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The operations dealt with in this paper are functions defined on a self-
adjoint algebra over the complex numbers and with values in a subalgebra
of it. (The subalgebra is arbitrary.) They are called "averaging" because
the formal properties which define them (Definition 2.1) are possessed by
the conditional expectations of I. E. Segal. If the subalgebra is just the
constants, the averaging operations are exactly the states; if the subalgebra
is the whole algebra, the only averaging operation is the identity. In case
the whole algebra is commutative, the study of averagings has been carried
very far by G. Birkhoff [2] and J. L. Kelley [10].
Another class of operations (for which I claim no novelty except the name)

is introduced, and elementary properties set forth, in 3. I had begun study-
ing this class for somewhat different reasons, but it turns out to be closely
related to the averaging operations--indeed, to be a subclass, and that sub-
class which behaves least like the classical conditional expectations which
occur in the abelian case. The main result of this paper is the expression
(in 4) of an arbitrary averaging operation in terms of these two special
types.
The effect of averaging operations on the spectrum of a hermitian operator

is the subject of 6-7. Theorem 7.2, a simple extension of a theorem of
Hardy, Littlewood, and PSlya, may have independent interest.

All the algebras in this paper are finite-dimensional. Extension of some
of the results to arbitrary yon Neumann algebras is the idea which leads me
often to express things in terms of algebras, commutors, etc., when some
proofs would be a little shorter using only matrices. [Added March 31,
1959. The program of characterizing noncommutative conditional expec-
tations, in analogy to the work of Birkhoff, Moy, and others in the com-
mutative case, was initiated by M. Nakamura and his colleagues; see espe-
cially [13]. I regret that I was in ignorance of this work when I wrote the
present paper. Their results deal with the infinite-dimensional case; they
do not seem to contain my main results here as specializations.]

I thank P. R. Halmos for several helpful conversations on the subject of
this paper.
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Presented to the American Mathematical Society, August 27, 1958.
National Science Foundation Fellow.
Further justification for the terminology appears later, e.g., Definition 3.4, Theorem

6.2, Theorem 4.1. No doubt "positive averaging operation" would be a better term; or
"abstract expectation".
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1. Some notations

Throughout the paper, a denotes a finite-dimensional self-adjoint complex
algebra with elements A, B,.... There will usually be no objection to
considering a particular faithful representation of a by operators on a hilbert
space of finite dimensionality n, and assuming the representation is of multi-
plicity 1.
For projection P, P 1 P.
If (R is a subalgebra (i.e., self-adjoint subalgebra) of a, (R’ is the algebra

of all those elements of a which commute with every element of 6 (the com-
mutor of (R relative to a). Regard this as an operation on subalgebras of a
to subalgebras of a. Subalgebras of a, made into a partly ordered set by
the relation of inclusion, form a lattice. Elementary properties follow"

PROPOSITION 1.1. The relative commutor operation is a polarity in the sense
of Birkhoff’s book [1, Chapter IV, 5]. 6 (" if and only if 6 a’. In
general

2. Averaging operations, definition and preliminaries
DEFINITION 2.1. An averaging operation from ( onto the subalgebra 6 is

any function on a onto such that
is linear;

(ii) (ispositive" ira >= O then A >= 0;
(iii) ( is idempotent" for all A , A A
(iv) for all A, B (, (AB) (A)B.
The set of all averaging operations from a onto will be denoted lYl (a, 60.
(It might be interesting to see the consequences of dropping (ii), which is

independent of the other conditions; cf. [10].)
PaOeOSTION 2.1. e(A*) (aA)*. a((eA)B) (eA)B.
PROPOSITION 2.2. If e M(a, 6), then the restriction of to subalgebra 6

is in M 6t, eS If e e M (, 5 C e M (, and e. e is their com-
position e e)A e(e A ), then e e e M((, ). If e o e is the
identity, so are 1, .
PnOPOSITION 2.3. M(a, (R) is convex. That is, if , eeM((, ),

0 <=) <-_ 1, andforallAe(, aA (1 h)A --hA, then

e M(a, ).
Proof of these facts can be supplied without difficulty by the reader.

