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1. Introduction

The purpose of the present paper, which is almost entirely self-contained
nd requires no prior knowledge of information theory, is to prove the strong
converse of the coding theorem for the semicontinuous memoryless channel
with any distribution of error whatever (arbitrary noise). The exact result
will be stated in Section 4. It will be explained below why it is not possible
to reduce our problem by the usual discretization procedure to the discrete
memoryless channel, for which the strong converse has been proved. (See
Theorem 2 of [1]. Actually this result is stronger than the strong converse;
this point will be explained lter.) We will also explain below the difference
between a weak and strong converse; the two are sometimes confused in the
literature.

In [2] and [3] the strong converse of the coding theorem was extended to
certain discrete channel with memory. The proofs rested on the strong con-
verse for the discrete memoryless channel. It is eusy to carry over both of
these proofs to the analogous semicontinuous channel with memory, provided
the strong converse for the semicontinuous memoryless channel has already
been proved.
Another proof of the theorem is sketched briefly in the last section. The

author is of the opinion that modifications of these proofs will apply to a wide
variety of channels.

Professor C. E. Shannon has informed the author that in an unpublished
paper he proved the strong converse for the discrete memoryless channel.
In [4] he proved the strong converse for a particular continuous chunnel with
additive Gaussian noise.

2. The semicontinuous memoryless channel

We assume, without essential loss of generality, that the alphabet of letters
sent or transmitted consists of two symbols, say zero and one. The extension
of our results to the case when this lphubet contains uny finite number of
symbols is trivial.
The channel probability function consists of a pair (because the alphabet

of transmitted symbols contains two elements) of probability distribution
functions F0 und F. For simplicity of exposition we will take these to be
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distribution functions on the real line, although they could be taken to be
distribution functions on any -algebra of sets without any additional trouble.

In the special case where F0 and F1 are step functions on the real line (say)
with a finite number of jumps, the channel to be described below is called the
discrete memoryless channel (d.m.c.). In the general case it is called the
semicontinuous memoryless channel (s-c.m.c.).
Any sequence of n zeros and ones will be called a u-sequence. Any sequence

of n real numbers will be called a v-sequence. In our channel u-sequences are
sent and are received as v-sequences. If the u-sequence u (xl, xn)
is sent, the received v-sequence

(2.1) v(u) (Y(u), Y,(u))

is a sequence of independent chance variables with distributions given by

(2.2) P{Y(u) < z} Fx(z), i 1, ..., n,

where the symbol PI denotes the probability of the relation in braces.
A code of length N and probability of error _<_ is a set

(2.3) {(Ul, A1), ..., (uN,

where, for i 1, n, u is a u-sequence, A is a Borel set of v-sequences
(i.e., A, considered as a set of points in n-space, is a Borel set), the As are
disjoint, and

(2.4) P{v(u) A} >-- 1 ), i 1,..., n.

Let C be the "capacity" of the channel. This number was first given by
Shannon in his fundamental paper [5], and is precisely defined in Section 3
below. Following an initial formulation by Shannon [5], one or more of the
following closely related "coding theorems" were proved in [6], [7], [8], and
[1], for the d.m.c, and also for other channels:

I. Let v > 0 and N, 0 < N _-< 1, be arbitrary.
exists a code of length

(2.5) N 2(-)

For n sufficiently large there

and probability of error

II. Let ), 0 < ) <- 1, be arbitrary. There exists a positive constant
K > 0 such that, for any n, there exists a code of length

(2.6) N 2nc-Knl

and probability of error __< .
III. Let s > 0 be arbitrary. There exist positive constants cl and c with

the following property" For any n there exists a code of length 2n(c-) and
probability of error not greater than

(2.7) c e-.
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These results in the forms I and III can be immediately extended to the
s-c.m.c, by the following "discretization" procedure" The real line is divided
into a finite number of suitably chosen sets, say T1, Tk. When Yi(u),
i 1, n, falls into the set T., j 1, k, it is assigned the value j.
In this way the s-c.m.c, is changed to a d.m.c. By proper choice of the sets
ITs} one can achieve (this will be obvious from a later argument) that the
capacity of the d.m.c, differs by less than any prescribed number from the
capacity of the s-c.m.c. The coding theorem for the latter follows at once.
We now return to the d.m.c. To iustify the term "capacity" it is necessary

also to prove a converse to the coding theorem.

