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1. Introduction

Let X be a compact metric space with metric p, and let T be a homeo-
morphism of X onto itself. The pir (X, T) will be called a compact system.

In this paper we shall be concerned with compact systems which are mean-
L-stable, as defined in Section 4. The definition of mean-L-stable systems
is due to Fomin [3]. Mean-L-stable systems were also discussed briefly by
Oxtoby in [7]. The theorems he obtained will be quoted at appropriate
places in this paper.
We adopt the following notations. If E is a set, xE denotes its charac-

teristic function, and E’ denotes its complement (when the containing space
is understood.) If E is a subset of X, its closure is denoted by

If E is a set of integers, let
k(E) (2]c - 1)-1=_ xE(j).

The upper density of E, *(E), is defined by

*(E) lim sup_. (E),

and the lower density of E, .(E), is defined by

ti.(E) lim inf i(E).

If .(E) *(E), their common value is called the density of E, and is de-
noted by i(E).

2. Measure theoretic preliminaries. The theory of
Kryloff and BogolioubofF

A Borel measure on X is a finite measure on the algebra of all Borel sub-
sets of X. A Borel measure is normalized if (X) 1. An invariant
Borel measure on (X, T) is a Borel measure on X such that if E is a Borel
subset of X, then (E) (ET). It is known [7, (2.1)] that any compact
system admits at least one normalized invariant Borel measure. A Borel
subset E on X is said to have invariant measure zero (invariant measure one)
provided (E) 0 ((E) 1) for every normalized invariant Borel measure
on (X, T).
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Let f be a real valued function on X, and let/ be a positive integer. Let
kM(f, ]c, x) fk(x) (2 - 1)-li=_kf(xTi),

and let
M(f, x) f*(x) lim_ M(f, k, x),

if this limit exists. If is a normalized invariant Borel measure on (X, T),
and f is integrable with respect to , then f* exists for almost all x, by the
Birkhoff ergodic theorem.
We now summarize, without giving proofs, those concepts and results

from the theory of Kryloff and Bogoliouboff which are needed in this paper.
A concise exposition of the theory, which includes proofs, may be found in
[7].
Let C(X) denote the set of continuous real valued functions on X. A

point x e X is called quasi-regular if M(f, x) exists for every f C(X). The
set of quasi-regular points has invariant measure one.
For each quasi-regular point x, M(f, x) is a bounded linear functional, so,

by the Riesz theorem, there corresponds a unique normalized Borel measure
x such that

M(f, z) f f du
for every f e C(x).
A measure is called ergodic if X cannot be split into two disjoint T-invariant

sets, each of positive -measure.
A quasi-regular point is called transitive if x is an ergodic measure, and

it is called a point of density if (U) > 0 for every open set U containing x.
If a quasi-regular point is both transitive and a point of density, it is said
to be regular.

Let Q, Qr, Q., and R denote respectively the set of quasi-regular points,
transitive points, points of density, and regular points. QD and Qr (and
therefore R) are Borel sets of invariant measure one.

If f is a bounded Borel measurable function on X, ]fd is a Borel meas-

urable function of x on Q, and

for every finite invariant Borel measure . From this it follows that a Borel
set E has invariant measure zero if and only if (E) 0 for every ergodic
measure .
For any ergodic measure , # for all x except a set of -measure zero.

The set of all such x is called the quasi-ergodic set corresponding to . The
intersection of the quasi-ergodic set with R is called the ergodic set correspond-
ing to . The ergodic sets constitute a partition of R, and are in one-to-
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one correspondence with the ergodic measures. Each ergodic measure
vanishes outside the corresponding ergodic set.
A system (X, T) is called uniquely ergodic if it has a unique normalized

invariant Borel measure, or, what is the same thing, if X contains only one
ergodic set. (X, T) is called strictly ergodic if X consists of a single ergodic
set. Clearly, any strictly ergodic system is uniquely ergodic.

3. Proximal and persistently proximal pairs of points
Let (X, T) be a compact system. The points x and y of X are said to be

proximal provided, for any > 0, there exists an integer n such that

p(xTn, yT) < .
If x and y are not proximal, they are said to be distal. The system (X, T)
is called distal if, for any pair of points x and y with x y, x and y are distal.
The easy proof of the following lemma is omitted.

