# INVERSION OF TOEPLITZ MATRICES 

BY<br>Alberto Calderón, ${ }^{1}$ Frank Spitzer, ${ }^{2}$ and Harold Widom ${ }^{1}$

## 1. Introduction

This paper deals with the inversion of the Toeplitz matrix $T=\left(c_{j-k}\right)$, $j, k=0,1, \cdots$. It will be assumed that the $c_{k}$ are the Fourier coefficients of a function $\varphi(\theta)$,

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k \theta} \varphi(\theta) d \theta, \quad k=0, \pm 1, \cdots
$$

Since the inversion of $T$ is equivalent to the solution of a system of equations of the form

$$
\sum_{k=0}^{\infty} c_{j-k} x_{k}=y_{j}, \quad j=0, \pm 1, \cdots
$$

we see that we are dealing with the discrete analogue of a Wiener-Hopf equation. It might be expected then that we shall look for a factorization of $\varphi$ of the form $\varphi=\varphi_{+} \varphi_{-}$, where $\varphi_{+}(\theta)$ and $\varphi_{-}(\theta)$ are boundary values of functions analytic inside and outside the unit circle, respectively. This, in fact, is the crux of the matter.

In Section 2 we consider the case $\sum_{-\infty}^{\infty}\left|c_{k}\right|<\infty$. Then $T$ may be considered a bounded operator on the space $l_{\infty}^{+}$of bounded sequences $X=\left\{x_{0}, x_{1}, \cdots\right\}$ with $\|X\|=\sup \left|x_{k}\right|$, and a necessary and sufficient condition is found for the invertibility of $T$ (Theorem I). In case $T$ is invertible, a generating function is found for the entries of the matrix $T^{-1}$ (Theorem III). As a consequence of the theory we obtain a theorem of Tauberian type: Certain sets are shown to be fundamental in $l_{1}^{+}$, the space of all $X=\left\{x_{0}, x_{1}, \cdots\right\}$ with $\|X\|=\sum_{0}^{\infty}\left|x_{k}\right|<\infty$ (Corollary of Theorem II).

In Section 3 the condition $\sum\left|c_{k}\right|<\infty$ is dropped, but it is still assumed that $\varphi$ is bounded. In this case $T$ may be considered an operator (bounded by the boundedness of $\varphi$ using Parseval's relation) on the space $l_{2}^{+}$of square summable sequences $X=\left\{x_{\theta}, x_{1}, \cdots\right\}$ with $\|X\|^{2}=\sum_{k=0}^{\infty}\left|x_{k}\right|^{2}$, and we find a sufficient condition for the invertibility of $T$ (Theorem IV).

Note added in proof. A substantial part of this paper (Theorems I and II and an analogue of Theorem III) was discovered independently by M. G. Kreĭn in his paper, Integral equations on the half-line with a difference kernel, Uspehi Mat. Nauk, vol 13, no. 5 (1958), pp. 3-120 (Russian). Where the operator $T$ is concerned, with $\sum\left|c_{k}\right|<\infty$, our paper is practically identical with Kreĭn's, in regard to both methods and results. Kreĭn has gone further

[^0]in considering the continuous analogue of our problem, where $T$ is an integral operator of the Wiener-Hopf type.

## 2. The $l_{\infty}^{+}$theory

Throughout this section we shall assume $\sum_{-\infty}^{\infty}\left|c_{k}\right|<\infty$, and consider $T$ an operator on $l_{\infty}^{+}: T\left\{x_{j}\right\}=\left\{\sum_{0}^{\infty} c_{j-k} x_{k}\right\}$.

For convenience we introduce the larger space $l_{\infty}$ of bounded doubly infinite sequences $\left\{\cdots, x_{-1}, x_{0}, x_{1}, \cdots\right\}$. There is then a natural embedding of $l_{\infty}^{+}$into $l_{\infty}$ given by $\left\{x_{0}, x_{1}, \cdots\right\} \rightarrow\left\{\cdots, 0, x_{0}, x_{1}, \cdots\right\}$, and a natural projection $P$ of $l_{\infty}$ onto $l_{\infty}^{+}$given by $P\left\{\cdots, x_{-1}, x_{0}, x_{1}, \cdots\right\}=\left\{x_{0}, x_{1}, \cdots\right\}$.