PROPOmTION 2.4. If A A*, then (eA) <- e(A).
Proof. This is a familiar computation:

0 <- e((A CA)) e(A) e(AeA) e((eA)A) + a((eA)2)
e(A2) (eA)2.
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Justifying it uses all the assumptions on

PROPOSITION 2.5. The image of ’ under is n ’.

The only assertion here which is not absolutely trivial, namely (R’ (’,
is proved like this" If A e (’, B e (, then by (iv) and Proposition 2.1

aA )B e(AB) e(BA BaA.

3. Pinching operations
Wht I cll pinching operations my be defined in several different ways.

Let ( be a subalgebra of
is a (unique) function from a onto qt, which will also be denoted by qt. Until
the definitions following are proved equivalent they will be written as de-
fining different functions

DEFINITION 3.1. 6tl A "P AP where the P are all the minimal
projections in

DEFINITION 3.2. qty. A is that B e for which B A is minimum.
Here G I1 means (tr G’G) 1/2, the Frobenius norm [16, 5.4].

DEFINITION 3.3. qt3 A is the average of the XAX, where X ranges over all
symmetries in 6tp.

DEFINITION 3.4. qt4 A is the average of the U*A U, where U ranges over all
unitaries in

THEOREM 3.1. If 6t ’, there is just one averaging operation from ( onto
6t, and it is given by any of the four preceding definitions.

Proof. In Definition 3.2, any faithful representation of a by linear trans-
formations of a finite-dimensional space may be used to give meaning to the
trace, but for simplicity assume multiplicity 1. Under Frobenius norm,
becomes a hilbert space, a linear subspace; so qh A is uniquely defined and
is determined as that B e ( for which B A is orthogonal to every G e (.

Let the Q. be the minimal proiections of a’. a Q aQ, direct
sum of full matrix algebras (factors). It is easy to see that in any of the
above definitions A can be replaced by the AQi, and those elements can
then be treated separately (use too Proposition 2.2). Therefore without
loss of generality assume a is all operators on a hilbert n-space. Because

’, i@ P aP, direct sum of full matrix algebras; here the
P are the minimal proiections of
To show qh, use a coordinate system in the underlying space whose

first n basis vectors are in the range of P1, whose next n basis vectors are
in the range of P., (Hi is the dimensionality of the range of Pi;

n n). G e if and only if its matrix is in block form" ann

Because of their, analogy *o compressions [7].
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block followed by an n2 )< n2 block.., along the main diagonal, and zeros
elsewhere. To get A from A one merely replaces all entries of the matrix
of A which lie outside this block pattern by zeros, leaving the other entries of
A unchanged. A e (, and 1 A A is evidently orthogonal to all G e (.

Hence A 2 A.
(a is linear, so it is enough to consider its action on A such that, for some

i, j, A P AP. First take i j. In the finite abelian group of sym-
metries X in ’, 2P 1 generates a subgroup. For any X,
XAX -4- X(2P- 1)A(2P- 1)X XPAP X zr- XPA(-P)X O.

That is, the sum of XAX is zero over any coset of the subgroup, hence over
the group. On the other hand, if i j, for all X,

XAX XPAP X (:I:P)A (d::P) A.

In short, 633(Pi AP) P AP, which agrees with 631. 634 is just the
same idea, though integrals replace sums.

Therefore 631 632 633 634. Denote the operation simply 63. Is it
an averaging?

It is evidently linear onto 63, and equal to the identity on 63. As to posi-
tivity, if A -> 0 then every summand XAX in Definition 3.3 is ->- 0. Let
us check (iv) of Definition 2.1. By linearity in A, it is enough again to take
A PAP;bylinearityinB, to take63B PBP. Then

(63A)63B P AP(Pk BPk),

63(A63B) it 63(P ABP) ( P ABPk
and the two are equal.

Finally, let ( be any averaging operation from a onto 63. For any pro-
jection P

(*) e(RP + PAP) eA (all A a).

Indeed, P, P e 63, so by (iv)

e(PAP + PAP) P(eA)P + P(eA)P PeA + PeA cA.

But each symmetry X in (’ is of the form P P, P e (’, so (*) implies
e(XAX) eA, eA eA. Also (A (A just because satisfies
(iii.) Hence , and the asserted uniqueness holds.

