INVERSION OF TOEPLITZ MATRICES

BY

Alberto Calderón,¹ Frank Spitzer,² and Harold Widom¹

1. Introduction

This paper deals with the inversion of the Toeplitz matrix $T = (c_{j-k})$, $j, k = 0, 1, \cdots$. It will be assumed that the c_k are the Fourier coefficients of a function $\varphi(\theta)$,

$$c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ik\theta} \varphi(heta) \, d heta, \qquad k = 0, \, \pm 1, \, \cdots.$$

Since the inversion of T is equivalent to the solution of a system of equations of the form

$$\sum_{k=0}^{\infty} c_{j-k} x_k = y_j, \qquad j = 0, \pm 1, \cdots,$$

we see that we are dealing with the discrete analogue of a Wiener-Hopf equation. It might be expected then that we shall look for a factorization of φ of the form $\varphi = \varphi_+ \varphi_-$, where $\varphi_+(\theta)$ and $\varphi_-(\theta)$ are boundary values of functions analytic inside and outside the unit circle, respectively. This, in fact, is the crux of the matter.

In Section 2 we consider the case $\sum_{-\infty}^{\infty} |c_k| < \infty$. Then *T* may be considered a bounded operator on the space l_{∞}^+ of bounded sequences $X = \{x_0, x_1, \cdots\}$ with $||X|| = \sup |x_k|$, and a necessary and sufficient condition is found for the invertibility of *T* (Theorem I). In case *T* is invertible, a generating function is found for the entries of the matrix T^{-1} (Theorem III). As a consequence of the theory we obtain a theorem of Tauberian type: Certain sets are shown to be fundamental in l_1^+ , the space of all $X = \{x_0, x_1, \cdots\}$ with $||X|| = \sum_{0}^{\infty} |x_k| < \infty$ (Corollary of Theorem II).

In Section 3 the condition $\sum |c_k| < \infty$ is dropped, but it is still assumed that φ is bounded. In this case T may be considered an operator (bounded by the boundedness of φ using Parseval's relation) on the space l_2^+ of square summable sequences $X = \{x_0, x_1, \cdots\}$ with $||X||^2 = \sum_{k=0}^{\infty} |x_k|^2$, and we find a sufficient condition for the invertibility of T (Theorem IV).

Note added in proof. A substantial part of this paper (Theorems I and II and an analogue of Theorem III) was discovered independently by M. G. KREIN in his paper, Integral equations on the half-line with a difference kernel, Uspehi Mat. Nauk, vol 13, no. 5 (1958), pp. 3-120 (Russian). Where the operator T is concerned, with $\sum |c_k| < \infty$, our paper is practically identical with Krein's, in regard to both methods and results. Krein has gone further

Received May 26, 1958.

¹ This research was supported by the U. S. Air Force.

² Research sponsored by the ONR at Cornell University.

in considering the continuous analogue of our problem, where T is an integral operator of the Wiener-Hopf type.

2. The l_{∞}^+ theory

Throughout this section we shall assume $\sum_{-\infty}^{\infty} |c_k| < \infty$, and consider T an operator on l_{∞}^+ : $T\{x_j\} = \left\{\sum_{0}^{\infty} c_{j-k} x_k\right\}.$

For convenience we introduce the larger space l_{∞} of bounded doubly infinite sequences $\{\cdots, x_{-1}, x_0, x_1, \cdots\}$. There is then a natural embedding of l_{∞}^+ into l_{∞} given by $\{x_0, x_1, \cdots\} \to \{\cdots, 0, x_0, x_1, \cdots\}$, and a natural projection P of l_{∞} onto l_{∞}^+ given by $P\{\cdots, x_{-1}, x_0, x_1, \cdots\} = \{x_0, x_1, \cdots\}$. For a function $f(\theta) = \sum_{-\infty}^{\infty} b_k e^{ik\theta}$ with $\sum |b_k| < \infty$, we define the operator

 M_f on l_{∞} by

$$M_{f}\{x_{j}\} = \left\{ \sum_{k=-\infty}^{\infty} b_{j-k} x_{k} \right\}.$$

It is clear that $T = PM_{\varphi}$; it should also be noted that $M_f M_g = M_{fg}$, and that if $b_k = 0$ for k < 0, then M_f leaves l_{∞}^+ invariant. (Note that we have identified the space l_{∞}^+ with its image in l_{∞} .)