For a function $f(\theta)=\sum_{-\infty}^{\infty} b_{k} e^{i k \theta}$ with $\sum\left|b_{k}\right|<\infty$, we define the operator $M_{f}$ on $l_{\infty}$ by

$$
M_{f}\left\{x_{j}\right\}=\left\{\sum_{k=-\infty}^{\infty} b_{j-k} x_{k}\right\}
$$

It is clear that $T=P M_{\varphi}$; it should also be noted that $M_{f} M_{g}=M_{f g}$, and that if $b_{k}=0$ for $k<0$, then $M_{f}$ leaves $l_{\infty}^{+}$invariant. (Note that we have identified the space $l_{\infty}^{+}$with its image in $l_{\infty}$.)

Our first problem is the factorization of $\varphi$. Given a continuous function $f(\theta)$ on $[-\pi, \pi]$ with $f(\theta) \neq 0$, we set

$$
I(f)=(1 / 2 \pi) \Delta_{-\pi \leqq \theta \leqq \pi} \arg f(\theta)
$$

Lemma. ${ }^{3}$ If $\varphi(\theta) \neq 0$ and $I(\varphi)=0$, any continuously defined $\log \varphi(\theta)$ has an absolutely convergent Fourier series.

Proof. Letting $\arg \varphi(\theta)$ denote any continuous argument of $\varphi$ we can find a trigonometric polynomial $p(\theta)$ such that

$$
|\arg \varphi(\theta)-p(\theta)|<\pi / 2, \quad-\pi \leqq \theta \leqq \pi
$$

(Note that our assumption $I(\varphi)=0$ is equivalent to $\arg \varphi(-\pi)=\arg \varphi(\pi)$.) Then if we set

$$
\varphi_{1}(\theta)=e^{-i p(\theta)} \varphi(\theta),
$$

$\varphi_{1}(\theta)$ has an absolutely convergent Fourier series, and its range lies in the half plane $\mathcal{R} \dot{\varphi}_{1}>0$. Therefore, by the Wiener-Lévy theorem, we can find a function $\psi_{1}(\theta)$ with absolutely convergent Fourier series such that $\varphi_{1}(\theta)=$ $e^{\psi_{1}(\theta)}$. Then $\log \varphi(\theta)$ is, except for an additive constant, just $\psi_{1}(\theta)+i p(\theta)$, and so certainly has an absolutely convergent Fourier series.

With the hypothesis of the lemma holding, it is easy to obtain the desired factorization of $\varphi$. Choose any continuous $\log \varphi$ and write

$$
\begin{gather*}
\log \varphi(\theta)=\sum_{k=-\infty}^{\infty} a_{k} e^{i k \theta}  \tag{1}\\
f_{+}(\theta)=\sum_{k=0}^{\infty} a_{k} e^{i k \theta}, \quad f_{-}(\theta)=\sum_{k=-\infty}^{-1} a_{k} e^{i k \theta}  \tag{2}\\
\varphi_{+}(\theta)=\exp \left(f_{+}(\theta)\right), \quad \varphi_{-}(\theta)=\exp \left(f_{-}(\theta)\right) \tag{3}
\end{gather*}
$$

[^1]Then the functions $\varphi_{+}(\theta), \varphi_{-}(\theta), \varphi_{+}(\theta)^{-1}, \varphi_{-}(\theta)^{-1}$ have absolutely convergent Fourier series, and $\varphi(\theta)=\varphi_{+}(\theta) \varphi_{-}(\theta)$. We are now in a position to prove half of the following.

Theorem I. A necessary and sufficient condition that $T$ be invertible is that $\varphi(\theta) \neq 0$ and $I(\varphi)=0$. Under these conditions $T^{-1}=M_{\varphi_{\dagger}^{-1}} P M_{\varphi_{-}-1}$.

We prove now that under the stated conditions $T^{-1}$ exists and is what it is purported to be. Note that $M_{\varphi_{+}^{-1}}$ leaves $l_{\infty}^{+}$invariant, so $U=M_{\varphi_{-}^{-1}} P M_{\varphi_{-}^{-1}}$ is a (bounded) operator on $l_{\infty}^{+}$. Let $X \in l_{\infty}^{+}$. Then

$$
\begin{align*}
T U X & =P M_{\varphi} M_{\varphi_{-}^{-1}} P M_{\varphi_{-}^{1}} X=P M_{\varphi_{-}} P M_{\varphi_{-}^{1}} X \\
& =P M_{\varphi_{-}} M_{\varphi_{-}^{-1}} X-P M_{\varphi_{-}}(I-P) M_{\varphi_{-}=1} X  \tag{4}\\
& =X-P M_{\varphi_{-}}(I-P) M_{\varphi_{-}^{-1}} X,
\end{align*}
$$

where $I$ is the identity operator. Since

$$
M_{\varphi_{-}}(I-P)=(I-P) M_{\varphi_{-}}(I-P)
$$

i.e., since $M_{\varphi_{-}}$leaves invariant the space of all $\left\{\cdots, x_{-1}, 0,0, \cdots\right\}$, the second term of (4) vanishes, and we obtain $T U X=X$.

