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1. Introduction
This pper dels with the inversion of the Toeplitz mtrix T (c_),

j,/c 0, 1, It will be ssumed that the c re the Fourier coefficients
of function (),

1 f_: e-c-- (0) dO, k. O, =t::l

Since the inversion of T is equivalent to the solution of a system of equations
of the form

--oC’- x y., j 0, 4-1,...,

we see that we are dealing with the discrete analogue of a Wiener-Hopf equa-
tion. It might be expected then that we shall look for a factorization of
of the form + _, where +(0) and _(0) are boundary values of func-
tions analytic inside and outside the unit circle, respectively. This, in fact,
is the crux of the matter.

In Section 2 we consider the case 7_ c < oo. Then T may be con-
sidered a bounded operator on the space l+ of bounded sequences
X {x0, x,...} with X II sup x 1, and a necessary and sufficient
condition is found for the invertibility of T (Theorem I). In case T is in-
vertible, a generating function is found for the entries of the matrix T-(Theorem III). As a consequence of the theory we obtain a theorem of
Tauberian type" Certain sets are shown to be fundamental in l+, the space
of all X {x0, Xl, --.} with I1 Z ’; x < oo (Corollary of Theorem
II).

In Section 3 the condition

_
cl < is dropped, but it is still assumed

that is bounded. In this ease T may be considered an operator. (bounded
by the boundedness of using Parseval’s relation) on the space l+ of square
summable sequences X {x,, x, ...} with II X we
find a sufficient condition for the invertibility of T (Theorem IV).

Note added in proof. A substantial part of this paper (Theorems I and II
and an analogue of Theorem III) was discovered independently by M. G.
KaEI in his paper, Integral equagions on the half-line with a difference kernel,
Uspehi Mat. Nauk, vol 13, no. 5 (1958), pp. 3-120 (Russian). Where the
operator T is concerned, with lcl < , our paper is praetieallyidentieal
with Krein’s, in regard to both methods and results. Krein has gone further
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in considering the continuous analogue of our problem, where T is an integral
operator of the Wiener-Hopf type.

2. The l+ theory
Throughout this section we shall assume

_
ckl < , and consider

T an operator on l+ T{x} { c_k x }.
For convenience we introduce the larger space l of bounded doubly infinite

sequences {..., X_l, x0, xl,...}. There is then a natural embedding of
l+ into l given by {x0, xl, ...} -- {... 0, x0, xl, ...}, and a natural pro-
jection P of l onto l+ given by P{... x_l, x0, xl, ...} {x0, xl, ...}.
For a functionf(0)

_
b e with b < , we define the operator

M. on l by

It is clear that T PM it should also be noted that Mr Mo Mro, and
that if b 0 for k < 0, then Mr leaves l+ invariant. (Note that we have
identified the space l+ with its image in l.)
Our first problem is the factorization of . Given a continuous function

f(0) on [- r, r] with f(0) 0, we set

I(f) (1/2r)A__<0_, argf(0).

LEMMA. /f o(0) 0 and I() O, any continuously defined log (0) has
an absolutely convergent Fourier series.

Proof. Letting arg (0) denote any continuous argument of we can
find a trigonometric polynomial p(O) such that

arg o(0) p(O) < r/2,

(Note that our assumption I(o) 0 is equivalent to arg o(-r) arg (r).)
Then if we set

qt(O) e-()o(O),
l(0) has an absolutely convergent Fourier series, and its range lies in the
half plane 6t1 > 0. Therefore, by the Wiener-L6vy theorem, we can find a
function 1(0) with absolutely convergent Fourier series such that 1(0)
e(). Then log (0) is, except for an additive constant, ]ust l(0) + ip(O),
and so certainly has an absolutely convergent Fourier series.
With the hypothesis of the lemma holding, it is easy to obtain the desired

factoriztion of . Choose any continuous log and write

(1) log (0) k-a e,
(2) f+(0) ’=0 ak e’ f_(0) ’-=_= a e’
(3) +(0) exp (f+(O)), _(0) exp (f_(0)).

This lemma follows from general results of R. Cameron and N. Wiener. The simple
proof below was suggested by L. Welch.
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Then the functions +(0), _(0), +(0)-1, )-1_(0 have absolutely con-
vergent Fourier series, and (0) +(0)_(0). We are now in a position
to prove half of the following.

