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BY
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1. Introduction

In [7] J. H. C. Whitehead introduced for simply connected complex K
n exact sequence

-- H+I(K) n+ r(K) X (K): u Hn(K)

(clled F-sequence) involving the homotopy groups rn(K), the homology
groups H,(K), and new kind of groups rn(K), clled the F-groups of K.
As was shown in [3], homology groups are, in certain precise sense, "ob-

tained from the homotopy groups by abelianization." The bove exact sequence
suggests that between F-groups nd homotopy groups duM relationship
might exist. It is the purpose of this note to show that this is indeed the cse,
nd that the F-groups are, in similar sense, "obtained from the homotopy
groups by talcing commutator subgroups."
The result will be stated in terms of c.s.s, complexes nd c.s.s, groups.

We shll freely use the notation nd results of [3] nd [4].
The min step in the rgument is rather curious lemm on connected c.s.s.

groups. It states that for connected c.s.s, group F nd any integer n 2,
every n-simplex in the commutator subgroup of F is homotopic with n n-sim-
plex in the commutator subgroup of the (n 1)-skeleton of F.

2. The main lemma

We shall state a lemma which describes a rather surprising property of con-
neeted e.s.s, groups. The lemma shows how eonneetedness, although its
definition involves only 0-simpliees and 1-simpliees, influences quite strongly
the behaviour of a e.s.s, group in all higher dimensions. This explains some-
what why eonneetedness is such a strong condition to impose on a e.s.s, group
or, equivalently, (el. [4], 9 and 11) why simple eonneetedness is such a
strong condition to impose on a CW-eomplex or a e.s.s, complex.
For another application of this lemma see [6].

Let F be a e.s.s, group; denote by [F, F] c F the commutator subgroup, i.e.,
the (e.s.s.) subgroup such that IF, .F] IF., Fn] for all n; and for every
integer s >= 0 let F c F be the s-skeleton, i.e., the smallest (e.s.s.) subgroup
containing F,. Then we have

LEMMh 2.1. Let F be a connected c.s.s, group, and let r e [F, F],, where
n >- 2. Then there exist elements

e [Fn-l, Fn-1]n and p IFn, Fn]n+l
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such that
pe+, - foro" p en

or, equivalently, such that

O<=i<=n,

([3], Definition 2.2).

Proof. The proof of Lemma 2.1 is almost the same as that of [6], Lemma
(3.5) ([6], 8). The only difference is that, instead of [6], Lemma (8.1)k,
the following lemma has to be used.

LEMMA 2.2,. Let F be a connected c.s.s, group, and let a e F, and r F,
where n > 2 and lc < n. Then there exist elements

such that
dp e IFn-l, F’-I], and p e IFn, Fn]+l

pe"+ [, rn -]
O<i<n+lp8 en

Proof. We first prove the case lc 0. The connectedness of F implies
the existence of a F such that e0 and r. Let

i--1 i+l n](l)n+i+l

Then it is readily verified thate[F for 0 i < n+ 1. Let
m(ye, ), where the function m is as in [6], 5, and let

1 n+l i--1 i1 n--1](l)n+i +l

then a simple computation yields that and p have the desired properties.
The proof for ]c > 0 is the same as that of [6], Lemma (8.1).

3. Application of the main lemma
Let F be a c.s.s, group. Denote by j: Fn-1 -+ F and j: F-- F the in-

clusion maps, and for any c.s.s, group G let r(G) r(G; e0). Then Lemma
2.1 together with J. C. Moore’s definition of the homotopy groups of a c.s.s.
group ([3], 5) implies

COROLLARY 3.1.. Let F be a connected c.s.s, group. Then for every integer
n >= 2 the map

r,([j", j"])" "trn([Fn-, Fn-]) ----> v.([F’, g’])

is an epimorphism, and the map

7rn([j, jI)’’,([F’, F"]) --+ r,([F, F])

is an isomorphism.

We will need the following application of this corollary.
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Let F be a c.s.s, group, let its (- 1 )-skeleton F-1 be the subgroup containing
only the identity in every dimension, and for every integer s __> -1 let
B= F/[F, F] be "F made abelian." Then the sequence

IF, F] q F,. p_,B,
where q denotes the inclusion map and p the projection, is a fibre sequence
([3], 3) with which is associated an exact homotopy sequence. Hence in
the following diagram both horizontal sequences are exact; and clearly the
rectangle is commutative.

-(qn.,(B’-:) O
n-,_.( - F-] -

j,-l])
n--1

-1 -([F- n--(q(B
0 ,g-]

_I(F"-2) v,-l(P-2) (B-71"n

T’n--l ).