Similarly,

$$
\begin{aligned}
U T X & =M_{\varphi_{-}^{-1}} P M_{\varphi_{-}^{-1}} P M_{\varphi} X \\
& =M_{\varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}} M_{\varphi} X-M \varphi_{+}^{-1} P M_{\varphi_{-}}(I-P) M_{\varphi} X \\
& =X-M_{\varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}}(I-P) M_{\varphi} X .
\end{aligned}
$$

Again the second term vanishes since $M_{\varphi=1}$ leaves invariant the space of all $\left\{\cdots, x_{-1}, 0,0, \cdots\right\}$, and we obtain $U T X=X$.

It will be convenient to defer the proof of the rest of Theorem I until after our next result, which tells us what happens when $\varphi(\theta) \neq 0$ but $I(\varphi)=n \neq 0$. In this case $I\left(e^{-i n \theta} \varphi(\theta)\right)=0$, and we again introduce functions $\varphi_{+}(\theta), \varphi_{-}(\theta)$ by means of (2) and (3), but now the coefficients $a_{k}$ are obtained from (1) with $\varphi(\theta)$ replaced by $e^{-i n \theta} \varphi(\theta)$. The factorization now becomes

$$
e^{-i n \theta} \varphi(\theta)=\varphi_{+}(\theta) \varphi_{-}(\theta)
$$

Theorem II. Assume $\varphi(\theta) \neq 0$. (a) If $n=I(\varphi)>0, T$ is one-one, and its range is a subspace of $l_{\infty}^{+}$of deficiency $n ; T$ has the bounded left inverse $M_{e^{-i n \theta} \varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}}$. (b) If $n=I(\varphi)<0, T$ is onto and has null space of dimension $|n| ; T$ has the bounded right inverse $M_{e^{-i n} \varphi_{\varphi-}^{-1}} P M_{\varphi_{-}=1}$.

Proof. (a) $T=P M_{\varphi}=P M_{e^{-i n \theta} \varphi} M_{e^{i n \theta}}$. Since $I\left(e^{-i n \theta} \varphi(\theta)\right)=0$, we conclude from (what has been proved of) Theorem I that $P M_{e^{-i n \theta} \varphi}$ is one-one and onto $l_{\infty}^{+}$. Since $M_{e^{i n \theta}} l_{\infty}^{+}$is a subspace of deficiency $n, T$ is one-one and has range of deficiency $n$. Since $P M_{e^{-i n \theta} \varphi}$ has inverse $M_{\varphi_{-}^{-1}} P M_{\varphi_{-}}{ }^{1}$, we have

$$
M_{e^{-i n \theta} \varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}} T X=M_{e^{-i n \theta}}\left(M_{\varphi_{-}^{-1}} P M_{\varphi_{-}^{-1}}\right)\left(P M_{e^{-i n \theta} \varphi}\right) M_{e^{i n \theta}} X=X
$$

(b) In this case $T=P M_{e^{-i n \theta} \varphi} M_{e^{i n \theta}}$ shows that $T$, when restricted to a subspace of $l_{\infty}^{+}$of deficiency $|n|$ (namely $M_{e^{-i n \theta}} l_{\infty}^{+}$) is one-one and onto $l_{\infty}^{+}$. Thus $T$ is onto and has null space of dimension $|n|$. Moreover

$$
\begin{aligned}
T M_{e^{-i n \theta} \varphi_{-}^{-1}} P M_{\varphi_{-}^{-1}} X & =P M_{e^{-i n \theta} \varphi} M_{e^{i n \theta}} M_{e^{-i n \theta}} M_{\varphi_{+}^{-1}} P M_{\varphi-}^{-1} X \\
& =\left(P M_{e^{-i n \theta_{\varphi}}}\right)\left(M_{\varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}}\right) X=X .
\end{aligned}
$$

Corollary. Denote by $C_{k}$ the element $\left\{c_{-k}, c_{-k+1}, \cdots, c_{0}, c_{1}, \cdots\right\}$ of $l_{1}^{+}$. Assume $\varphi(\theta) \neq 0$. Then a necessary and sufficient condition that the set $C_{0}, C_{1}, \cdots$ be fundamental in $l_{1}^{+}$is that $I(\varphi) \leqq 0$.