Our first problem is the factorization of φ . Given a continuous function $f(\theta)$ on $[-\pi, \pi]$ with $f(\theta) \neq 0$, we set

$$I(f) = (1/2\pi) \Delta_{-\pi \leq \theta \leq \pi} \arg f(\theta).$$

LEMMA.³ If $\varphi(\theta) \neq 0$ and $I(\varphi) = 0$, any continuously defined $\log \varphi(\theta)$ has an absolutely convergent Fourier series.

Proof. Letting arg $\varphi(\theta)$ denote any continuous argument of φ we can find a trigonometric polynomial $p(\theta)$ such that

$$|\arg \varphi(\theta) - p(\theta)| < \pi/2, \qquad -\pi \leq \theta \leq \pi.$$

(Note that our assumption $I(\varphi) = 0$ is equivalent to $\arg \varphi(-\pi) = \arg \varphi(\pi)$.) Then if we set

$$\varphi_1(\theta) = e^{-ip(\theta)}\varphi(\theta),$$

 $\varphi_1(\theta)$ has an absolutely convergent Fourier series, and its range lies in the half plane $\Re \varphi_1 > 0$. Therefore, by the Wiener-Lévy theorem, we can find a function $\psi_1(\theta)$ with absolutely convergent Fourier series such that $\varphi_1(\theta) =$ $e^{\psi_1(\theta)}$. Then $\log \varphi(\theta)$ is, except for an additive constant, just $\psi_1(\theta) + ip(\theta)$, and so certainly has an absolutely convergent Fourier series.

With the hypothesis of the lemma holding, it is easy to obtain the desired factorization of φ . Choose any continuous log φ and write

(1)
$$\log \varphi(\theta) = \sum_{k=-\infty}^{\infty} a_k e^{ik\theta},$$

(2)
$$f_{+}(\theta) = \sum_{k=0}^{\infty} a_k e^{ik\theta}, \quad f_{-}(\theta) = \sum_{k=-\infty}^{-1} a_k e^{ik\theta},$$

(3)
$$\varphi_+(\theta) = \exp(f_+(\theta)), \quad \varphi_-(\theta) = \exp(f_-(\theta)).$$

³ This lemma follows from general results of R. Cameron and N. Wiener. The simple proof below was suggested by L. Welch.

Then the functions $\varphi_+(\theta)$, $\varphi_-(\theta)$, $\varphi_+(\theta)^{-1}$, $\varphi_-(\theta)^{-1}$ have absolutely convergent Fourier series, and $\varphi(\theta) = \varphi_+(\theta)\varphi_-(\theta)$. We are now in a position to prove half of the following.

THEOREM I. A necessary and sufficient condition that T be invertible is that $\varphi(\theta) \neq 0$ and $I(\varphi) = 0$. Under these conditions $T^{-1} = M_{\varphi^{-1}} P M_{\varphi^{-1}}$.

We prove now that under the stated conditions T^{-1} exists and is what it is purported to be. Note that $M_{\varphi_{+}^{-1}}$ leaves l_{∞}^{+} invariant, so $U = M_{\varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}}$ is a (bounded) operator on l_{∞}^{+} . Let $X \in l_{\infty}^{+}$. Then

(4)

$$TUX = PM_{\varphi} M_{\varphi_{+}^{-1}} PM_{\varphi_{-}^{-1}} X = PM_{\varphi_{-}} PM_{\varphi_{-}^{-1}} X$$

$$= PM_{\varphi_{-}} M_{\varphi_{-}^{-1}} X - PM_{\varphi_{-}} (I - P) M_{\varphi_{-}^{-1}} X$$

$$= X - PM_{\varphi_{-}} (I - P) M_{\varphi_{-}^{-1}} X,$$

where I is the identity operator. Since

$$M_{\varphi_{-}}(I - P) = (I - P)M_{\varphi_{-}}(I - P),$$

i.e., since M_{φ} leaves invariant the space of all $\{\cdots, x_{-1}, 0, 0, \cdots\}$, the second term of (4) vanishes, and we obtain TUX = X.