4. Structure of averaging operations
The set M (a, (R) of averaging operations from ( onto is convex (Propo-

sition 2.3), and if -- ’, it consists of a single element, a pinching (Theo-
rem 3.1). It will now be shown how to express any averaging operation
as the composition of a pinching ( followed by a convex combination of
homomorphisms (of. Proposition 2.2). Indeed, the conclusion of Theorem
4.2 is a slightly stronger assertion.
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THEOREM 4.1. If 6’ a’, then the extreme points of M(a, 6t) are exactly
the homomorphsms.

THEOREM 4.2. Given e M(a, 6t), there exists 6t a such that

and o 6t .
The extreme points of M(qt, 6t) are exactly the homomorphisms.

Before proving the theorems, here are a few remarks and examples.
For any subalgebra 6t of a, lYl ((, (R) is not empty. This will be so evi-

dent, given the proof of Theorem 4.2, that no details need be given.
Since the condition 6t 6t’ n 6t implies 6t 6t’, the implicit assumption

in Theorem 4.2, that subalgebra 6t defines a pinching, is iustified.
Furthermore 6t’ 6t n 6 implies 6’ 6t; hence 6t’ 6t’p 6t. But

by Proposition 1.1, 6t (B’ implies 6t 6t"; so 6 6t in Theorem 4.2.
The second sentence in Theorem 4.2 is a consequence of the first. For

6t’ 6t’ 6t is exactly the condition for Theorem 4.1 to be applicable to
M(6t, 6t).

does not always determine 6t uniquely. This will emerge in the proof
of Theorem 4.2; the detailed explanation, since it seems distinctly less in-
teresting, is exiled to 5.
Example 4.1. Let a be all operators on 2-dimensional 3C, and let 6t be

the constants. For fixed orthogonal unit vectors xl, x. + 5, and k + [0, 1],
let +A (1 )) (Axl, xl) k(Ax2, x2). 6t must be the algebra gener-
ated by {xt, xl}, the projection on [xt]. That is, expressing A in matrix form
A ((Aij)) with respect to basis vectors xt, x2, 6tA diag (Alt, A2.),
and +A diag (1 h)Att -[- hA++, (1 k)Alt + hA++). The restriction
of + to 6t is a homomorphism if and only if }, is 0 or 1. This example illus-
trates the distinction between M(a, 6) and M(6t, 6t)" here M(6,
line segment, but M(a, (R), the space of states of a, is a closed ball in 3 real
dimensions.
Example 4.2. This is the same as the preceding example, except that

+A 1/2(Axt, xt) + 1/2(Axe., x2), where unit vectors xt and x+ are neither
collinear nor orthogonal. (Without loss of generality, 0 < (xl, x+) < 1.)
Now + is expressed as a convex combination of averagings each of which
already observed) is a composition of a pinching and a homomorphism.
But two different pinchings are involved because {xt, xt} and {x+, x2} generate
different subalgebras. The theorems say that it could be expressed using
one common pinching. The reader is invited to verify this, in the coordinate
system whose first basis vector (nonnormalized) is xt + yr.
Example 4.3. More generally, let n m, and choose an orthogonal

basis {xk}, k 1, m, 1, #. Let a again be all operators, that
is, all matrices ((Ak+.+x)). Let 6t be those of the form

Of course there will ordinarily +lso be homomorphisms onto 6 which are not aver-
gings t 11.
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For some a, it may be possible to choose (B to be those matrices of the form
Akz.x ikz F.x. The reader may repeat in this context the considerations
of the preceding examples, in which t was 1.
The examples are simple, and I now proceed to show that nothing much

less simple can arise.
Proof of Theorem 4.1. This imitates the corresponding proof [17] for

states on a commutative real algebra. One half of the theorem will be stated
as a separate lemma because it does not use the hypothesis (P 6t’.

LEMMA. Every homomorphism in M (, (R) is an extreme point.