LEMMA 1. Let (X, T) and (X*, T*) be compact systems. Let be a con-
tinuous mapping of X onto X* such that, for x X, (x)T* (xT). Let x
and y be proximal in X. Then (x) and (y) are proximal in X*.

The points x and y of X are said to be persistently proximal provided, for
any > 0, p(xTn, yT) < for n e E, where E is a set of integers of density
one. It is clear that "persistently proximal" is a T-invariant equivalence
relation.
For x and y in X and ] a positive integer, let

kpk(x, y) (2] + 1)-l=_k p(xT, yTi),
and let

p’(x, y) lim sup p(x, y).

LEMMA 2. The function p’ is a T-invariant pseudometric on X, and
p’ (x, y) 0 if and only if x and y are persistently proximal.

Proof. For each positive integer ], p is a metric on X. It follows that
p’ is a pseudometric. That p’ is T-invariant, that is, that

p’(xT, yT) p’(x, y),

for x, y in X, follows easily from the definition of
For any > 01etJ [ilp(xT,yT) => v]. Then

xj(i) -< p(xT, YT) -<- diam (X)xj(i)

for all i. Averaging over [-]c, k] and taking the lim sup as ]c --* , we get
e*(J) <= p’(x, y) <= diam (X)*(J) - . Hence p’(x, y) 0 if and only
if *(J) 0 for every v > 0.

Let . be the set whose points are the equivalence classes of mutually per-
sistently proximal points of X, and let be the natural proiection of X onto.. We define a metric for . by (rx, y) p’(x, y), for x, y e X.
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Let be the mapping of . onto itself defined by (x) v(xT).
follows from Lemma 2 that is an isometry on X.

It

4. Mean-L-stable systems

The compact system (X, T) is said to be mean-L-stable ("stable in the
mean in the sense of Liapounov") if for every pair of positive numbers el and
e.o, there is a positive number such that x, y e X with p(x, y) < implies
p(xTn, yT) < el, for all n except in a set E with *(E) < e.. We say
that corresponds to e and e2 above. If e e2 e, we say that corre-
sponds to e.

If, for any e > 0, can be chosen so that the set E is vcuous, (that is,
if the powers of T are uniformly equicontinuous) the system (X, T) is clled
uniformly-L-stable. It is esily proved that if compact system (X, T) is
mean-L-stable (uniformly-L-stable) with respect to the metric p, it is me,n-
L-stable (uniformly-L-stable) with respect to any equivalent metric p.

The proofs of the following two theorems re immediate, using the defi-
nition of men-L-stbility and elementary properties of upper density.

THEOREM 1 (Inheritance Theorem). Let n be an integer different from
zero. Then (X, T) is mean-L-stable if and only if (X, Tn) is mean-L-stable.

THEOREM 2. Let be the self homeomorphism of X )< X defined by

(x, y) (xT, yT).

Then (X, T) is mean-L-stable if and only if (X >( X, ’) is mean-L-stable.

The following theorem is proved in [7].

THEOREM 3. In a mean-L-stable system (X, T) every point is quasi-regular
and transitive. For each f in C X the sequence f x is equi-uniformly
continuous and uniformly convergent on X.

THEOREM 4. If (X, T) is mean-L-stable, limk_ pk(x, y) p*(x, y) exists

for all x, y e X, and therefore p’ (x, y) p*(x, y).

Proof. By Theorem 2, (X X X, T) is me,n-L-stable, nd so by Theorem
3 every point z (x, y) e X X X is quasi-regular. Hence the above limit
exists. Moreover, p’(x, y) is continuous on X X X, since by Theorem 3
the convergence is uniform.

THEOREM 5. The following statements are equivalent"
The system X, T) is mean-L-stable.