Wealc converse of the coding theorem for the d.m.c. Let > 0 be arbitrary.
Let k > 0 be suciently small.
exist a code of length

(2.8) N 2

and probability of error <__

This theorem was proved in [9] (cited in [10], p. 44).
a very large class of channels.

For all n sufficiently large there does not

The proof applies to

Strong converse of the coding theorem for the d.m.c. Let e > 0 and
},, 0 _-< ) < 1, be arbitrary. For n sufficiently large there does not exist a
code of length

(2.9) N 2(c+)

and probability of error __< ).

The basic difference between the two converses may be explained as follows"
It is obvious that, essentially, the smaller X the larger must the A be, and
the larger X the smaller may the A be. The weak converse says that, if k
is sufficiently small and hence the A are sufficiently large, N of the latter
cannot be packed into the space of v-sequences. The strong converse says
that, no matter how large X is and hence how small the A may be, it is still
not possible to pack N of the latter into the space of v-sequences.
The following somewhat stronger form of the strong converse for the d.m.c.

was proved in [1]" Let X, 0 -<_ X < 1, be arbitrary. There exists a positive
constant K’ such that, for any n, there does not exist a code of length

(2.10) N 2

and probability of error -< k.
(Professor Lionel Weiss has recently proved that, for a binary symmetric

channel (definition in [10], for example) under certain restrictions, the con-

The coding theorem could also be proved directly without discretization by the
methods of [6] and [8].
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stant K’ above can be negative. This stronger (for this particular case) result
can be extended to binary almost symmetric channels.4)

(The strong and weak converses are sometimes confused. Thus, the claim
of the authors of [11] that their results contain all previous results is based
on such a confusion and is therefore without basis in fact. Actually, [11]
repeats the proof of the weak converse given in [9] and [10].)
The strong converse of the coding theorem for the d.m.c, cannot be im-

mediately extended to the s-c.m.c, by the simple discretization procedure
which sufficed for the coding theorem, for the following reason: Discretization
means that the Borel sets A have a particular structure and are not the most
general possible. For the A of the special form implied by any particular
discretization, the strong converse holds at once (even the stronger converse
(2.10)). But this alone does not eliminate the possibility that codes might
be longer if the A were allowed to have their most general form. To put it
more graphically and intuitively" It is impossible to pack more than a certain
number of the A into the space of received sequences when the A have a
certain "reasonable" shape. But might it not be possible to pack more into
the space if the A were sufficiently sinuous and tortuous?

Since a discrete channel is also semicontinuous, it might be thought that
the result of the present paper implies the strong converse of [1]. This is not
so, for the following reason: For the discrete channel the theorem was proved
in the stronger form (2.10), while for the semicontinuous channel we are able
to prove only the weaker form (2.9). The obstacle to proving the stronger
form by the proof which follows is that one has to approximate certain in-
tegrals by finite sums.
To within the difference between (2.9) and (2.10) the present result for

semicontinuous channels implies the corresponding result for discrete channels.
If the functions f0 and fl below (Section 3) are simple, i.e., take only finitely
many values, one can, just as in [1], prove the results (2.10). However, this
generality is really spurious, because it will be seen that such a channel is
essentially discrete and only seemingly semicontinuous.

3. Preliminaries

be the general designation of the u-sequence sent. For purposes only of
mathematical manipulation it will frequently be convenient below to assume
that the x are independent, identically distributed chance variables, with

Plx 1} 1 1 P{x 0} 1 r0.