Clearly B coincides with its own s-skeleton, and as the homotopy groups of
the s-skeleton of an abelian c.s.s, group vanish in dimension > s (this is read-
ily verified by using the equivalence of the notions of abelian c.s.s, group and
chain complex of [1]), it follows that ’n_l(qn-2) is an isomorphism and
_l(q-) a monomorphism. Hence _(qn--i) induces an isomorphism

-1 image ’n-- [j--, j--]) image r_(j-

Denote by Xn-i(F) the composition of with

7n--1([/,/]): 7n_l([Fn-i, Fn-i]) --> 7n_l([F, F]).
Then we have

PROPOmTON 3.2. Let F be a connected c.s.s, group. Then the map

Xn--i (F) image rn_(j-) - -1 [F, El)

is an isomorphism for n > 2 and n 1. If F is free, ([4], Definition 5.1),
then this is also the case for n 2.

Proof. For n > 2 the proposition is an immediate consequence of Cor-
ollary 3.1, while for n 1 it follows from the fact that r0(F-1) 1 and
r0([F, F]) 1.

If F is free, then application of [3], Theorem 17.6 and the exactness of the
homotopy sequence of the fibre sequence ([3], 3)

[F, F] -- F -- F/[F, F]

yields that rl([F, F]) 1. The proposition then follows from the fact that
7rl(F0) [.

Remarl 3.3. One might ask if the freeness condition in the second half of
Proposition 3.2 could be dropped, or more generally (see the proof of Proposi-
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tion 3.2) if the freeness condition could be omitted in [3], Theorem 17.6, the
analogue for c.s.s, groups of the Hurewicz theorem. The answer is negative;
a counterexample will be given in 6.

4. F-groups and ’1,-groups

This section deals with the e.s.s, analogue of J. H. C. Whitehead’s definition
of the r-groups ([2], p. 105) and with new groups, called "y-groups. The
latter are in some sense "obtained from the homotopy groups by taking com-
mutator subgroups." To be more exact: if in the definition of homotopy
groups of [3], 8 we insert at a certain stage the operation of taking commu-
tator subgroups, then we obtain a definition of the "y-groups. It will be shown
(Theorem 4.3) that for simply connected complexes the F-groups and "y-groups
are isomorphic.

Only reduced complexes will be considered, i.e., c.s.s, complexes with only
one 0-simplex. This restriction is not essential; its main advantage is that
there is no need to indicate the base point.

DEFINITION 4.1. Let K be a reduced complex, and for every integer
n _>- 0 let K be its n-skeleton (i.e., the smallest subcomplex containing K)
and i’: Kn-1 -- K the inclusion map. Then Fn(K), the nth r-group of K,
is defined by

r(K) image (rn(i): rn(K-) "- r(K)).
DEFINITION 4.2. Let K be a reduced complex, and let GK be as in [3], 7.

(GK is a free c.s.s, group which has the homotopy type of the loops on K.)
Then for every integer n > 0 we define "Yn(K), the nth .y-group of K, by

"y,(K) -n_I([GK, GK]).

In order to be able to compare the groups F..(K) and "y(K), we will de-
fine a homomorphism : Fn(K) - "yn(K) aS follows. Let i: K --* K be
the inclusion map. Then it follows immediately from the definition of the
functor G ([4], 10) that G(i): GKn-- GK maps GK isomorphically onto
the (n- 1)-skeleton G-K of GK. We therefore may identify GK with
G’-K under this isomorphism. By [3], 8 there exist natural isomorphisms
O: r.(K) r_I(GK). Hence the diagram

(K-I r(i") K,(

r_(G’-SK) 7rn-$(Jn-)’ rn-l(G’-g)

is commutative, and it follows that O induces isomorphisms

0: r(K) image r,,_(j’-).
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Define , Fn(K) -- 3,(K) as the composition

in(K)
0

)image ’n_(j"-) n_(GK) ,(K).

Then our main result is

THnOnE 4.3. Let K be a reduced complex, such that rl(K) 1. Then

Cn In(K) "-’>

is an isomorphism for all n > O.

Proof. This is an immediate consequence of Proposition 3.2 and [4],
Proposition 10.2.

In order to compare the homotopy groups of the commutator subgroup of a
c.s.s, group F with the -groups of its classifying complex WF, consider the
map a’(i)" GWF F of [4], 11. This map induces homomorphisms

._([a’(i), a’(i)])’%(WF) ---. r_([F, F]).

That these homomorphisms need not be isomorphisms my be seen by tking
for F n belian c.s.s, group. However

THEOn 4.4. Let F be a free c.s.s, group ([4], 5). Then

r,_([a’(i), a’(i)])" "yn(F) ’n-(I F, F ])
is an isomorphism for all n > O.