(ii) p’ is continuous on X X X.
(iii) For any e > O, there exists > 0 such that p(x, y) < implies

p’(x,y) < e.
(iv) The projection - of X onto X is continuous.
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Proof. That (i) implies (ii) has just been shown.
Suppose (ii) holds. Then p’ is uniformly continuous on X X X. Let
be the metric on X X X defined by

+
for (xl, yl), (x2, y2) inX X X. Let e > 0, and leti correspond to ’in
the uniform continuity of p’. Let p(x, y) < . Then

x), (x, <
Hencelp’(x,x) p’ x, y < c. Sincep’(x,x) O, we have p’ x, y < c,
which proves (iii).
Now, suppose (iii) is true. We prove (i). Let > 0, and choose i > 0

so that p(x, y) < implies p’(x, y) < e2. We show that p(xT’, yTn) < ,
except for a set of upper density less than e. For suppose

p(xT n, yT) >- c,

for n in a set F of upper density >= . Then

p’(x, y) >= .lim sup_. (2n + 1)-l’_n xr(j)p(xTi, yT)
>_- lim sup_ (2n q- 1)-1i_, sxv(j) >- e,

contradicting p’ (x, y) e.
Finally, recall that for x, y e X, (rx, ry) p’(x, y). It follows that

(iii) and (iv) are equivalent.

THEOaEM 6. Let (X, T) be mean-L-stable. Then X is compact, and the
system (, ) is uniformly-L-stable and distal.

Proof. By Theorem 5, r is continuous, so is compact. Since is an
isometry on , (., ) is uniformly-L-stable and therefore distal.

Cononv 1. Let (X, T) be mean-L-stable. Then the points x and y of
X are proximal if and only if they are persistently proximal.

Proof. If x and y are persistently proximal, they are obviously proximal.
Suppose x and y are proximal. Then, by Lemma 1, rx and ry are proximal
in .. Since (., ) is distal, rx ry. That is, x and y are persistently
proximal.

Cononv 2. If (X, T) is mean-L-stable and distal, it is uniformly-L-
stable. A mean-L-stable system is not uniformly-L-stable if and only if there
exists a pair of distinct points which are persistently proximal.

Proof. Since (X, T) is distal, the mapping r is one-to-one. By Theorem
5, r is continuous, and is therefore a homeomorphism. Since, for x e X,
(rx) r(xT), we may identify (X, T) and (2, ). Therefore (X, T)
is uniformly-L-stable.
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Let P be the subset of X X X consisting of (x, y) such that x and y are
proximal. LetP* [(x, y) e P x y], P x [y e X x y) e P], and
P*(x) [y X l(x, y) P*]. It is clear that P and P* are -invariant sets,
that P(x)T P(xT’), and that P*(x)T P*(xT’).

THEOREM 7. Let (X, T) be mean-L-stable. Then
P is closed in X X X.

(ii) If E is closed in X, then O P(x) is closed in X.
(iii) P x is closed in X.

Proof. (i) By Lemma 2 and Corollary 1, P [(x, y)]p’(x, y) 0].
Since p’ is continuous, P is closed in X X.

(ii) Let r2 denote the second proiection of X >( X onto X; that is, if
(x,y) eX X X, thenr2(x,y) y. ThenUP(x) ’((E X X) n P).
Since E and P are closed, (E X X) n P is closed. It follows that O, P(x)
is closed.

(iii) Apply (ii) with E {x}.
If x e X, the orbit of x, denoted by O(x), is defined by

O(x) [xT" 1- <n < ].

The orbit closure of x is defined to be the set O(x).
A nonempty subset M of X is called a minimal set or a minimal orbit

closure if M is the orbit closure of each of its points. A compact systen
always contains at least one minimal set [5, 2.22].

THEOREM 8. Let (X, T) be a mean-L-stable system. Then
(i) If (X, T) has at least one dense orbit, it is uniquely ergodic.
(ii) If (X, T) is minimal, it is strictly ergodic.
(iii) Every ergodic set and every quasi-ergodic set is closed.
(iv) The family of minimal sets and the family of ergodic sets coincide.

For the proof, see [7, (6.2), (6.3), (6.4), and (6.5)].
COROLLARY 3. Let (X, T) be mean-L-stable, and let A denote the set of

almost periodic points of X. Then A QD R.