The proof of the latter result is simply that, by the argument of Theorem 2 of [1],
the constant K’ is a continuous function of the channel probability function. Professor
Weiss’s result will be published in the Quarterly of Applied Mathematics.
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For brevity we shall describe this as "stochastic input (r0, ’1)." We invite
the reader to verify that the use of this device will in no way vitiate the proof
of the theorem stated below. We shall always write below as if 0 -t- 1 1,
without further definition.
Throughout this paper all logarithms will be to the base 2. (This is purely

a matter of convention, as is the fact that the bounds for the length of a code
are expressed as powers of 2.) Whenever, in the formulae below, 0 log 0
occurs formally, it is to be understood as zero.

Let be the probability measure defined for every Borel set as the sum of the
measures assigned to this set by F0 and F1. Let f0 and f be, respectively,
Rdon-Nikodym derivatives of F0 and F with respect to . Of course these
are determined only to within sets of u-measure zero. However, we shall
write below as if they were completely determined and invite the reader to
verify that no error will be caused thereby. Thus, we assume f0 -[- f 1,
and when Uo (a, an) is a u-sequence nd v0 (b, b) is a v-
sequence, we write

(3.1) p(vo Uo) II=lfa(b)
as the density of V(Uo) at v0. If also there is a stochastic input, say (r0, rl),
we write

(3.2) p(uo) P{u u0},

(3.3) p(uo, Vo) p(uo)p(vo Uo),

(3.4) p(vo) Zall u-sequences p()p(vo

Finally, if A is a Borel set of v-sequences, we write

(3.5) p(A Uo) p(O Uo) (dO),

where (n) is the product measure X t X X in n-space, and

(3.6) p(uo A)

(3.7) p(A) p(2, A) p(O)t
all u-sequences

This is the notation used in [10] and is completely satisfactory as long as one
keeps in mind what the argument of p is, and what, if anything, the stochastic
input is. (The expressions p(v0 u0) and p(A u0) do not involve any sto-
chastic input.)
When there is a stochastic input (0, ), the entropy H(X) of the input

has been defined by Shannon [5] as

(3.8) H(X) _,
’i log r

0
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the conditional entropy H(YIX) of the output, given the input, as

(3.9) H(Y X) .._
’i fi(b) logf(b)(db);

the conditional entropy H(X Y) of the input, given the output, as

 (xl f_=o ’o fo(b) --[- ’1 fl(b)

and the entropy H(Y) of the output as

(3.11) H(Y) rf(b)
iO

All of these can be shown to be finite.

)log (=o rif(b))(db).
One verifies easily that

(3.12) H(X) H(X Y) H(Y) H(Y X).

The maximum of the latter with respect to the stochastic input (r0, rl) has
been called by Shannon [5] the capacity C of the s-c.m.c.

Let il > 0 be small number to be determined later. A u-sequence will
be called a qu-sequence if the proportion of ones in the sequence differs from
q by not more than 81 in absolute value.

Let J1, Jr be a set of r disjoint Borel sets whose union is the real
line; the sets {Jj} will be described in Section 5. We define g., i 0, 1;
j-- 1, ...,r, by

gj f f(b)(db).(3.13)
aj

Let N(iluo) i 0, 1, be the number of elements i in the u-sequence u0.

Let N(i, J u0, o), where i 0, 1, j 1, r, and u0 and Vo are, respec-
tively, a u-sequence and a v-sequence, be the number of integers , 1 -< ]c

_
n,

such that the ]h element of u0 is i and the ]th element of Vo lies in J..
Let t and a be small positive numbers to be determined later. A v-sequence

vo will be said to be generated (r) by a u-sequence Uo if both the following
conditions are fulfilled (only the second condition involves r)"

(3.14) N(i,j]uo, Vo) N(i uo)gj <- n.gj

i=0,1; j= 1,.--,r,

(3.15) p(0 u0) < 2-((rlx)-),
where H(Y[X) is computed with the stochastic input (ro,

Let rl, , i, 84 be any positive numbers, with rl 1. Let il be suf-
ficiently small and n sufficiently large. From the law of large numbers it
follows that, if u0 is any r u-sequence (i.e., a qu-sequeace with q rl),

(3.16) P{v(Uo) is generated (rl) by u0} > 1
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Let d, 0 < d < 1/2, be any fixed number. Later we shall choose a particular
d. We shall temporarily assume the truth of the following lemma which
will be proved in Section 5.