Proof. By[4], Theorem 11.3, a’(i) is a loop homotopyequivalence. Clearly
the functor "taking the commutator subgroup" is a c.s.s, functor in the sense
of [5], Definition 5.2, and hence the theorem follows from [5], Theorem 5.3.

5. The F-sequence and "y-sequence

DEFINITION 5.1. Let K be a reduced complex, let GK be as in [3], 7,
and let AK GK/[GK, GK], i.e., AK is "GK made abelian." Then we
define the .-sequence of K as the homotopy sequence of the fibre sequence
([3], 3)

[GK, GK] GK P---P--) AK,
where q denotes the inclusion map and p the projection.

An immediate consequence of Definition 4.1 and [3], Proposition 3.5 is

PROPOSITION 5.2. The "-sequence is exact.

For simply connected complexes the 3,-sequence is isomorphic with the F-se-
quence of J. H. C. Whitehead. In fact

THEOREM 5.3. Let K be a reduced complex, such that ’I(K) 1. Then
we have a commutative diagram
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5.4

where the upper row is the F-sequence of K ([2], p. 105), and where the isomor-
phism ,, Hn(K) -n_I(AK) is as in [3], 15.

Proof. The map u,, rn(K) -- H,,(K) is the Hurewicz homomorphism,
and hence, by [3], Theorem 16.1, the rectangle on the right of Diagram 5.4 is
commutative.
The map hn Fn(K) - rn(K) is the one induced by the inclusion map

i: K -- K. Commutativity in the rectangle in the middle therefore follows
from the commutativity of the diugmm

The proof of the fact that commutativity also holds in the rectangle on the
left is similar, although more complicated, as at this point the simple con-
nectedness of K has to be used. The details will be left to the reader.

6. A counterexmple
Let F be c.s.s, group. Because of the exactness of the homotopy se-

quence of the fibre sequence

IF, F]---) F -- F/[F, F],

the analogue for c.s.s, groups of the Hurewicz theorem ([3], Theorem 17.6)
is equivalent to the statement that for a free c.s.s, group which is (n 1)-
connected, its commutator subgroup is n-connected. The following example
shows that this statement becomes false if the word free is omitted.

Let n 0, and let K be a c.s.s, complex of which the only nondegenerate
simplic..es are

(i) one 0-simplex ,
(ii) two n-simplices r and p,
(iii) two (n + 1)-simplices and with faces

-1 -1 i > O.ae ckrt "re 0
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Let GK be as in [3], 7, and let R be the c.s.s, group obtained from GK by
addition of the relation

[-, ] e_.

It is readily verified that R is (n 1)-connected. However

PROPOSITION 6.1. ’,([R, R]) 1.

Proof. GK has the homotopy type of the loops on K ([3], 7) and hence
is contractible. Let p" GK -- R denote the projection, and let Q kernel p.
Then the contractibility of [GK, GK] together with the exactness of the
homotopy sequence of the fibre sequence

kernel [p, p] -- [GK, GK] -- JR, R]

implies that it suffices to show that ’n_l(kernel [p, p]) 1. We shall do
this using the notation and results of [3], 18.

Let q: R -- Gn K be the function such that for every element a R,
(i) pqa a,
(ii) length qa length a,

_--1
(iii) qa is such that or -v is never followed by or r (0 _-< i =<

n 1). Then clearly the elements qa, where a e R, form a Schreier system
of representatives for the cosets of Q in Gn K, nd it follows from the Kurosch-
Schreier theorem that Q is freely generated by elements of the form

where the elements e G K are suitably chosen.
For every integer i with 0 _-< i __< n- 1, the elements , where, e (’-l-i)Qi, form a Schreier system of representatives for the cosets of

(-i)Qi in (n-l-i)Qi+l. Hence by the Kurosch-Schreier theorem (1)Qn-1 is
freely generated by elements of the form

where i < n 1, and the elements ,/0, n--1 {! Qn are suitably chosen.
As

n-l" [t, e]n-"-1"" [, t]n’-l" t- e [G K, [G K, G. K]],

iterated application of the Kurosch-Schreier theorem yields that ("-)Q is
freely generated by certain elements of [Gn K, [Gn K, Gn K]] and elements of
the form . [, ].2,

(n-l-i)Q+lwhere j < i, and the elements f. are suitably chosen.

(’)Qo 0, c Jam K, [G K, G K]],

Hence

and it follows ([3], 5) that,_ n image C [Gn_l K, [G_ K, Gn_t KI].
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However we have
[, ]C en--2 O<=i<=n--1,

[, ] - [Gn_l K, [Gn-1 K, Gn_i K]],

and consequently [, ] represents a nontrivial element of n-l(Q) and hence
of rn_l (]eruel [p, p]).
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