Similarly,

$$UTX = M_{\varphi_{+}^{-1}} PM_{\varphi_{-}^{-1}} PM_{\varphi} X$$

= $M_{\varphi_{+}^{-1}} PM_{\varphi_{-}^{-1}} M_{\varphi} X - M_{\varphi_{+}^{-1}} PM_{\varphi_{-}} (I - P) M_{\varphi} X$
= $X - M_{\varphi_{+}^{-1}} PM_{\varphi_{-}^{-1}} (I - P) M_{\varphi} X.$

Again the second term vanishes since $M_{\varphi^{-1}}$ leaves invariant the space of all $\{\cdots, x_{-1}, 0, 0, \cdots\}$, and we obtain UTX = X.

It will be convenient to defer the proof of the rest of Theorem I until after our next result, which tells us what happens when $\varphi(\theta) \neq 0$ but $I(\varphi) = n \neq 0$. In this case $I(e^{-in\theta}\varphi(\theta)) = 0$, and we again introduce functions $\varphi_+(\theta), \varphi_-(\theta)$ by means of (2) and (3), but now the coefficients a_k are obtained from (1) with $\varphi(\theta)$ replaced by $e^{-in\theta}\varphi(\theta)$. The factorization now becomes

$$e^{-in heta} arphi(heta) = arphi_+(heta) arphi_-(heta).$$

THEOREM II. Assume $\varphi(\theta) \neq 0$. (a) If $n = I(\varphi) > 0$, T is one-one, and its range is a subspace of l_{∞}^+ of deficiency n; T has the bounded left inverse $M_{e^{-in\theta}\varphi_{\mp}^{-1}}PM_{\varphi_{\mp}^{-1}}$. (b) If $n = I(\varphi) < 0$, T is onto and has null space of dimension |n|; T has the bounded right inverse $M_{e^{-in\theta}\varphi_{\mp}^{-1}}PM_{\varphi_{\mp}^{-1}}$.

Proof. (a) $T = PM_{\varphi} = PM_{e^{-in\theta_{\varphi}}}M_{e^{in\theta}}$. Since $I(e^{-in\theta_{\varphi}}\varphi(\theta)) = 0$, we conclude from (what has been proved of) Theorem I that $PM_{e^{-in\theta_{\varphi}}}$ is one-one and onto l_{∞}^+ . Since $M_{e^{in\theta}} l_{\infty}^+$ is a subspace of deficiency n, T is one-one and has range of deficiency n. Since $PM_{e^{-in\theta_{\varphi}}}$ has inverse $M_{\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}}$, we have

492

$$M_{e^{-in\theta}\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}}TX = M_{e^{-in\theta}}(M_{\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}})(PM_{e^{-in\theta}\varphi})M_{e^{in\theta}}X = X.$$

(b) In this case $T = PM_{e^{-in\theta}\varphi} M_{e^{in\theta}}$ shows that T, when restricted to a subspace of l_{∞}^+ of deficiency |n| (namely $M_{e^{-in\theta}} l_{\infty}^+$) is one-one and onto l_{∞}^+ . Thus T is onto and has null space of dimension |n|. Moreover

$$TM_{e^{-in\theta}\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}}X = PM_{e^{-in\theta}\varphi}M_{e^{in\theta}}M_{e^{-in\theta}}M_{\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}}X$$
$$= (PM_{e^{-in\theta}\varphi})(M_{\varphi_{+}^{-1}}PM_{\varphi_{-}^{-1}})X = X.$$

COROLLARY. Denote by C_k the element $\{c_{-k}, c_{-k+1}, \dots, c_0, c_1, \dots\}$ of l_1^+ . Assume $\varphi(\theta) \neq 0$. Then a necessary and sufficient condition that the set C_0, C_1, \dots be fundamental in l_1^+ is that $I(\varphi) \leq 0$.