LEMMA 1. Let (ro rl) be a stochastic input for which d <= rl <= 1 d. Let
e > 0 be arbitrary. Let and be sujficiently small and n sufficiently large.
For any v-sequence vo which is generated (-) by any - u-sequence we have

(3.17) p(vo) > 2-n((Y)+/s).

4. The strong converse for the semicontinuous channel without memory
We now prove the strong converse for the s-c.m.c.

THEOREM. Let X and e be arbitrary numbers subject only to the conditions
e > O, 0 <- X < 1. For n suciently large there does not exist a code of length
2 (c+) and probability of error <- X.

If C 0, which happens when and only when f0 f (almost everywhere
(g)), the theorem is trivial. For then it is impossible to infer anything about
the sequence sent from the sequence received. We therefore assume that
C > 0. Similarly, to avoid the trivial, we assume X > 0. The proof of the
theorem will be conducted in several lemmas. Lemma 1 has already been
given. Hereafter by a code we always mean a code with probability of
error <_ X.

LEMMA 2. Let e and rl be arbitrary positive numbers, with d <- - <- 1 d.
Let 3 be less than el8, and let 1 and 2 be small enough for Lemma 1 to hold.
Let {(31, AI), (UN, AN)I be any code such that ul, ..., uv are u-
sequences and A, i 1,..., N, contains only v-sequences generated (1) by
u Then, for n suciently large,

(4.1) N < 2(c+m.

(In (3.16), 6 is arbitrary and may be chosen less than . Then, if 6 is
sufficiently small and n is sufficiently large, there exist codes which satisfy
the conditions of the lemma.)

Proof. Let n be sufficiently large for Lemma 1 to hold. Let v0 be any
sequence in A, i 1, N. Then, by Lemma 1 and the definition of a
v-sequence generated () by u u-sequence, we have, for the stochastic input

(4.2) p(vo u)
p(vo) 2-"(’()+s)

so that

(4.3) p(vo ]u) < 2"(c+)p(v0).
Integrating over A with respect to (")(dvo), we obtain from (4.3)

(4.4) p(A ]u) 2"(c+/)p(A).
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The left member of (4.4) is >__ 1 ), since (ui, Ai) is an element of a code.
Hence

p(A) >- (1 -k)2-(c+/4) > 2

for n sufficiently large and i 1, N.
From (4.5) and the fact that the A are disjoint, we obtain

(4.6) N2-(c+/2) < p(A) <= 1,

so that

(4.7) N < 2(c+/2).

This proves the lemma.

LEMMA 3. The conclusion of Lemma 2 holds even if one omits from its hy-
potheses the requirement that each A contain only v-sequences generated rl

by u provided that 1 is sujciently small.

Proof. Let k be so large that (1 - l/k) 1. Let ta be any positive
number less than e/8. Let til be small enough and n large enough for 4 of
(3.16) to be less than )/k. Let til and i. also be small enough for Lemma 1
to hold.
From A1, ..., AN delete all sequencers not generated (r) by their respec-

tive u, and call the results AP, A. Clearly the A’ are disjoint Borel
sets in n-space. From (3.16) it follows that

(4.8) P{v(u) AI > 1 k

Hence {(u, A), (uN, A)} is a code with probability of error =<
(1 + l/k). To this code the conclusion of Lemma 2 applies, since the right
member of (4.1) does not involve ). (The lower bound on n, required in
the present lemma, may be higher than that in Lemma 2.)

Proof of the theorem. Let d > 0 be such that, for n sufficiently large, the
total number of u-sequences in which the proportion of zeros or ones is -< d,
is less than 2c. Since C > 0, this is surely possible.

Let be any point in the closed interval [d, (1 d)]. Let i(t) and n(t)
be such that, for r t, n > n(t), and i i(t), Lemma 3 holds. To make
correspond the interval [t til(t), -[- t(t)]. A finite number of such in-
tervals suffices to cover the closed interval [d, (1 d)]; let t, ta be their
centers.