In the case $c_{-1}=c_{-2}=\cdots=0$ the conditions $\varphi(\theta) \neq 0, I(\varphi) \leqq 0$ are equivalent to the assertion that the function $\Phi(z)=\sum_{0}^{\infty} c_{k} z^{k}$, which is analytic in the unit circle, has no zero on $|z| \leqq 1$. The result in this case was proved by Nyman [2]. (It is easy to see, in this special case, that the condition $\varphi(\theta) \neq 0$ is certainly necessary.)

When we pass to the proof, the Hahn-Banach theorem tells us that a necessary and sufficient condition that $C_{0}, C_{1}, \cdots$ is not fundamental is the existence of a nonzero vector $X=\left\{x_{j}\right\} \in l_{\infty}^{+}$such that

$$
\sum_{j=0}^{\infty} c_{k-j} x_{j}=0, \quad k=0,1, \cdots
$$

Thus $C_{0}, C_{1}, \cdots$ is not fundamental if and only if the Toeplitz matrix corresponding to $\overline{\varphi(\theta)}$ has a null space, and by Theorems I and II this is equivalent to $I(\bar{\varphi})<0$, i.e., to $I(\varphi)>0$.

We proceed now to the completion of the proof of Theorem I. Now that we have Theorem II, we need only show that if $\varphi(\theta)=0$ for some $\theta$, then $T$ is not invertible. We use the fact that the invertible elements of a Banach algebra form an open set. (See, for example, Loomis [1], Theorem 22B.) It suffices therefore to show that $T$ is the limit of noninvertible Toeplitz matrices. Note that if $T_{\psi}$ denotes the Toeplitz matrix of $\psi(\theta)=\sum_{-\infty}^{\infty} d_{k} e^{i k \theta}$, then $\left\|T_{\psi}\right\|=\sum\left|d_{k}\right|$. We may assume, without loss of generality, that $\varphi(0)=0$. We make first some additional assumptions concerning $\varphi$, these being removed in stages.
(A) We assume, in addition to $\varphi(0)=0$, that (i) $\varphi(\theta)=0$ only for $\theta=0$; (ii) $\varphi^{\prime}(0) \neq 0$; (iii) for some $R_{0}>1$ the series $\sum_{-\infty}^{\infty}\left|c_{k}\right| R^{|k|}$ converges for $0 \leqq R<R_{0}$. Then the function $\Phi(z)=\sum_{-\infty}^{\infty} c_{k} z^{k}$ is analytic in the annulus $R_{0}^{-1}<|z|<R_{0}, \Phi(z)$ has exactly one zero on $|z|=1$, this being at $z=1$, and $\Phi^{\prime}(1) \neq 0$. Choose $r>0$ so small that firstly $r<1-R_{0}^{-1}$, and secondly that $\Phi(z)$ has no zero inside or on the circle $C:|z-1|=r$ except for the one at $z=1$. Set

$$
\delta=\min \left(\min _{C}|\Phi(z)|, \min _{\{|z|=1\}} \cap_{\{|z-1| \geqq r\}}|\Phi(z)|\right)
$$

Let $\varepsilon>0$ be so small that $\varepsilon<r,|\Phi(1 \pm \varepsilon)|<\delta$. Then the functions

$$
\Phi_{\varepsilon}(z)=\Phi(z)-\Phi(1+\varepsilon) \quad \text { and } \quad \Phi_{-\varepsilon}(z)=\Phi(z)-\Phi(1-\varepsilon)
$$

have, firstly, no zeros on $\{|z|=1 \cap|z-1| \geqq r\}$, secondly, no zeros on $C$, and thirdly (by Rouche's theorem), exactly one (of multiplicity one) inside $C$, the zero of $\Phi_{\varepsilon}(z)$ being of course at $1+\varepsilon$ and that of $\Phi_{-\varepsilon}(z)$ at $1-\varepsilon$. In particular, $\Phi_{\varepsilon}$ and $\Phi_{-\varepsilon}$ are not zero on $|z|=1$. We claim

$$
\begin{equation*}
\Delta_{|z|=1} \arg \Phi_{-\varepsilon}(z)-\Delta_{\mid z=1} \arg \Phi_{\varepsilon}(z)=2 \pi \tag{5}
\end{equation*}
$$