Proof. Suppose homomorphism (1 X)(I + X(2 for (i e M(a, (),
0 < X < 1. For A e a hermitian, Proposition 2.4 gives

e(A2) (.1 ))el(A2) -{- Xe2(A2) _>_ (1 X)(el A) + ),(e A).
But is a homomorphism, so this is also equal to

(eA) (1 ),)(e A) + 2X(1 X)(eA)eA + X2(e A).
Subtracting gives 0 >_- X(1 X) (el A A)2. Therefore (1 and e2 must
agree on all hermitian members of a; therefore they must be the same.
For the rest of the proof of Theorem 4.1, return to the stated hypothesis

Let D (R u $ff, the subalgebra generated by and . By Proposition
1.1, ’ (5 n ’) u a’; therefore ’ a’ implies 0’ a’. Hence

but O’p, again by Proposition 1.1, so D a. This implies that a is
spanned linearly by elements of the form A RS, R , S . With
this notation, a(RS) RS, of course.
Now let be an averaging but not a homomorphism" there exist A, B

for which e(AB) # (A)B. In the rest of this paragraph, it will be
shown that several special assumptions on A entail no loss in generality.
By linearity in A, assume A RS, Re, S’. Then

Re(SB) # R(eS) eB;

so assume Aeqt’ a’. Since A can be replaced by A (A here, and
eA e ’ by Proposition 2.5, assume A 0; the failure of to be multipli-
cative is now expressed by (AB) # O. Write A Hi -- ill2, where
Hi e 6t’ are hermitian; by Proposition 2.1, Hi 0, but of course at least
one (H B) # 0; so assume A hermitian. Since positive multiples are ir-
relevant, assume AII < 1.

Define, for all Gea, (+G ((1 + A)G), (_G e((1 A)G).
These are evidently linear functions on a into (R. Since 1 4- A are positive
operators ina’,G >_- 0implies (1 4- A)G >= O, hence (G >_- 0. To com-
plete the verification that satisfy Definition 2.1, use the fact that ( does,
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1together with A 0. Now to conclude the proof" e + -t- 1/2- a
convex combination of two averagings from ( onto 6t, and +

_
because

e(AB) 0; therefore is not extreme.
Proof of Theorem 4.2. Represent a as before as a subalgebra of the algebra
of all operators on n-dimensional 3C. It will be convenient temporarily to

let 6t’ mean the algebra of all A e commuting with every member of (,
so that what we have been calling 6t’ will temporarily be called (’ n a, and
similarly for other subalgebras of . Thus the assumption that the repre-
sentation of a has uniform multiplicity 1 is expressed by ( a’. Let , (R

be as in the hypothesis of the theorem.
For anyx, ye, define {x, y} egby {x, y}z (z, y)xforze. Now

consider (cf. [4, I 3, Exercice 6]) tr e o a{x, y} as a complex-valued function
of x, y, ( being the pinching from to (. It is an everywhere-defined,
positive sesquilinear form; hence

tre o ({x, y} (Fx, y)

identically, for a determined positive F e .
The almost evident fact that F e a may be proved explicitly as follows.

Let the Qi be the minimal projections of a’, so that

a{x, y} Qi{x, y}Q {Q x, Q y}.

Then for all x, y e 3C

(aF)x, y) (Fq x, Q y) tr e a{q x, Q y}

tr e o a ({x, y} (Fx, y).

There is more to the proof that F e 6t" For any A e 6t,

(FAx, y) tre o a{Ax, y} tr eo a(A{x, y}) tr (Ae o a{x, y} ),

(AFx, y) treoa{x,A*y} treo a({x, y}A) tr ((Co a{x, y})A),

and these are equal.
Now (knowing that F e (R’ n a) define as some arbitrary maximal abelian

subalgebra of 6t’ a such that F e ; define 63 ’ a (. This 63 will be
shown to satisfy the requirements of the theorem" namely,

63’na 63nt’ and o63 .
The first of these does not rely on the special properties of F. By the

definition of , ’n ’n a. Each factor on the right is = a’, so
a’; therefore ’

__
a, ( ’, ’ n n t’.

To prove o on a, it would be more than enough to prove

o63 o(

on :. For this it would be enough to prove that every projection P e ’has the property a a(PAP + PAl:’) aA for all A e . For this
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it would be more than enough to prove that for every projection P e (’ com-
muting with F, (oa(PAP) 0 for allAe. This I will do. But in
this formulation there is no loss in generality in assuming a , which
will simplify the notation (now ( ( , ’ n ( P, etc.).

Let the Ri be the minimal projections in (R n ’. For any A,
A e( R ARt) Ri( eA )R

R eA R(eA)R e(R AR).