Proof. If x e QD, then x R, since in a mean-L-stable system all points
are transitive. Since R c Qo for any compact system, this proves that
Q. R. If x eA, O(x) is minimal. Hence O(x) is an ergodic set, and
x e R. Finally, if x e R, then x is contained in an ergodic set M. There-
fore M is a minimal set, so 0(x) M, and x e A.
The following lemm, which is corollary to the ergodic theorem, is proved

in [7].
LEMMA 3. Let (X, #) be a measure space such that (X) 1. Let T be

a one-to-one measure-preserving transformation of X onto itself. Let f be a
nonnegative function defined on X which is integrable with respect to . Then,
for almost all x e X, f* x > 0 or f x O.
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THEOREM 9. Let (X, T) be mean-L-stable. Let , be a -invariant measure
on X X X. Then (P*) O.

Proof. By Lemma 2 and Theorem 4, (x, y) e P implies that p*(x, y) 0.
It follows from Lemma 3 that p(x, y) 0 for almost all (x, y) e P. That
is, the set of (x, y) e P with x y has measure zero. But this set is pre-
cisely P*.

THEOREM 10. Let (X, T) be mean-L-stable, and let x e X. Let t be an
invariant Borel measure on X. Then

(i) For all x except a set of t-measure O, t (P* x ) O.
(it) /f, for some Xo e X, (P* Xo ) > O, there exists yo e P* xo such that

t({y0}) (P*(xo)).
Proof. (i) Let , the product measure of with itself on X X.

Then is a -invariant measure on X X X. Hence

(P*) fx t(P*(x)) d(x).

But (P*) 0, by Theorem 9, so (P*(x)) 0 for all x except a set of
-measure zero.

(it) Since t (P*(x0)) a > 0, P*(x0) is nonvacuous. Moreover, since
(P* (x)) 0 for almost all x e X, there exists y0 e P*(x0) such that

(P*(yo))= O.

Let F P*(xo) {y0}. Since y0 and x0 are proximal, F c P*(y0), and
therefore t(F) 0. Now P*(xo) F u {y0}, and

a t(P*(x0)) t({y0}).

COROLLhRY 4. Let (X, T) be mean-L-stable, and let t be an invariant
Borel measure on X. Then

(i) If t({ x} 0 for every x e X, then t(P(x)) 0 for every x Z.
(it) If every point of X has an infinite orbit, then (P(x)) 0 for every

xX.

Proof. (i) If t(P(x)) a > 0 for some x e X, then there exists
y P(x) such that t({Y}) a, by Theorem 10 (it).

(it) Since (X) 1, ({x}) 0 for every x eX. By (i), t(P(x)) 0
for every x e X.

5. Recursive properties of mean-L-stable systems
We now define several recursive concepts which we shall discuss in con-

nection with mean-L-stability. These notions have been extensively studied,
in the more general setting of transformation groups, by Gottschalk and
Hedlund in [5].
The system (X, T) is called almost periodic provided that for any > 0,
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there exists a relatively dense set A of integers such that p(x, xTn) < for
every x e X and every n e A.
The system (X, T) is called weakly almost periodic provided that for every
> 0 there is an integer N such that x e X implies the existence of a rela-

tively dense set A of integers with maximum gap at most N such that
p(x, xTn) < for every n e A.
The system (X, T) is said to be locally almost periodic at x e X, and x is

called a locally almost periodic point, provided that for every > 0 there
exist > 0 and a relatively dense set A of integers such that p(x, y) <
implies p(x, yT) < for every n e A.
The system (X, T) is called locally almost periodic if it is locally almost

periodic at every x e X.
(X, T) is said to be almost periodic at x e X, and x is called an almost

periodic point provided that for every > 0 there exists a relatively dense
set A of integers such that p(x, xT) < for every n e A.

If every x e X is almost periodic, then (X, T) is said to be pointwise almost
periodic.

THEOREM 11. (i) The system (X, T) is almost periodic if and only if it
is uniformly-L-stable.

(ii) (X, T) is weakly almost periodic if and only if the class of orbit closures
constitutes a star closed decomposition of X.

(iii) A point x e X is almost periodic if and only if O(x is a minimal set.
(iv) If x is a locally almost periodic point, the system (O(x), T) is locally

almost periodic.

For the proofs, see [5, 4.38], [5, 4.24], [5, 4.05 and 4.07], and [5, 4.31], re-
spectively.