In the case $c_{-1} = c_{-2} = \cdots = 0$ the conditions $\varphi(\theta) \neq 0$, $I(\varphi) \leq 0$ are equivalent to the assertion that the function $\Phi(z) = \sum_{0}^{\infty} c_k z^k$, which is analytic in the unit circle, has no zero on $|z| \leq 1$. The result in this case was proved by Nyman [2]. (It is easy to see, in this special case, that the condition $\varphi(\theta) \neq 0$ is certainly necessary.)

When we pass to the proof, the Hahn-Banach theorem tells us that a necessary and sufficient condition that C_0 , C_1 , \cdots is not fundamental is the existence of a nonzero vector $X = \{x_j\} \in l_{\infty}^+$ such that

$$\sum_{j=0}^{\infty} c_{k-j} x_j = 0, \qquad \qquad k = 0, 1, \cdots.$$

Thus C_0 , C_1 , \cdots is not fundamental if and only if the Toeplitz matrix corresponding to $\overline{\varphi(\theta)}$ has a null space, and by Theorems I and II this is equivalent to $I(\bar{\varphi}) < 0$, i.e., to $I(\varphi) > 0$.

We proceed now to the completion of the proof of Theorem I. Now that we have Theorem II, we need only show that if $\varphi(\theta) = 0$ for some θ , then Tis not invertible. We use the fact that the invertible elements of a Banach algebra form an open set. (See, for example, Loomis [1], Theorem 22B.) It suffices therefore to show that T is the limit of noninvertible Toeplitz matrices. Note that if T_{ψ} denotes the Toeplitz matrix of $\psi(\theta) = \sum_{-\infty}^{\infty} d_k e^{ik\theta}$, then $||T_{\psi}|| = \sum |d_k|$. We may assume, without loss of generality, that $\varphi(0) = 0$. We make first some additional assumptions concerning φ , these being removed in stages.

(A) We assume, in addition to $\varphi(0) = 0$, that (i) $\varphi(\theta) = 0$ only for $\theta = 0$; (ii) $\varphi'(0) \neq 0$; (iii) for some $R_0 > 1$ the series $\sum_{-\infty}^{\infty} |c_k| R^{|k|}$ converges for $0 \leq R < R_0$. Then the function $\Phi(z) = \sum_{-\infty}^{\infty} c_k z^k$ is analytic in the annulus $R_0^{-1} < |z| < R_0$, $\Phi(z)$ has exactly one zero on |z| = 1, this being at z = 1, and $\Phi'(1) \neq 0$. Choose r > 0 so small that firstly $r < 1 - R_0^{-1}$, and secondly that $\Phi(z)$ has no zero inside or on the circle C: |z - 1| = r except for the one at z = 1. Set

 $\delta = \min (\min_{c} | \Phi(z) |, \min_{\{|z|=1\} \cap \{|z-1| \ge r\}} | \Phi(z) |).$

Let $\varepsilon > 0$ be so small that $\varepsilon < r$, $|\Phi(1 \pm \varepsilon)| < \delta$. Then the functions $\Phi_{\varepsilon}(z) = \Phi(z) - \Phi(1 + \varepsilon)$ and $\Phi_{-\varepsilon}(z) = \Phi(z) - \Phi(1 - \varepsilon)$ have, firstly, no zeros on $\{|z| = 1 \ n \ |z - 1| \ge r\}$, secondly, no zeros on C, and thirdly (by Rouche's theorem), exactly one (of multiplicity one) inside C, the zero of $\Phi_{\varepsilon}(z)$ being of course at $1 + \varepsilon$ and that of $\Phi_{-\varepsilon}(z)$ at $1 - \varepsilon$. In particular, Φ_{ε} and $\Phi_{-\varepsilon}$ are not zero on |z| = 1. We claim