THEOREM I. A necessary and suicient condition that T be invertible is that
(0) 0 and I() O. Under these conditions T-1 Mr;1PMr:I.
We prove now that under the stated conditions T-1 exists and is what it is

purported to be. Note that Mr;1 leaves l+ invariant, so U Mr7 PMr:
is a (bounded) operator on l+. Let X e l+. Then

TUX PMr Mr PMr: X PMr_ PMr: X

(4) PMr_ Mr: X PMr_(I P)Mr: X

X- PMr_(I- P)Mr=X,

where I is the identity operator. Since

Mr_(I- P) (I- P)Mr_(I- P),

i.e., since Mr_ leaves invariant the space of all {... x_, O, O, }, the second
term of (4) vanishes, and we obtain TUX X.

Similarly,

UTX Mr; PMr: PMr X
Mr PMr: Mr X M,7_ PMr_(I P)Mr X

X- Mr PMr=(I- P)MrX.

Again the second term vanishes since Mr= leaves invariant the space of all
{... x_l, 0, 0, ...}, and we obtain UTX X.

It will be convenient to defer the proof of the rest of Theorem I until after
our next result, which tells us what happens when (0) 0 but I() n 0.
In this case I(e-’,(0)) O, and we again introduce functions o+(0), o_(0)
by means of (2) and (3), but now the coefficients a are obtained from (1)
with (0) replaced by e-"(0). The factorization now becomes

e-’q(O) +(0)_(0).

THEOnEM II. Assume ,(0) O. (a) If n I() > O, T is one-one,
and its range is a subspace of l+ of deficiency n; T has the bounded left inverse

M-,r PMr=’ (b) If n I() < O, T is onto and has null space of
dimension In I; T has the bounded righ inverse M-r PMr=

Proof. (a) T--- PMr--- PM-rM,,. Since I(e-’(O)) O,
we conclude from (what has been proved of) Theorem I that PM-,,r is
one-one and onto l+. SinceM l+ is a subspace of deficiency n, T is one-one
nd has range of deficiency n. Since PM-r has inverse
we have
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(b) In this case T PM-.o, M,o shows that T, when restricted to
a subspace of l+ of deficiency nl (namely M-.0 l+) is one-one and onto l+.
Thus T is onto and has null space of dimension In I. Moreover

(PM-,,o,)(MI PMzl)X X.

COROLLARY. Denote by C the element c_ c_+1, c0, c, ...} of l
Assume (0) O. Then a necessary and sucient condition that the set
Co, Ca, be fundamental in l is that I() O.

In the case c_ c_ 0 the conditions (0) 0, I() 0 are
equivalent to the assertion that the function O(z) cz, which is
analytic in the unit circle, has no zero on ]z] 1. The result in this case
was proved by Nyman [2]. (It is easy to see, in this special case, that the
condition (0) 0 is certainly necessary.)
When we pass to the proof, the Hahn-Banach theorem tells us that a neces-

sary and sufficient condition that C0, C, is not fundamental is the
existence of a nonzero vector X {x} e l such that

oC-x 0, 0, 1,....

Thus C0, Cx, is not fundamental if and only if the Toeplitz matrix cor-
responding to (0) has a null space, and by Theorems I and II this is equivalent
to I() < 0, i.e., to I() > 0.
We proceed now to the completion of the proof of Theorem I. Now that

we have Theorem II, we need only show that if (0) 0 for some 0, then T
is not invertible. We use the fact that the invertible elements of a Banach
algebra form an open set. (See, for example, Loomis [1], Theorem 22B.)
It suffices therefore to show that T is the limit of noninvertible Toeplitz
matrices. Note that if T denotes the Toeplitz matrix of (0) d e
then V, [[ ]d . We may assume, without loss of generality, that
(0) 0. We make first some additional assumptions concerning , these
being removed in stages.

