Then ah, f is homo-
topic to 3"b restricted to B,+I. Let G(V):B --+ E, be the map which is the
graph of 3".
Applying Lemma 8.1’, we get

10.1 w(f )

In order to make this formula explicit, we will suppose that the coefficient
group r+l is a ring. If

_
denotes cup product with respect to this ring, we

suppose also that

10.2 k+ =0 p* (b-)
_
*(),

where b resp. G are elements of H*(B, rn+l) resp. H*(K(r,, m),
and dim b0 0, dim n -t- 2.
Those b whose dimension is less than n A- 2 are called "twisting invariants",

since they are zero if the fibre space F E - B is isomorphic to a product.
We have then

10.3

10.4 w(f) w(f) _,= b 3" (0).
It is well known that the elements of H* (K(r,, m), n+l) are in one-to-one

correspondence with primary cohomology operations [12], i.e., for each
0 e m), 71"nA-1) and each space X, 0 determines an operation, also
denoted by O’H’(X, r,) -- H’+(X, r+). With this notation,
3’b (0) O(b).

THEOREM 10.1. With the above notations and with an n-Postnikov invariant
k"+ for E satisfying 10.2, a fixed cross-section f:B+i - E, there is a cross-
section over the (n - 2 )-slceleton of the fibre space F -- E -- B if and only if

H,there is a cohomoogy class b (B, .) with

10.5 w(f) - = bi
_

O(b) O.

Proof. We have already proved the necessity. The argument can be
retraced" Given such a b, let v’B -- K(rm, m) be such that 3"*() b.
G(3’) "B E denotes the graph of 3’. Since h:E -- E maps the homotopy
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groups in dimension -_< n isomorphically, G(7) can be lifted to a cross-section
fi’Bn+l -- E, with G(,) restricted to Bn+ equal to hf. Thus 10.5 implies
that w(fi O.

11. Second obstruction for fibre bundles
We continue with the notations of Sections 8 and 1O. In order to decide

whether the fibre space F -- E B admits a cross-section over B+, we
have seen that it suffices to calculate the obstruction class and twisting in-
variants of just one cross-section Bn+ [2. For the geometrically interest-
ing examples one would expect then that there would be a way of singling
out a cross-section. We go into the general aspects of this question in case
the fibre space is an associated bundle to a principal bundle with structure
group a compact Lie group G. For example, in case F -- E -- B is a pro-
jective bundle associated to a complex vector bundle, Kundert has shown [6]
that one can choose the cross-section so that the twisting invariants are the
Chern classes.

Let G -- Eo ---+ Bo be the universal principal bundle for G [2]. We suppose
that G acts on F, and F E -- Bo is the associated bundle with F as fibre,
and that ’B -- Bo is a cellular map that induces the given bundle F -- E B.

Let K(r, m) -- B q--. Bo be a fibre space over Bo that kills off the charac-
teristic class of the fibre space F -- E -- Bo, and let F -- E’ -- Bo be the
fibre space induced from the "standard" fibre space F -- E, -- Bo by q. We
suppose that the first obstruction, i.e., characteristic class, vanishes. Hence
admits a lifting "B B, which can again be taken as a cellular map.

Hence F -- E’,-- B’o plays the role of a fibre space that is "universal" for
second obstruction problems, in the sense that, the fibre space F - E -- B is
induced from a map "B -- Bo. (These remarks are due, so far as I know,
to W. Massey [8].)
Suppose rr(F) 0 for k < m, m < lc <= n. A eross-sectionf:B’o.+ --+ E’

obviously is pulled back via 4)’ to a cross-section B+, -+ E, so the problem of
deciding whether F -- E -- B admits a cross-section over B+. is reduced to
calculating the twisting invariants and obstruction class of f, finding how
these are pulled back to B by ’, and seeing how certain primary eohomology
operations act on H*(B).

If we are in the hypotheses of Theorem 10.1, i.e. rr,+(F) is a ring,
p’*(w(f)) i=o p’*(b.i)

_
O.(a(f)), for b e H*(B(, r,.+:), notice that

the b. restricted to a fibre of K(r,, m) -- B -- Bo are zero, since the fibre
space F --+ E -- B restricted to such a fibre is isomorphic to a product.
Thus we begin to see a general reason why Kundert and Liao found in special
cases that these twisting invariants could be chosen to be characteristic classes
of the principal G-bundle, i.e. classes arising from Bo.
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