(5)
$$\Delta_{|z|=1} \arg \Phi_{-\varepsilon}(z) - \Delta_{|z|=1} \arg \Phi_{\varepsilon}(z) = 2\pi_{\varepsilon}$$

the unit circle being traversed in the positive direction. The left side of (5), being continuous in ε and always an integral multiple of 2π , must be a constant. It suffices therefore to show that its limit as $\varepsilon \to 0+$ is 2π . We have

$$\begin{aligned} \Delta_{\{|z|=1\}} \cap_{\{|z-1| \ge r\}} \arg \Phi_{-\varepsilon}(z) &- \Delta_{\{|z|=1\}} \cap_{\{|z-1| \ge r\}} \arg \Phi_{\varepsilon}(z) \\ &= \Delta_{\{|z|=1\}} \cap_{\{|z-1| \ge r\}} \arg \frac{\Phi(z) - \Phi(1-\varepsilon)}{\Phi(z) - \Phi(1+\varepsilon)} \end{aligned}$$

which tends to $0 \text{ as } \varepsilon \to 0+$. Let $C^+ = C \cap \{|z| \ge 1\}$ and $C^- = C \cap \{|z| \le 1\}$, the directions on these arcs being that of the positive direction on C. Since the one zero of $\Phi_{-\varepsilon}(z)$ is inside |z| = 1, it has no zero between |z| = 1 and C^+ , so

$$\Delta_{\{|z|=1\}} \bigcap_{\{|z-1| \leq r\}} \arg \Phi_{-\varepsilon}(z) = \Delta_{C^+} \arg \Phi_{-\varepsilon}(z) \to \Delta_{C^+} \arg \Phi(z)$$

as $\varepsilon \to 0+$. Similarly,

$$\Delta_{\{|z|=1\}} \cap_{\{|z-1| \leq r\}} \arg \Phi_{\varepsilon}(z) = -\Delta_{C^{-}} \arg \Phi_{\varepsilon}(z) \to -\Delta_{C^{-}} \arg \Phi(z)$$

as $\varepsilon \to 0+$. Thus

$$\lim_{\varepsilon \to 0+} (\Delta_{|z|=1} \arg \Phi_{-\varepsilon}(z) - \Delta_{|z|=1} \arg \Phi_{\varepsilon}(z)) = \Delta_{\mathcal{C}} \arg \Phi(z) = 2\pi,$$

and (5) is established.

Let $\varphi_{\varepsilon}(\theta) = \Phi_{\varepsilon}(e^{i\theta}), \varphi_{-\varepsilon}(\theta) = \Phi_{-\varepsilon}(e^{i\theta})$. Then $\varphi_{\pm\varepsilon}(\theta) \neq 0$, and, by (5), $I(\varphi_{\varepsilon}) \neq I(\varphi_{-\varepsilon})$. Thus at least one of $I(\varphi_{\varepsilon}), I(\varphi_{-\varepsilon})$ is not zero. If, to be specific, $I(\varphi_{\varepsilon}) \neq 0$, we know from Theorem II that $T_{\varphi_{\varepsilon}}$ is not invertible. Since $||T_{\varphi} - T_{\varphi_{\varepsilon}}|| = |\Phi(1 + \varepsilon)| \to 0$ as $\varepsilon \to 0$, we conclude that $T (= T_{\varphi})$ is not invertible.

(B) We now drop the restriction (i) of case (A), keeping (ii) and (iii). Now $\Phi(z)$ may have zeros on |z| = 1 other than the simple zero at z = 1. Denote these other zeros by α_k , the corresponding multiplicities being m_k . Then

$$\Phi(z) = (z-1) \prod (z-\alpha_k)^{m_k} \Psi(z)$$

where $\Psi(z) \neq 0$ on |z| = 1. If 0 < r < 1,

$$\Phi_r(z) = (z-1) \prod (z-r\alpha_k)^{m_k} \Psi(z),$$

then $\varphi_r(\theta) = \Phi_r(e^{i\theta})$ satisfies the conditions of (A), so that T_{φ_r} is not invertible. Moreover, since $\Phi_r(z) \to \Phi(z)$ as $r \to 1-$ uniformly in an annulus around |z| = 1, it is easily seen that $||T_{\varphi} - T_{\varphi_r}|| \to 0$, so T is not invertible.