Clearly the task at hand is simply this" assuming A RAR for some i,
and A PAD with P as above; to prove (A 0.
We may assume that A RS, with R RR e 6t, S R S e 6t’. We

may assume R >= 0 (premultiplying A by unitary U e 6t affects nothing, not
even A PAP, because P e (R’). Now A RaS; but since

(Proposition 2.5) and R is minimal, aA is a numerical multiple of R >= 0.
Accordingly, if (A 0, tr A 0.
For any B, tr eB tr (FB), because this equation is linear in B and is

true whenever B {x, Yl. Since P commutes with F,

tr eA tr (FA) tr (FPAP) tr (PEAP),
which is evidently zero. It follows that A 0, as promised.

5. Nonuniqueness
In the proof ust finished, F is determined by its definition, but (except in

the case where F has simple spectrum) 6t’ is not.
Example 5.1. Let a be all operators on 3dimensional 3C, and let (R be

the constants. Let A (Axl, xl), for all A and for fixed unit vector x.
Then F is the projection {Xl, x}. 5 5’ must be the algebra generated by
{Xl, Xl}, {X2, X2}, {X3, X3}, where Xl, X2, X3 form an orthogonal basis. But
there are many ways to choose x2, x3.
One might suspect that uniqueness could fail even worse than this" that

there could exist 5’ satisfying the conclusion of Theorem 4.2 but not ob-
tained by the construction used in its proof. This does not happen, as I
will show in the present section.
Any 5’ satisfying Theorem 4.2 is a maximal abelian subalgebra of (’ each

of whose projections P has property

(*) aA a(PAP + PAP) (all A e a).

Any maximal abelian subalgebra of ’ whose elements all commute with F,
is obtainable as (’ in the construction above. So the following is more in-
formation than is needed to fulfill my promise.

PROPOSITION 5.1. Projection P e a has property (*) if and only if it is the
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sum of two orthogonal projections, of which one is annihilated by , the other is
in 5’, and both commute with F.

Proof. Observe that if commuting projections P, Q both have (*), so do
all Boolean functions of P, Q. The only part of this observation that takes
any proving is that P n Q PQ has (*), and that is a simple computation:
Because P and Q have (*),

eA e(PAP -[- PAl) e(QPAPQ + QPAIaQ + PAPO, + PAPO)

for all A;if A is replaced by PQAPQ - (PQ)"A (PQ)- here, each of the four
terms on the right is unchanged, and hence so is the sum.

Therefore to justify "if" in the proposition it is enough to prove property
(*) first for P 6t’ commuting with F (this was done in the course of proving
Theorem 4.2), then for P such that eP 0. These latter P can be treated
easily without using F at all, but still more easily as follows.

LEMMA. Let Po t be the projection on the nullspace of F. For projection
P (, the following are equivalent"

(i) P <= P0;
(ii) eP O;
(iii) for all A (, e(PAP) O.

Proof. Since eP >__ O, clearly eP 0 is equivalent to tr (P O. But
tr eP tr FP tr PFP, PFP >= O; so tr eP 0 if and only if PFP O,
P -< P0. This proves (i) equivalent to (ii). (ii) is a special case of (iii).
To prove (iii) from (ii) it is enough, by linearity in A, to take A -> O; but
then

0 <- e(PAP) <- e(PI]AI[) IIA[I eP 0.

The lemma is proved.
Now P0 has (*) simply because P0 e ’, P0 - F. Take any projection

P such that eP 0. Because P0 has (*),

e(PAD) e(Po PAPPo) + e(Po PAPPo);

the first term is zero by (iii) of the lemma, the second because P -< P0.
Likewise e(PAP) O. Therefore P has (*).
The "if" half of the proposition is now taken care of; begin the interesting

half.
In general, for projection P not to commute with hermitian A, is equivalent

to the nonvanishing of

PA AP PAP- PAP PAP- (PAP)*,

hence to the nonvanishing of PAP, hence to the nonvanishing of

(PA[’)(PAP)* PAPAP >- O.
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I apply this criterion to any P having (*) and prove it commutes with F.
By(*),e(PFP) O. Hence

0 tre(iFP) tr (FPEP) tr (PFIZER),
PFPFP 0, P - F.