the unit circle being traversed in the positive direction. The left side of (5), being continuous in $\varepsilon$ and always an integral multiple of $2 \pi$, must be a constant. It suffices therefore to show that its limit as $\varepsilon \rightarrow 0+$ is $2 \pi$. We have

$$
\begin{aligned}
& \Delta_{\{|z|=1\}} \cap_{\{|z-1| \geqq r\}} \arg \Phi_{-\varepsilon}(z)-\Delta_{\{|z|=1\}} \cap_{\{|z-1| \geqq r\}} \arg \Phi_{\varepsilon}(z) \\
&=\Delta_{\{|z|=1\} \cap}\{|z-1| \geqq r\} \\
& \arg \frac{\Phi(z)-\Phi(1-\varepsilon)}{\Phi(z)-\Phi(1+\varepsilon)}
\end{aligned}
$$

whichtendsto 0 as $\varepsilon \rightarrow 0+$. Let $C^{+}=C \cap\{|z| \geqq 1\}$ and $C^{-}=C \cap\{|z| \leqq 1\}$, the directions on these arcs being that of the positive direction on $C$. Since the one zero of $\Phi_{-\varepsilon}(z)$ is inside $|z|=1$, it has no zero between $|z|=1$ and $C^{+}$, so

$$
\Delta_{\{|z|=1\}} \cap\{|z-1| \leqq r\} \in \arg \Phi_{-\varepsilon}(z)=\Delta_{C^{+}} \arg \Phi_{-\varepsilon}(z) \rightarrow \Delta_{C^{+}} \arg \Phi(z)
$$

as $\varepsilon \rightarrow 0+$. Similarly,

$$
\left.\Delta_{\{|z|=1\} \cap} \cap|z-1| \leqq r\right\}|c| c|c| c \Delta_{C^{-}} \arg \Phi(z)
$$

as $\varepsilon \rightarrow 0+$. Thus

$$
\lim _{\varepsilon \rightarrow 0+}\left(\Delta_{|z|=1} \arg \Phi_{-\varepsilon}(z)-\Delta_{|z|=1} \arg \Phi_{\varepsilon}(z)\right)=\Delta_{C} \arg \Phi(z)=2 \pi
$$

and (5) is established.
Let $\varphi_{\varepsilon}(\theta)=\Phi_{\varepsilon}\left(e^{i \theta}\right), \varphi_{-\varepsilon}(\theta)=\Phi_{-\varepsilon}\left(e^{i \theta}\right)$. Then $\varphi_{ \pm \varepsilon}(\theta) \neq 0$, and, by (5), $I\left(\varphi_{\varepsilon}\right) \neq I\left(\varphi_{-\varepsilon}\right)$. Thus at least one of $I\left(\varphi_{\varepsilon}\right), I\left(\varphi_{-\varepsilon}\right)$ is not zero. If, to be specific, $I\left(\varphi_{\varepsilon}\right) \neq 0$, we know from Theorem II that $T_{\varphi_{\varepsilon}}$ is not invertible. Since $\left\|T_{\varphi}-T_{\varphi_{\varepsilon}}\right\|=|\Phi(1+\varepsilon)| \rightarrow 0$ as $\varepsilon \rightarrow 0$, we conclude that $T\left(=T_{\varphi}\right)$ is not invertible.
(B) We now drop the restriction (i) of case (A), keeping (ii) and (iii). Now $\Phi(z)$ may have zeros on $|z|=1$ other than the simple zero at $z=1$. Denote these other zeros by $\alpha_{k}$, the corresponding multiplicities being $m_{k}$. Then

$$
\Phi(z)=(z-1) \Pi\left(z-\alpha_{k}\right)^{m_{k}} \Psi(z)
$$

where $\Psi(z) \neq 0$ on $|z|=1$. If $0<r<1$,

$$
\Phi_{r}(z)=(z-1) \prod\left(z-r \alpha_{k}\right)^{m_{k}} \Psi(z)
$$

then $\varphi_{r}(\theta)=\Phi_{r}\left(e^{i \theta}\right)$ satisfies the conditions of (A), so that $T_{\varphi_{r}}$ is not invertible. Moreover, since $\Phi_{r}(z) \rightarrow \Phi(z)$ as $r \rightarrow 1$ - uniformly in an annulus around $|z|=1$, it is easily seen that $\left\|T_{\varphi}-T_{\varphi_{r}}\right\| \rightarrow 0$, so $T$ is not invertible.
(C) We drop restriction (ii), keeping only (iii). If $\varphi^{\prime}(0)=0$, then for $\varepsilon \neq 0, \varphi_{\varepsilon}(\theta)=\varphi(\theta)+\varepsilon \sin \theta$ satisfies (ii) and (iii), so by (B), $T_{\varphi_{\varepsilon}}$ is not invertible. Moreover $\left\|T_{\varphi}-T_{\varphi_{\varepsilon}}\right\|=\varepsilon$. Therefore $T$ is not invertible.
(D) Finally we drop (iii). For $0<r<1$, set