(C) We drop restriction (ii), keeping only (iii). If $\varphi'(0) = 0$, then for $\varepsilon \neq 0$, $\varphi_{\varepsilon}(\theta) = \varphi(\theta) + \varepsilon \sin \theta$ satisfies (ii) and (iii), so by (B), $T_{\varphi_{\varepsilon}}$ is not invertible. Moreover $||T_{\varphi} - T_{\varphi_{\varepsilon}}|| = \varepsilon$. Therefore T is not invertible.

494

(D) Finally we drop (iii). For
$$0 < r < 1$$
, set
 $\varphi_r(\theta) = \sum_{-\infty}^{\infty} c_k r^{|k|} (e^{ik\theta} - 1)$

Then $\varphi_r(0) = 0$, and (iii) is satisfied with $R_0 = r^{-1}$. We have

$$|| T_{\varphi} - T_{\varphi_{r}} || \leq \sum_{-\infty}^{\prime \infty} |c_{k}(1 - r^{|k|})| + |c_{0} + \sum_{-\infty}^{\prime \infty} c_{k} r^{|k|}|,$$

where the prime means that the term corresponding to k = 0 is to be omitted. The first sum certainly tends to 0 as $r \to 1-$, and so also does the second term since $\sum_{-\infty}^{\infty} c_k = 0$.

This completes the proof of Theorem I.

THEOREM III. Assume $\varphi(\theta) \neq 0$, $I(\varphi) = 0$, and let $T_{j,k}^{-1}$ denote the j, k entry of the matrix T^{-1} . Then

$$(1 - st) \sum_{j,k=0}^{\infty} s^{j} t^{k} T_{j,k}^{-1}$$

$$= \exp\left(-\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - st}{1 - se^{-i\theta} - te^{i\theta} + st} \log \varphi(\theta) \ d\theta\right), \quad |s|, |t| < 1.$$

Proof. We introduce the analytic functions

$$egin{array}{lll} F_+(z) &=& \sum_{k=0}^\infty a_k\, z^k, & \Phi_+(z) &=& \exp{\left(F_+(z)
ight)}, & \mid z\mid < 1, \ F_-(z) &=& \sum_{k=-\infty}^{-1} a_k\, z^k, & \Phi_-(z) &=& \exp{\left(F_-(z)
ight)}, & \mid z\mid > 1. \end{array}$$

We have

(6

(7)
$$\sum_{k=0}^{\infty} t^k T_{j,k}^{-1} = j^{\text{th}} \text{ component of } T^{-1}\{1, t, t^2, \cdots\} = j^{\text{th}} \text{ component of } M_{\varphi_+^{-1}} P M_{\varphi_-^{-1}}\{1, t, t^2, \cdots\}.$$

Now $M_{\varphi_{-}^{-1}}\{1, t, t^{2}, \cdots\}$ is the sequence of Fourier coefficients of

$$\frac{\varphi_{-}(\theta)^{-1}}{1-te^{i\theta}},$$

so $PM_{\varphi^{-1}}\{1, t, t^2, \cdots\}$ is the sequence of Fourier coefficients of

$$\sum_{j=0}^{\infty} e^{ij\theta} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\varphi_{-}(\theta')^{-1}}{1 - te^{i\theta'}} e^{-ij\theta'} d\theta' = \sum_{j=0}^{\infty} e^{ij\theta} \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{\Phi_{-}(z)^{-1}}{1 - tz} \frac{dz}{z^{j+1}}$$
$$= \sum_{j=0}^{\infty} e^{ij\theta} \Phi_{-}(t^{-1})^{-1} t^{j} = \frac{\Phi_{-}(t^{-1})^{-1}}{1 - te^{i\theta}}.$$