LEMMA 4. Let (X, T) be mean-L-stable and pointwise almost periodic.
Let {x} and {y} (j 1, 2, be sequences in X such that O(x) O(y).
Suppose x---> x andy y, as j . Then O(x) O(y).

Proof. If the conclusion were not true, 0 (x) n 0(y) b and

p(O(x), O(y) > O.

Therefore it is sufficient to show that for any s > 0 there exist integers m
and n such that p(xT", yT’) < .

Let i correspond to 1/4 (< 1/4) in the definition of mean-L-stable. Choose
j so that p(x, x) < and p(y, y) < . Choose/c so that p(x, y T) < .

There exist sets of integers E, E., and Ea, each of upper density less
than 1/4, such that

p(xT, x T’) < 1/4 for n .E p(yT y T’) < 1/4 for neE.,
and

p(x T’, y T+") < for n eE’a.
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Let E [n I(/ - n) e Es). Clearly i*(E4) ti*(E.) < e.
Now, choose n e E’I n E’3 n E’. Then

p(xT’, yTk+n) <= p(xT, x T’) - p(x T’, y T+)
p(y T+, yT+) < 1/4 < r.

THEOREM 12. If (X, T) is pointwise almost periodic and mean-L-stable,
then (X, T) is weakly almost periodic.

Proof. By Theorem 11 (ii) it is sufficient to show that the class of mini-
mal sets of X constitutes a star closed decomposition of X. Let/M,} de-
note the class of minimal sets of X. Since X is pointwise almost periodic,
{M,} constitutes a decomposition of X. Let R be closed in X, and let
R* (J M.nR M,. We must show that R* is closed.

Let x e R*, and suppose x. - x, as j -- . To show that x e R*, it is
sufficient to show O(x) R is nonvacuous. Since x. e R*, O(x) R .
Let y e 0(x.) R. Since every orbit closure in X is minimal,

O(xl) O(y).

Let y---, y, as j --, . Since R is closed, y e R. Therefore O(y) R .
By Lemma 4, O(x) O(y), and O(x) R .

If (X, T) is minimal and mean-L-stable, it is clear that (, ) is mini-
mal. The next theorem is in the converse direction.

THEOREM 13. Let (X, T) be mean-L-stable, and suppose (, ) is mini-
mal. Then

There exists precisely one minimal set M in X.
(ii) If y e X, there exists y’ e P y M; that is, rM X.
(iii) If x eX, i O(x).
(iv) The set M has invariant measure one.
(v) The system (X, T) is uniquely ergodic, with ergodic set M and quasi-

ergodic set X.

Proof. (i) X contains at least one minimal set M. Suppose M1 and
Ms were distinct minimal sets contained in X. Let x e M and
Then x and x. are distal, since M and Ms are disjoint closed invariant sets.
Hence M and vM. are disjoint minimal sets in .. But this contradicts
the assumed minimality of .

(ii) Let x M. Then rM r0(x) 0(x) -, since is minimal.
(iii) Since O(x) is a closed invariant set, it contains a minimal set. But

M is the only minimal set contained in X, so M O(x).
(iv) Since M is the only minimal set contained in X, M is the only ergodic

set, by Theorem 8 (iv), so M R, and hence M has invariant measure one.

(v) M is the only ergodic set contained in X, so there exists only one
ergodic measure t on X; that is, (X, T) is uniquely ergodic. Since every
point of X is quasi-regular and transitive, exists for all x X, and is
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an ergodic measure. But (X, T) is uniquely ergodic, so g t, for all
x e X. That is, X is the quasi-ergodic set corresponding to .
THEOREM 14 (Decomposition Theorem). Let (X, T) be mean-L-stable.

Then
(o) X [J. N,, where the N. are disjoint, each N, is closed invariant,

and {N,} is a star closed decomposition of X.
Each N. contains precisely one minimal set M,

(ii) If x eN, then P(x) c N. and P(x) n M. .
(iii) If x eN,, M. c O(x).
(iv) X [J M [J N M has invariant measure zero; that is,

measure is concentrated entirely on the minimal sets.
(v) If is the ergodic measure corresponding to M, then N, is the quasi-

ergodic set corresponding to t.