(A) We assume, in addition to (0) 0, that (i) (0) 0 only for
0 0; (ii) ’(0) 0; (iii) for some R0 > 1 the series
converges for 0 R < R0 Then the function (z) c is analytic
in the annulus R < ]z] < R0, (z) hs exactly one zero on [z] 1, this
being at z 1, and’(1) 0. Choose r > 0 so small that firstly r < 1 R71,
and secondly that (z) has no zero inside or on the circle C" [z 1[ r
except for the one at z 1. Set

min (mine [(z), min{iz=ln{l_l} (z ).
Let e > 0be so small that e < r, 1(1 e)] < 6. Then the functions

O(z) =(z) -(1 + e) and O_,(z) =O(z) -(1 e)
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have, firstly, no zeros on {I z[ 1 n [z 1 _>_ r}, secondly, no zeros on C,
and thirdly (by Rouche’s theorem), exactly one (of multiplicity one) inside C,
the zero of (z) being of course at 1 e and that of _(z) at 1 . In
particular, and

_
are not zero on [z[ 1. We claim

(5) A zl--1 arg

_
(z) AI -1 arg (z) 2,

the unit circle being traversed in the positive direction. The left side of (5),
being continuous in e and alw/ys an integral multiple of 2v, must be a con-
stant. It suffices therefore to show that its limit as e --* 0+ is 2r. We have

(z) ( )
A(ll_lnll_l_ arg

(z) --(1 W )

whichtendsto0as0+. LetC+=Cn{z 1}andC-=Ca{z 1},
the directions on these arcs being that of the positive direction on C. Since
the one zero of _(z) is inside ]z 1, it has no zero between [z 1 and
C+ so

A{l_}iz_ } arg _(z) Ac+ rg _(z) Ac+ arg (z)

as e - 0+. Similarly,

A{ll-llnll-l_,l arg (z) Ac- arg )(z) -- Ac- arg )(z)

ase-.0+. Thus

lim0+ AII=1 arg

_
(z) A lzl=l arg (z)) Ac arg (z) 2,

and (5) is established.
Let (0) (eO), q_(0) )_(eO). Then q+/-(0) 0, and, by (5),

I() I(_). Thus at least one of I(q), I(_) is not zero. If, to be
specific, I() 0, we know from Theorem II that T is not invertible.
Since II T- T II I(1 -t- )1 -- 0 as - 0, we conclude that T (= T)
is not invertible.

(B) We now drop the restriction (i) of case (A), keeping (ii) and (iii).
Now (z) may have zeros on [z] 1 other than the simple zero at z 1.
Denote these other zeros by a, the corresponding multiplicities being m.
Then

(z) (z- )II(z- )(z)
where-(z) 0onlzl 1. If0,(r < 1,

(z) (z- 1)II(z- ra)’’(z),

then (0) r(e) satisfies the conditions of (A), so that T is not in-
vertible. Moreover, since (z) --. (z) as r --* 1- uniformly in an annulus
around z 1, it is easily seen that V V - 0, so V is not invertible.

(C) We drop restriction (ii), keeping only (iii). If (0) 0, then for
e 0, (0) (t) + e sin 0 satisfies (ii) and (iii), so by (B), T is not
invertible. Moreover T, T, e. Therefore T is not invertible.
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(D) Finally we drop (iii). For 0 < r < 1, set

r(0) "_ ck rIkl (e 1).
Then r(0) 0, and (iii) is satisfied with R0 r-1. We have

rI! T Tr II -<- ’’- c(1 rIl) -t- c0 -{- ’- c I,
where the prime means that the term corresponding to/ 0 is to be omitted.
The first sum certainly tends to 0 as r -- 1-, and so also does the second
term since 7’_ c 0.

This completes the proof of Theorem I.
THEOREM III. Assume (O) O, I() O, and let T-, denote the j,

entry of the matrix T-1. Then

(6)
(1 st) sJtTi-,

j,kO

( 1 f; 1--st 1ogq(0) dO)exp --- 1 se-- te -t-- st ]s[,[t] <1.