Therefore such P commute with P0, and may be written as the sum of
P n Po PPo and P n Po PPo. These are orthogonal proiections com-
muting with F, and the first is annihilated by e. If we knew the second
was in 6t’, we would have finished the proof of the proposition. Accordingly
we may consider, in the rest of the proof, only proiections P
Any such P has the property that, if A >- 0 and e(PAP) O, then

PAP O. For otherwise there would be some nonzero projection Q and
number a > 0 such that PAP >= aQ. Because 0 <-_ eQ <- a-I(PAP) O,
by thelemmaQ -< P0. But also0 Q -< P -<_ P0, acontradiction.

If this P has (*), I now prove it is in 6t’. The method is to show, for any
proiection R e (, that P and R satisfy the criterion for commutativity used
earlier. Clearly

R eR e(PRP + PRP) e(PRP +
But also

R R Re(PRP - PRP) e(RPRP - RPRP)
e(PRPRP + PRPRP).

Subtracting these two expressions for R gives

0 e(PRPRP - PRPRP).
Both terms are => 0; hence e(PRPRP) O, and by the preceding
graph PRPRP O. This proves P - R.

6. Effect of pinching on the spectrum
Now shift the emphasis. Instead of looking at a single averaging opera-

tion acting on all operators in an algebra, fix one operator, and consider its
images under various averaging operations. Consider first what seems the
most interesting version" only pinchings are allowed.

All of the theorems of this section are restatements or easy consequences
of known results (the most central of which are quoted as Theorem 6.0).
Accordingly I give more references to the literature than proofs.
A matrix S ((Sij))i,j-----1,...,n is called doubly stochastic provided S. _>- 0

and Si S 1.

THEOREM 6.0. Let O (O/l, O/n), (1, "’", n) be n-tuples of
real numbers. The following are equivalent"

(i) SO/, with S doubly stochastic;
(ii) is a convex combination of permutations of O/;

(iii) there exists a hermitian matrix with eigenvalues O/,..., a, and
diagonal entries 1, n
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These facts are all found in a paper by A. Horn [9, 2], who contributed
the hardest part: namely the fact, which I will call Horn’s Converse Theo-
rem, that (iii) is implied by the other conditions. The remaining implica-
tions are mostly drawn from [8, pp. 46-49], though Birkhoff’s Theorem [9,
Theorem 2] is helpful.

This immediately answers the question what spectrum a pinching of a
given operator can have (cf. [5, Theorem 3]).

THEOREM 6.1. Let hermitian A have eigenvalues al,..., a,. Numbers,..., , are the eigenvalues of some pinching 5A of A if and only if
Sa, with S doubly stochastic.

Proof. Assume , n are the eigenvalues of 5A i Pi APi as in
Definition 3.1. In a coordinate system in which the commuting hermitian
matrices 5A, P, P2, are all diagonal, A (which need not be diagonal)
has diagonal elements 1, n. Now use Theorem 6.0, (iii) implies (i).

Conversely, let Sa with S doubly stochastic. The hermitian matrix
whose existence is guaranteed by Horn’s Converse Theorem belongs to our
A in a suitable coordinate system. Then the required subalgebra ( can be
that of all diagonal matrices.

THEOREM 6.2. Let A be hermitian. Let K(A) be the convex hull of the
set of all unitary equivalents of A. Let B(A) be the set of all pinchings of
unitary equivalents of A. Then K(A) B(A).

Proof. That B(A) K(A) follows from Definition 3.3 or 3.4, but it
will be useful to know a stronger assertion. Let B 6A e B(A). We
may (by unitary invariance and the proof of Theorem 6.1) assume without
loss of generality that the coordinate system is such that 6 is exactly all
diagonal matrices. Now it is true that B can be expressed as a convex com-
bination of unitary equivalents A of A which belong to 6. The proof [3]
involves Theorem 6.0, (i) implies (ii).
To complete the proof of Theorem 6.2, it must be shown that if

B giA,

with i >= 0, 1, and each A a unitary equivalent of A, then B is a
pinching of a unitary equivalent of A. Choose subalgebra 5 so

Be6

then B g (Ai. By the preceding paragraph, each 5A is a convex
combination of unitary equivalents of A lying in (; this means that in

B giA
it may be assumed (by changing the notation) that all A were in 5 to begin
with. By Theorem 6.0, (ii) implies (iii), we conclude B e B(A).