$$
\varphi_{r}(\theta)=\sum_{-\infty}^{\infty} c_{k} r^{|k|}\left(e^{i k \theta}-1\right)
$$

Then $\varphi_{r}(0)=0$, and (iii) is satisfied with $R_{0}=r^{-1}$. We have

$$
\left\|T_{\varphi}-T_{\varphi_{r}}\right\| \leqq \sum_{-\infty}^{\infty}\left|c_{k}\left(1-r^{|k|}\right)\right|+\left|c_{0}+\sum_{-\infty}^{\prime \infty} c_{k} r^{|k|}\right|
$$

where the prime means that the term corresponding to $k=0$ is to be omitted. The first sum certainly tends to 0 as $r \rightarrow 1-$, and so also does the second term since $\sum_{-\infty}^{\infty} c_{k}=0$.

This completes the proof of Theorem I.
Theorem III. Assume $\varphi(\theta) \neq 0, I(\varphi)=0$, and let $T_{j, k}^{-1}$ denote the $j, k$ entry of the matrix $T^{-1}$. Then

$$
\begin{align*}
& (1-s t) \sum_{j, k=0}^{\infty} s^{j} t^{k} T_{j, k}^{-1} \\
& =\exp \left(-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-s t}{1-s e^{-i \theta}-t e^{i \theta}+s t} \log \varphi(\theta) d \theta\right), \quad|s|,|t|<1 \tag{6}
\end{align*}
$$

Proof. We introduce the analytic functions

$$
\begin{array}{lll}
F_{+}(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, & \Phi_{+}(z)=\exp \left(F_{+}(z)\right), & |z|<1 \\
F_{-}(z)=\sum_{k=-\infty}^{-1} a_{k} z^{k}, & \Phi_{-}(z)=\exp \left(F_{-}(z)\right), & |z|>1
\end{array}
$$

We have

$$
\begin{align*}
\sum_{k=0}^{\infty} t^{k} T_{j, k}^{-1} & =j^{\text {th }} \text { component of } T^{-1}\left\{1, t, t^{2}, \cdots\right\}  \tag{7}\\
& =j^{\text {th }} \text { component of } M_{\varphi_{+}^{-1}} P M_{\varphi=}^{-1}\left\{1, t, t^{2}, \cdots\right\}
\end{align*}
$$

Now $M_{\varphi=1}\left\{1, t, t^{2}, \cdots\right\}$ is the sequence of Fourier coefficients of

$$
\frac{\varphi_{-}(\theta)^{-1}}{1-t e^{i \theta}}
$$

so $P M_{\varphi_{-}=1}\left\{1, t, t^{2}, \cdots\right\}$ is the sequence of Fourier coefficients of

$$
\begin{aligned}
\sum_{j=0}^{\infty} e^{i j \theta} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\varphi_{-}\left(\theta^{\prime}\right)^{-1}}{1-t e^{i \theta^{\prime}}} e^{-i j \theta^{\prime}} d \theta^{\prime} & =\sum_{j=0}^{\infty} e^{i j \theta} \frac{1}{2 \pi i} \int_{|z|=1} \frac{\Phi_{-}(z)^{-1}}{1-t z} \frac{d z}{z^{j+1}} \\
& =\sum_{j=0}^{\infty} e^{i j \theta} \Phi_{-}\left(t^{-1}\right)^{-1} t^{j}=\frac{\Phi_{-}\left(t^{-1}\right)^{-1}}{1-t e^{i \theta}}
\end{aligned}
$$

Therefore $M_{\varphi_{+}^{-1}} P M_{\varphi_{-}^{-1}}\left\{1, t, t^{2}, \cdots\right\}$ is the sequence of Fourier coefficients of

$$
\Phi_{-}\left(t^{-1}\right)^{-1} \frac{\varphi_{+}(\theta)^{-1}}{1-t e^{i \theta}} .
$$