Proof. (o) (, ’) is uniformly-L-stable, and therefore is almost peri-
odic. Hence if {2r.} denotes the class of minimal sets in , {2r.} is a star
closed decomposition of . Let N. -121.. It follows immediately
that N. is closed invariant, and that {N.} is a star closed decomposition
of X.

Parts (i), (ii), (iii), and (v) are immediate consequences of the corre-
sponding parts of Theorem 13.
To prove (iv), note that (J. M. R, by Theorem 8 (iv).

THEOREM 15.
other points of X.

Let (X, T) be mean-L-stable, and let x X be distal to all
Then O(x) is minimal and locally almost periodic.

Proof. Let M be the unique minimal set contained in 0(x). By Theorem
14 there exists x’ M such that x’ P(x). But P(x) {x}, so x e M, and
0(x) is minimal.
To show that O(x) is locally almost periodic, it is sufficient, by Theorem

11 (iv), to show that x is a locally almost periodic point. Let > 0, let
x, and let i be a metric for .. Since P(x) {x}, the mapping r is

open at x. That is, there exists v > 0 such that i(.2, ) < implies
p(x, y) < e for all y e -1.
Now (, ) is an almost periodic system, so in particular 2 is a locally

almost periodic point. Thus there exist > 0 and a relatively dense set A
of integers such that i(2, ) < implies i(2, ’) < 7, for n e A. Now,
by the continuity of v, there exists ’ > 0 such that p(x, y) < ’ implies
(x, y) < . For such y, i(, (rY)) < for n A. Hence

p(x, yT") <
for n e A, and x is a locally almost periodic point.

COROLLARY 5. Let X, T) be mean-L-stable and minimal. If there exists
a point of X which is distal to all other points of X, then (X, T) is locally almost
periodic.
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It is not known whether a minimal mean-L-stable system always contains
a point distal to all other points, or whether mean-L-stability implies local
almost periodicity. It is known (el. [7]) that a minimal locally almost peri-
odic system is not necessarily mean-L-stable.

Let (X, T) be a compact system, and let x e X. A set M c X is called
a center of attraction of x [1] if, for every neighborhood U of M, xT"e U,
for n e E, a set of integers of density one. The set M is called a minimal
center of attraction of x if it is a closed center of attraction of x and contains
no proper subset with the same property. It is proved in [1] that for each
x e X there exists a unique minimal center of attraction of x, and this center
of attraction is a T-invariant set.
Now suppose (X, T) is mean-L-stable, and let x e X. Let M be the unique

minimal set contained in O(x), and let U be a neighborhood of M. Let
p(M, X U) > O. By Theorem 14 there exists x.’ e M such that
x P(x). Then for neE, a set of density one, p(xT", xPT") < . That
is, xT" e U, for n e E. Thus we have proved

THEOREM 16. If (X, T) is mean-L-stable and x X, the minimal center of
attraction of x is the unique minimal set contained in O(x ).

5. :xmp]es
If (X, T) is mean-L-stable, Theorems 1 and 2 provide methods for con-

structing new mean-L-stable systems. Another method is as follows. Let
I denote the closed unit interval. We extend (X, T) to a system (Y, U)
where Y is a subset of X ( I. Let x’ be an arbitrary point of X, and let
y (x’, 1) Y. Define yU" (x’T", 1/211), and (x, O)U (xT", 0),
for x e X. The space Y thus consists of X and an additional orbit approach-
ing X asymptotically. The system (Y, U) is mean-L-stable and is not uni-
formly-L-stable, even if (X, T) is uniformly-L-stable. The quotient system
is (, ).

Less trivial examples of mean-L-stable systems are furnished by the Stur-
mian minimal sets, studied by Hedlund in [6]. Let X denote the bisequence
space based on two symbols. The space X is a self-dense zero-dimensional
compact metrizable space which is homeomorphic to the Cantor discon-
tinuum. Let T denote the shift transformation of X onto itself.
The Sturmian minimal sets M(t) (where is a positive irrational number)

are compact T-invariant subsets of X. The systems (M(), T) are mean-L-
stable and not uniformly-L-stable. Each system (M(), T) contains a pair
of doubly asymptotic points; that is, points x and y such that

p(xT’, yT’) -- 0

as n -- =t= . The quotient space 1() is a 1-sphere and the induced homeo-
morphism T’M() --> M() is a rotation through the angle 2/.