Therefore $M_{\varphi_+^{-1}} P M_{\varphi_-^{-1}} \{1, t, t^2, \cdots\}$ is the sequence of Fourier coefficients of

$$\Phi_{-}(t^{-1})^{-1} \frac{\varphi_{+}(\theta)^{-1}}{1 - te^{i\theta}}$$

Consequently (7) gives

$$\sum_{j,k=0}^{\infty} s^{j} t^{k} T_{j,k}^{-1} = \Phi_{-}(t^{-1})^{-1} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\varphi_{+}(\theta)^{-1}}{(1 - te^{i\theta})(1 - se^{i\theta})} d\theta$$
$$= \Phi_{-}(t^{-1})^{-1} \frac{1}{2\pi i} \int_{|z|=1}^{\pi} \frac{\Phi_{+}(z)^{-1}}{(1 - tz)(z - s)} dz$$
$$= \frac{\Phi_{-}(t^{-1})^{-1} \Phi_{+}(s)^{-1}}{1 - st}.$$

It remains to equate $\Phi_{-}(t^{-1})^{-1}\Phi_{+}(s)^{-1}$ with the expression on the right of (6). But this is easy since

$$F_{+}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\log \varphi(\theta)}{1 - z e^{-i\theta}} d\theta, \qquad |z| < 1,$$

$$F_{-}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\log \varphi(\theta)}{z e^{-i\theta} - 1} d\theta, \qquad |z| > 1.$$

We should like to point out that in case T is symmetric, i.e., $\varphi(\theta)$ is even, the right side of (6) may be written in a different form. We have, in this circumstance,

$$F_{+}(s) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1-s\cos\theta}{1-2s\cos\theta+s^{2}}\log\varphi(\theta) \,d\theta$$
$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \log\varphi(\theta) \,d\theta + \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{1-s^{2}}{1-2s\cos\theta+s^{2}}\log\varphi(\theta) \,d\theta,$$
$$F_{-}(t^{-1}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{t\cos\theta-t^{2}}{1-2t\cos\theta+t^{2}}\log\varphi(\theta) \,d\theta$$
$$= -\frac{1}{4\pi} \int_{-\pi}^{\pi} \log\varphi(\theta) \,d\theta + \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{1-t^{2}}{1-2t\cos\theta+t^{2}}\log\varphi(\theta) \,d\theta,$$

and so

$$\Phi_{-}(t^{-1})^{-1}\Phi_{+}(s)^{-1} = \{G(s,\varphi)G(t,\varphi)\}^{-1/2}$$

where

$$G(r,\varphi) = \exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1-r^2}{1-2r\cos\theta+r^2}\log\varphi(\theta)\ d\theta\right).$$

3. The l_2^+ theory

Here we drop the assumption $\sum |c_k| < \infty$, replacing it by

 $\varphi(\theta) \ \epsilon \ L_{\infty}(-\pi, \ \pi).$

The Toeplitz matrix T may now be considered a bounded operator on the space l_2^+ of square summable sequences $\{x_0, x_1, \dots\}$. Our results here go in only one direction; we find a sufficient condition for the invertibility of T.

THEOREM IV. Assume $\varphi(\theta)^{-1} \epsilon L_{\infty}(-\pi, \pi)$, and that there exists a determination of arg φ (belonging to $L_2(-\pi, \pi)$) whose conjugate function

$$\frac{1}{2\pi} \operatorname{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2} (\theta - \theta') \arg \varphi(\theta') \, d\theta'$$

belongs to $L_{\infty}(-\pi, \pi)$. Then T is an invertible operator on l_2^+ , and the entries of the matrix T^{-1} are determined by (6).