Consequently (7) gives

$$
\begin{aligned}
\sum_{j, k=0}^{\infty} s^{j} t^{k} T_{j, k}^{-1} & =\Phi_{-}\left(t^{-1}\right)^{-1} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\varphi_{+}(\theta)^{-1}}{\left(1-t e^{i \theta}\right)\left(1-s e^{i \theta}\right)} d \theta \\
& =\Phi_{-}\left(t^{-1}\right)^{-1} \frac{1}{2 \pi i} \int_{|z|=1} \frac{\Phi_{+}(z)^{-1}}{(1-t z)(z-s)} d z \\
& =\frac{\Phi_{-}\left(t^{-1}\right)^{-1} \Phi_{+}(s)^{-1}}{1-s t}
\end{aligned}
$$

It remains to equate $\Phi_{-}\left(t^{-1}\right)^{-1} \Phi_{+}(s)^{-1}$ with the expression on the right of (6). But this is easy since

$$
\begin{array}{ll}
F_{+}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\log \varphi(\theta)}{1-z e^{-i \theta}} d \theta, & |z|<1 \\
F_{-}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\log \varphi(\theta)}{z e^{-i \theta}-1} d \theta, & |z|>1 \tag{8}
\end{array}
$$

We should like to point out that in case $T$ is symmetric, i.e., $\varphi(\theta)$ is even, the right side of (6) may be written in a different form. We have, in this circumstance,

$$
\begin{aligned}
F_{+}(s) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-s \cos \theta}{1-2 s \cos \theta+s^{2}} \log \varphi(\theta) d \theta \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \varphi(\theta) d \theta+\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{1-s^{2}}{1-2 s \cos \theta+s^{2}} \log \varphi(\theta) d \theta \\
F_{-}\left(t^{-1}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{t \cos \theta-t^{2}}{1-2 t \cos \theta+t^{2}} \log \varphi(\theta) d \theta \\
& =-\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \varphi(\theta) d \theta+\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{1-t^{2}}{1-2 t \cos \theta+t^{2}} \log \varphi(\theta) d \theta
\end{aligned}
$$

and so

$$
\Phi_{-}\left(t^{-1}\right)^{-1} \Phi_{+}(s)^{-1}=\{G(s, \varphi) G(t, \varphi)\}^{-1 / 2}
$$

where

$$
G(r, \varphi)=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos \theta+r^{2}} \log \varphi(\theta) d \theta\right)
$$

## 3. The $l_{2}^{+}$theory

Here we drop the assumption $\sum\left|c_{k}\right|<\infty$, replacing it by

$$
\varphi(\theta) \in L_{\infty}(-\pi, \pi)
$$

The Toeplitz matrix $T$ may now be considered a bounded operator on the space $l_{2}^{+}$of square summable sequences $\left\{x_{0}, x_{1}, \cdots\right\}$. Our results here go in only one direction; we find a sufficient condition for the invertibility of $T$.

Theorem IV. Assume $\varphi(\theta)^{-1} \epsilon L_{\infty}(-\pi, \pi)$, and that there exists a determination of $\arg \varphi$ (belonging to $L_{2}(-\pi, \pi)$ ) whose conjugate function

$$
\frac{1}{2 \pi} \mathrm{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2}\left(\theta-\theta^{\prime}\right) \arg \varphi\left(\theta^{\prime}\right) d \theta^{\prime}
$$

belongs to $L_{\infty}(-\pi, \pi)$. Then $T$ is an invertible operator on $l_{2}^{+}$, and the entries of the matrix $T^{-1}$ are determined by (6).

Proof. With $\log \varphi$ determined by the $\arg \varphi$ in the hypothesis, we define the functions $f_{ \pm}(\theta), \varphi_{ \pm}(\theta)$ by (1)-(3), the series converging in $L_{2}$. If we can show that the functions $\varphi_{ \pm}(\theta), \varphi_{ \pm}(\theta)^{-1}$ are in $L_{\infty}(-\pi, \pi)$, the proofs of
the relevant part of Theorem I and of Theorem III can be modified for the present situation; all we need do is replace $\infty$ by 2 on occasion.