In [2] Floyd gives an example of a minimal set which is of dimension zero
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Figure 1

at some points and of dimension one at the others. This example was studied
further by Gottschalk in [4], where it was shown that it is locally almost peri-
odic, not uniformly-L-stable, and does not possess a pair of asymptotic points.
We now construct a mean-L-stable system (X, T) which is a modification

of the Floyd example. The space X is a subset of I I and will be defined
as the intersection of a decreasing sequence of closed sets X. Each set X
will consist of the disioint union of 3 closed rectangles, S(n, 0), S(n, 1),
S(n, 3" 1).
To define X we omit from I the two "middle fifths" namely the open inter-

vals (,}, ) and (, ). Over the remaining closed intervals [0, ], [, ],
and [-}, 1], we construct rectangles S(1, 0), S(1, 1) and S(1, 2) of height 1/2,
1, and 1/2 respectively, as in Figure 1.
More precisely, define

S(1,0) [(x,t) lO-<_ x_<_ ,0-< <= 1/21,

S(1,1) [(x,t) l-}_<_x=<,O<=t<= 1],

S(1, 2) [(x, t) l- -<_ x __< 1,-,} =< _<- 1].

Let X U ;=o S(1, j).
To obtain X, we perform the same operation on S(1, 0), S(1, 1), and

S(1, 2) as we did on I X I. The situation is as itadicated in Figure 2, where
the rectangles S(2, 0),..., S(2, 8) are labelled 0, .., 8. Let

X. U ’=0 S(2, j).

Clearly S(2,j) c S(1,j (mod 3)),j 0, 1, 8. Therefore X. c X.
Continue this process to obtain Xa, X,.... We have X, D X,+.,

n 1, 2,... ;indeed S(n nu 1, j) S(n, j (mod 3)).
Let X FI:=X,. X is compact, since all the X, are compact. X

consists of vertical line segments, some of which are degenerate.
To define T’X --. X we proceed as follows. For each positive integer n,

let G, IS(n, j) 10 -< j =< 3" 1], and let Tn be the mapping of G, onto
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Figure 2

itself defined by S(n, j)Tn- S(n, (j % 1) (mod 3n)). Note that if

S(n, j) S(m, k),

then S(n, j)Tn (:7. S(m, k)Tm, and that S(n, j)T S(n, j).
Let A I’l

__
S(n, j), where 0 -< jn 3" 1, and let

B :1S(n, j,)T.

It is clear that A if and only if B . If A , it consists of
either a single point or a vertical line segment. Moreover, since the
height of the rectangle S(n, j)T is either half or twice the height of S(n, jn),
B is a point or a nondegenerate line segment according as A is a point or a non-
degenerate segment.
Now, if A consists of a single point x, we define xT to be the single point

contained in B. If A consists of a nondegenerate segment, we define T on
A so that A is mapped linearly onto B.
We show that (X, T) is minimal and mean-L-stable. To show minimality,

let zl and z2 be points of X, and let > 0. Choose n sufficiently large so that
the width of the rectangles S(n,j) isless than 1/2. Let z (x, t) e S(n,j’).
If z- (x,t) eS(n,j’),thenlx- x.l < 1/2. Now there existm >- nandj,
0 -< j =< 3 1, such that S(m, j) S(n, j’), and if z (x, y) S(m, j),
then It- ti < 1/2. Hence for suchaz, p(z, z) < e.
Now z e S(m, k), for some ]. Hence there exists r such that zl T" e S(m,j).

Therefore p(z., zl T) < . Since s is arbitrary, this proves z e 0(z), and
consequently (X, T) is minimal.
To see that (X, T) is mean-L-stable, let s > 0, and let

E [/ diam S(n, k (mod 3")) >-_ ], n 1, 2, ....
It is easy to see that n may be chosen so large that *(E) < . Choose
> 0 so that if p(z, z) < , then z and z are in the same S(n, j). In
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Tkthis case, p(zl T z. < e, for k e E, which proves that (X, T) is mean-
L-stable.

All points of a given nondegenerate segment are mutually proximal. The
quotient space ) is homeomorphic to the Cantor discontinuum.
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