We have

We introduce the analytic functions

F+(z) _,ko a z, (+(z) exp (F+(z) ),
F_(z) ,-{_ a z, _(z) exp (F_(z) ),

’0 T-1 je’,, component of T-l{ 1 t, ,
(7)

j component ofM PM,:{ 1, t, , ...}.
Now M,: {1, t, , .../ is the sequence of Fourier coefficients of

1 te’
so PM={ 1, t, , ..-} is the sequence of Fourier coefficients of

eO 1
_

0’ )-1
e-’ e o

1 4_ z)-I dz
1 te’ dO’

,1=1 1 tz z+1

-(t
5-0 1 te

Therefore M; PM,={ 1, t, , ...} is the sequence of Fourier coefficients of_
(t (o)

1 te"
Consequently (7) gives, st T-, ,_ -1 )-1 1 o+ O)-a

,,=o (1 te) (1 se)
dO

_(t_1)_1 1 +(z)-1-(1- tz)(z- s)
dZ_

t-1)-l(I)+(8)-1
1 st
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It remains to equate I)_(t--1)--l(-t-(8)--I with the expression on the right of (6).
But this is easy since

1F+(z)
1 ze-i

(s)
1 ---log(0) d0, z > 1F_(z) _

ze- 1

We should like to point out that in case T is symmetric, i.e., q(8) is even,
the right side of (6) may be written in a different form. We have, in this
circumstance,

1 f_: 1--scos0 log(0)d0F+(s)
1 2s cos 0 + s

4-1 log ,(0) dO -t- 1 2 cos 0 -t-
log (0) dO,

l f_ tcosO--tF-(t-)
1 2t cos 0 -F

log dO

1 f_ log(O)dO-t-1 f_ 1--
--4- 4" 1 2 cos 0 -t-

log ,(0) dO,

and so

where
,_(t-)-+(s)- {G(s, e)G(t,

(1 f__ 1--r: )G(r,q) exp
1 2rcos0-l-rlg(0) d0

3. The &+ theory
Here we drop the assumption [ck < oo, replacing it by

q(0) e L(-r, r).

The Toeplitz matrix T may now be considered s bounded operator on the
space l+ of square summable sequences {x0, xl, ...}. Our results here go in
only one direction; we find sufficient condition for the invertibility of T.

THEOREM IV. Assume (0)-1
e L(-r, ), and that there exists a determi-

nation of arg (belonging to L(--, ) whose conjugate function
1 PV f_ cot 1/2 (0 8’) arg (8’) dO’
2r

belongs to L(-, -). Then T is an invertible operator on l+, and the entries

of the matrix T-1 are determined by (6).

Proof. With log q determined by the arg in the hypothesis, we define
the functions f(0), +(8) by (1)-(3), the series converging in L.. If we
can show that the functions +/- (0), (0)-1 are in L , ), the proofs of
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the relevant part of Theorem I and of Theorem III can be modified for the
present situation; all we need do is replace by 2 on occasion.
The required boundedness is equivalent to the boundedness of 6tf+(0)

and (f_() we shall give the proof for 6tf+, the proof for (f_ being analogous.
We hve, lmost everywhere,

f+(0) lim_ =0 a lim_ F+(re),
where, recall, F+(z) is given by (8). A simple computation gives

F+(re) log (O’) dO’

1 l-r+ 1 2r cos (0 0’) + r
log I(0’) dO’

1 r sin 0’
2 1 2r cos ( ’) + r

arg (’) dO’.

The second integral converges almost everywhere to log ()[, and the
third to

PV eo (0 0’) arg (0’) dO’
2

(see, for example, [a, a.a41). Therefore, almosg everywhere,

f+(O) log ( )1 0’ +

2 PV eo (0 0’) arg (0’) dO’,

and ghe resulg is clear.

Coo. The mriz T i ieverible eder of he followie con-
diion

(ii) c 0 for < 0 aed hefuecion( c 4eor z < 1
d almo everywhere oe zl 1) i (eeeillg) boeded w from zero

(ii’) c 0for k > 0 and the function (z) cz (defined for
z > 1 and almost everywhere on z 1) is (essentially) bounded away from

zero on z 1;
(iii) (0) is real (i.e., c_ ), and either (0) m > 0 or

() -m < O.

In the cases (i)-(ii’) it is easier to verify directly the boundedness of +(0),
+(0)-1 (for suitable choice of log ) thn to use the criterion of the theorem.
In case (i), the lemma of Section 2 shows that the Fourier series for any
continuous log converges absolutely, so the functions f(0) are bounded.
In case (ii) we have, clearly, +(0) (e), _(0) 1, and the required
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boundedness is immediate. Case (ii’) is similar. (It follows easily from
Theorem I that in cases (ii) and (ii’) we have T- T- .) In case (iii)
we may take arg 0 or r, and the invertibility follows from Theorem IV.
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