The required boundedness is equivalent to the boundedness of $\Omega f_{+}(\theta)$ and $\overparen{R} f_{-}(\theta)$; we shall give the proof for $\overparen{R} f_{+}$, the proof for $\overparen{R} f_{-}$being analogous. We have, almost everywhere,

$$
f_{+}(\theta)=\lim _{r \rightarrow 1-} \sum_{k=0}^{\infty} a_{k} r^{k} e^{i k \theta}=\lim _{r \rightarrow 1-} F_{+}\left(r e^{i \theta}\right)
$$

where, recall, $F_{+}(z)$ is given by (8). A simple computation gives

$$
\begin{aligned}
\Re F_{+}\left(r e^{i \theta}\right)= & \frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \left|\varphi\left(\theta^{\prime}\right)\right| d \theta^{\prime} \\
& +\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos \left(\theta-\theta^{\prime}\right)+r^{2}} \log \left|\varphi\left(\theta^{\prime}\right)\right| d \theta^{\prime} \\
& \quad-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{r \sin \theta^{\prime}}{1-2 r \cos \left(\theta-\theta^{\prime}\right)+r^{2}} \arg \varphi\left(\theta^{\prime}\right) d \theta^{\prime} .
\end{aligned}
$$

The second integral converges almost everywhere to $\frac{1}{2} \log |\varphi(\theta)|$, and the third to

$$
\frac{1}{2 \pi} \mathrm{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2}\left(\theta-\theta^{\prime}\right) \arg \varphi\left(\theta^{\prime}\right) d \theta^{\prime}
$$

(see, for example, [3, §3.34]). Therefore, almost everywhere,

$$
\begin{aligned}
& \Re f_{+}(\theta)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log \left|\varphi\left(\theta^{\prime}\right)\right| d \theta^{\prime}+\frac{1}{2} \log |\varphi(\theta)| \\
& -\frac{1}{2 \pi} \mathrm{PV} \int_{-\pi}^{\pi} \cot \frac{1}{2}\left(\theta-\theta^{\prime}\right) \arg \varphi\left(\theta^{\prime}\right) d \theta^{\prime},
\end{aligned}
$$

and the result is clear.
Corollary. The matrix $T$ is invertible under any of the following conditions:
(i) $\sum_{-\infty}^{\infty}\left|c_{k}\right|<\infty, \varphi(\theta) \neq 0$, and $I(\varphi)=0$;
(ii) $\quad c_{k}=0$ for $k<0$ and the function $\Phi(z)=\sum_{0}^{\infty} c_{k} z^{k}$ (defined for $|z|<1$ and almost everywhere on $|z|=1$ ) is (essentially) bounded away from zero on $|z| \leqq 1$;
(ii') $\quad c_{k}=0$ for $k>0$ and the function $\Phi(z)=\sum_{-\infty}^{0} c_{k} z^{k}$ (defined for $|z|>1$ and almost everywhere on $|z|=1$ ) is (essentially) bounded away from zero on $|z| \geqq 1$;
(iii) $\varphi(\theta)$ is real (i.e., $c_{-k}=\bar{c}_{k}$ ), and either $\varphi(\theta) \geqq m>0$ or $\varphi(\theta) \leqq-m<0$.

In the cases (i)-(ii') it is easier to verify directly the boundedness of $\varphi_{+}(\theta)$, $\varphi_{+}(\theta)^{-1}$ (for suitable choice of $\log \varphi$ ) than to use the criterion of the theorem. In case (i), the lemma of Section 2 shows that the Fourier series for any continuous $\log \varphi$ converges absolutely, so the functions $f_{ \pm}(\theta)$ are bounded. In case (ii) we have, clearly, $\varphi_{+}(\theta)=\Phi\left(e^{i \theta}\right), \varphi_{-}(\theta)=1$, and the required
boundedness is immediate. Case (ii') is similar. (It follows easily from Theorem I that in cases (ii) and (ii') we have $T^{-1}=T_{\varphi^{-1}}$.) In case (iii) we may take $\arg \varphi \equiv 0$ or $\equiv \pi$, and the invertibility follows from Theorem IV.

## References

1. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
2. B. Nyman, On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, 1950.
3. A. Zygmund, Trigonometrical series, New York, 1955.

Massachusetts Institute of Teghnology
Cambridge, Massachusetts
University of Minnesota
Minneapolis, Minnesota
Cornell University
Ithaca, New York


[^0]:    Received May 26, 1958.
    ${ }^{1}$ This research was supported by the U. S. Air Force.
    ${ }^{2}$ Research sponsored by the ONR at Cornell University.

[^1]:    ${ }^{3}$ This lemma follows from general results of R. Cameron and $N$. Wiener. The simple proof below was suggested by L. Welch.