[9, Theorem 5]. A.J. Hoffman has an alternative proof (unpublished) using the
theorem of Wielandt, Fan, and Pall [6, Theorem 1]. See also [12].
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Thus Theorem 6.2 follows easily from Horn’s Converse Theorem. In
the other direction, if an independent proof could be found for Theorem 6.2,
this would provide a new derivation of Horn’s Converse Theorem
For any symmetric function f of n real variables and any hermitian A

acting on n-space, let f(A) mean the value of f when one substitutes for its
arguments the eigenvalues of A.

THEOREM 6.3. In order that f(gtA) <= f(A) for all hermitian A and all
pinchings 6, it is necessary and sucient that f be Schur-convex. The in-
equality holds in particular for any convex symmetric f.

On Schur-convex functions, see [15]. To say f is Schur-convex means
that $ Sa, with S doubly stochastic, implies f($) -< f(a). That every
convex symmetric f is Schur-convex follows from Theorem 6.0, (i) implies
(ii) cf. [3], [15, 24].
Theorem 6.3 is an immediate corollary of Theorem 6.1. I point out that

it is in a sense weaker, for necessity can be proved without any form
of Horn’s Converse Theorem. Let f(gtA) <= f(A) identically in A and ,
and let Sa, with S doubly stochastic. Since [8, pp. 46-49]

T(1)... T(k),
where each T(1) is doubly stochastic with at most two off-diagonal entries,
we may assume S is of this sort. Hence we may assume n 2. But for
this case necessity in Theorem 6.3 is trivial.

THEOREM 6.4. (H. A. Dye [4, I 4, Exercice 2]) If 6t’ has m minimal
projections, and A >= O, then A <- mgtA.

This suggests the following problem" Find restrictions on the spectrum
of A, sharper than those implied by Theorem 6.1 (or 6.2), which follow
from assuming a bound m on the number of minimal projections in 6t’
(1 < m < n). The known results are far from complete.

7. Effect of averaging on the spectrum

Now combine the results of 4, 6.
Notation. (1, an), for real ai and k 1, n, is the maximum

of ail + + aik over all choices of k integers i. from among {1, n}.
(The minimum is therefore

...,
This gives meaning to a(A) for hermitian A.

THEOREM 7.1. Let hermitian A have eigenvalues al,..., a,. Numbers
1, n are the eigenvalues of some averaging eA of A if and only if

a(A) >= + + ik >- -a(-A)

whenever the are distinct.
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The following criterion will be helpful.

THEOREM 7.2. Let real numbers al,..., as be given. In order that
7, be a subset of some n-tuple (71, 7,) such that Sa with

doubly stochastic, it is necessary and sujcient that

for every choice of {il ik}, tc 1, m.

Two different special cases of this are known" the case
is mentioned at the end of [10]; the case m n is a well-known theorem [8,
Theorem 46]. I point out a consequence of the last-mentioned theorem:

Omitting the requirement of distinctness in the statement of Theorem
7.1, and replacing "averaging" by "pinching", converts it into another true
statement, indeed into one equivalent to Theorem 6.1.

Proof of Theorem 7.2. Necessity is equivalent to necessity in the cited
special case (and is easy), so I discuss only sufficiency. The idea of the
proof is due to R. Rad5 [8, Theorem 75].
When m 1 there is of course no difficulty" either n 1, 71 al or

else we may number the a so that al >- 71 >_ a,., in which case the require-
ments are clearly met by defining

2 al+ a2--,i and i a fori 3,...,n.

Proceed by induction on m (letting n take care of itself).
minimum of the nonnegative numbers

Let c be the

as k runs from 1 to m 1. By symmetry, assume the minimum is attained
by one of the D, say Dh c.
As a notational convenience, assume now

C " "’1 + V2 " + "h al + + ah O’h(al, an),

by the definitions of c and h. Likewise it is easy to verify that (i) the num-
bers 71 + c, 7,, 7h satisfy the conditions of the theorem relative to
al, a and (ii) so do 7,,+1, 7-1,7 c relative to a+l,

an. Remember h < m. By the inductive hypothesis, there exists a doubly
stochastic matrix taking (al, ..., a) to (71 + c,-.., 7), and another
taking (ah+l, as) to (Th+l /m--1, 7m C, 7re+l, 7n), where
the new v have been suitably chosen. Their direct sum is a doubly sto-
chastic matrix R taking (al, an) to
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The latter n-tuple is taken to (3"1, 3".,’", 3"m,"’, 3"n) by the doubly
stochastic matrix Q which has no nonzero off-diagonal entries other than

QI,, QI c/ 2c + 3"1 3",,).