Proof. With log φ determined by the arg φ in the hypothesis, we define the functions $f_{\pm}(\theta)$, $\varphi_{\pm}(\theta)$ by (1)-(3), the series converging in L_2 . If we can show that the functions $\varphi_{\pm}(\theta)$, $\varphi_{\pm}(\theta)^{-1}$ are in $L_{\infty}(-\pi, \pi)$, the proofs of

496

(8)

the relevant part of Theorem I and of Theorem III can be modified for the present situation; all we need do is replace ∞ by 2 on occasion.

The required boundedness is equivalent to the boundedness of $\Re f_{+}(\theta)$ and $\Re f_{-}(\theta)$; we shall give the proof for $\Re f_{+}$, the proof for $\Re f_{-}$ being analogous. We have, almost everywhere,

$$f_+(\theta) = \lim_{r \to 1^-} \sum_{k=0}^{\infty} a_k r^k e^{ik\theta} = \lim_{r \to 1^-} F_+(re^{i\theta}),$$

where, recall, $F_{+}(z)$ is given by (8). A simple computation gives

$$\Re F_{+}(re^{i\theta}) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \log |\varphi(\theta')| d\theta'$$

+ $\frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{1 - r^{2}}{1 - 2r \cos(\theta - \theta') + r^{2}} \log |\varphi(\theta')| d\theta'$
- $\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{r \sin \theta'}{1 - 2r \cos(\theta - \theta') + r^{2}} \arg \varphi(\theta') d\theta'.$

The second integral converges almost everywhere to $\frac{1}{2} \log |\varphi(\theta)|$, and the third to

$$\frac{1}{2\pi} \operatorname{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2} (\theta - \theta') \arg \varphi(\theta') \, d\theta'$$

(see, for example, $[3, \S3.34]$). Therefore, almost everywhere,

$$\Re f_{+}(\theta) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \log |\varphi(\theta')| \, d\theta' + \frac{1}{2} \log |\varphi(\theta)| \\ - \frac{1}{2\pi} \operatorname{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2}(\theta - \theta') \arg \varphi(\theta') \, d\theta',$$

and the result is clear.

The matrix T is invertible under any of the following con-COROLLARY. ditions:

(i)

 $\sum_{-\infty}^{\infty} |c_k| < \infty, \varphi(\theta) \neq 0, and I(\varphi) = 0;$ $c_k = 0 \text{ for } k < 0 \text{ and the function } \Phi(z) = \sum_{0}^{\infty} c_k z^k \text{ (defined for } |z| < 1$ (ii) and almost everywhere on |z| = 1 is (essentially) bounded away from zero on $|z| \leq 1;$

(ii') $c_k = 0$ for k > 0 and the function $\Phi(z) = \sum_{-\infty}^{0} c_k z^k$ (defined for |z| > 1 and almost everywhere on |z| = 1 is (essentially) bounded away from zero on $|z| \geq 1$;

(iii) $\varphi(\theta)$ is real (i.e., $c_{-k} = \bar{c}_k$), and either $\varphi(\theta) \ge m > 0$ or $\varphi(\theta) \leq -m < 0.$

In the cases (i)–(ii') it is easier to verify directly the boundedness of $\varphi_+(\theta)$, $\varphi_{+}(\theta)^{-1}$ (for suitable choice of $\log \varphi$) than to use the criterion of the theorem. In case (i), the lemma of Section 2 shows that the Fourier series for any continuous log φ converges absolutely, so the functions $f_{\pm}(\theta)$ are bounded. In case (ii) we have, clearly, $\varphi_+(\theta) = \Phi(e^{i\theta}), \varphi_-(\theta) = 1$, and the required boundedness is immediate. Case (ii') is similar. (It follows easily from Theorem I that in cases (ii) and (ii') we have $T^{-1} = T_{\varphi^{-1}}$.) In case (iii) we may take arg $\varphi \equiv 0$ or $\equiv \pi$, and the invertibility follows from Theorem IV.

References

- 1. L. H. LOOMIS, An introduction to abstract harmonic analysis, New York, 1953.
- 2. B. NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, 1950.
- 3. A. ZYGMUND, Trigonometrical series, New York, 1955.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA CORNELL UNIVERSITY ITHACA, NEW YORK