Then S QR is the matrix the theorem asks for.
Proof of Theorem 7.1. Assume eA with eigenvalues /1,"’, /3n. By

Theorem 4.2, ( is the composition of a pinching followed by a convex com-
bination of homomorphisms. By Theorem 6.1, as reformulated above with
the aid of Theorem 7.2, the pinching can not increase any ak(A) (or decrease
any -ak(-A) ). The rest of the proof of the inequalities in Theorem 7.1
need not be written out. The crucial fact, a special case of [3], is this: If
B ’j j B(j) is a convex combination of hermitian matrices, then

z(B) =< j gj z(B(J)).
Now for the converse! Assume the inequalities satisfied. Let the num-

ber of distinct 3i be m. 1 =< m -< n; and choose the notation so that, for
suitable nj, 1 ni nm =< n,

n ny+l--1 > nj+l n
Let 3"nj ny with 3"i remaining undefined for the remaining n m values
of i. That is, 3"hi, 3"urn are the distinct numbers among the .
The inequalities relating al, a to 1, = can now be expressed

by saying that 3"nl, "", 3"m satisfy the condition of Theorem 7.2 relative
to al, a. Hence values for the remaining 3" can be chosen so that
3" Sa for some doubly stochastic S. By Theorem 6.1 (or rather 6.0), A
with eigenvalues al, a can be taken to 63A with eigenvalues.3"l,
3" by some pinching 63, of which we can assume 63 63’. Choose ortho-
normal basis vectors x, (63A)x 3" x. Subalgebra (g is all diagonal
matrices.

I have to define averaging e on 63. For any B e 63, derive the diagonal
entries of eB from those of B by

eB Bn.i
This is an averaging, indeed a homomorphism.
relation

(e o (gA), h

(for n _-< i < n+).

Clearly it gives the desired

(i 1,...,n).

Here is the analogue of Theorem 6.3.

THEOREM 7.3. Let n >= 4. In order that f(eA) <- f(A) for all hermitian
A and all averagings e, it is necessary and susficient that f be of the form

f(o/1 ,’", O/n) maxi,j g(ai, o/j),

for some symmetric g(3’1,3’2) which, for 3"1 >-_ 3"2, is increasing in 3"1 and de-
creasing in 3".
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By virtue of the properties of g, automatically

f(at, 0/) g(maxi 0/, min 0/).

It is also automatic that g is Schur-convex (hence f likewise). The mono-
tonicity of g need not be strict.

Proof. If f has the stated form, then f(A) -< f(A) is an easy conse-
quence of the following trivial special case of Theorem 7.1:

(A) __> (eA),- .t(-eA) _-> -(-A).

Necessity is also not hard. It requires showing, for any 0/1 >- _-> 0/n

and 1 n such that 0/t >_- fiX, n o/n, 0/1 > o/n, that

I will do this by introducing an n-tuple (Tt, ’).
fined by the requirements that (for suitable h 0, 1,

It is uniquely de-
,n)

Then in the sequence of n-tuples

each satisfies the condition of Theorem 6.1 relative to the one before it, as one
verifies at once. (This uses the hypothesis n => 4.) Hence the value of f
at each n-tuple is not greater than at the one before. This proves the the-
orem.
The cases n 2, 3 are genuinely different. For example, for n 3, f

might be the symmetric function given when 0/1 -> 0/2 -> 0/a by

However, even for n 2, some f which satisfy f(A) <__ f(A) when ( is
a pinching fail to satisfy it in general. For example, f(
Comparing the theorems of this section and 6, one might try to find corre-

sponding theorems for a class of averagings containing the class of pinchings"
namely, those ( such that tr (A tr A for all A (so that F 1 in Theo-
rem 4.2). Consider such a (. Not only does ( not have to be a pinching;
in general there will be some A such that for no pinching is 6tA CA.
Nevertheless it is easy to see that in their effect on the spectrum they are
the same. That is, in Theorems 6.1, 6.2, 6.,3, pinchings may be replaced by
trace-preserving averagings throughout.
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