Let l(u, A1), (u, A)I be any code. It may be divided into (not
necessarily disjoint) subcodes K0, KI, Kh in the following way" The
u-sequences of the code K, i 1, h, are all tu-sequences. The u-
sequences of the subcode K0 all either have fewer than nd ones or have fewer
than nd zeros. By Lemma 3 the length of each subcode K, i 1, h,

Of course, for each i, is (t).
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is less than 2n(c+/2) for n > n(ti). By the choice of d the length of K0 is less
than2ncforn > no, say. Hence forn > max (n0,n(ti),i 1,..., h),
we have

(4.9) N < (h + 1)2(c+/2).

For n sufficiently large the right member of (4.9) is smaller than 2(c+),
which proves the theorem.

(Actually Lemmas 1, 2, and 3 are valid uniformly in rl in the closed in-
terval [d, (1 d)]. To spare the reader any uneasiness on this score we
proceeded as above, using the Heine-Borel theorem.)

5. Proof of Lemma 1
We begin by describing the system of sets J(j), j 1, r. Let a5 > 0

be a small number to be determined later, and

0 Co < cl < c2 < < c_ < c 1

numbers to be chosen in a moment, with c 1 c_. We define

J(j) {b:c_ <= fo(b) < c}, j 1,..., r 1,

J(r) {b:cr_ <= fo(b) <-_ cr}.

We require that the c’s be such that the following conditions are fulfilled:

(5.1)

(5.2)

fo (b) log fo (b)t (db) gol log 1 cl) g0" log
’=2

fl(b) logfl(b)t(db) glr log (1

(5.3) 9ol -f-gl, < 5,

and

(5.4)

r--1

g1 log (1

-ofo(b) + rlf(b)
g(db)

g. log r g.
ro g0" rl gl

for i 0, 1 and any (0, 71"1) such that min (r0, r) _>_ d. It is easy to see
that one can choose-the c’s so as to meet all of the above conditions.

Let v0 be a v-sequence which is generated (1) by the rl u-sequence u0, with
rain (0, 1) >= d. In what follows the 0’s are always numbers _-< i in absolute
value. The number of elements i, i 0, 1, in u0 is

(’, + , 1) (52, , 0).
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The number of elements of Vo in the set J(j), j 1, r, is therefore

hj n[(o - 0o1)go + 00’(2go" -- (rl -- 01})gl1 -- 0’2g1’]
()

(E .. o, o, ).
Let be the totality of all u-sequences which fulfill the following require-

ments:

(5.6)

(5.7)
(5.8)
(5.9)

(5.10)

N(0, 11, vo) 0,

N(1, 11, Vo) hi,

N(0, r[, Vo)
N(1, r l v0) 0,

N(i,j[, vo) h(’ g)(1 - ’ 66)
i 0, 1; j 2,... (r 1)

o go" g

where ti6 > 0 will be determined shortly and

(5.11) O’o’ogoj Oj’g 0

for all j. For any in we have

log p(vo ) >= (hi -t- hr) log (1 cl)
r--1

+ h. [o go(1 - 0Po ) log c’-1- ’o got g

+ gi(1 + 0’ ) log (1

n(l 7){ o[go log (1- c) goi logci_
rl glilog (1--c) gltlog (1
LI

> (1 + )(- (gz )
> n(-- H(YIX) ),

where is > 0 approaches zero as , ., , and i6 approach zero.
We now obtain a lower bound on the number L of u-sequences in .

typographical simplicity write l(0’.) for the right member of (5.10).
have

(5.13) L =-= /o(0o’)
where the summation is with respect to all 0o" for which loj(0o) is an integer.
For a i > 0 which approaches zero as i6 approaches zero, we have

(5.4)

LJ-2 i=0 0 g0j 1 gl
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The quantity in the first square bracket of the right member of (5.14) is, for
fixed til, ti2, and ti6, and all n sufficiently large, by the law of large numbers
for Bernoulli chance variables, bounded below by 1/2, say. The quantity in
the second square bracket of the right member of (5.14) is bounded below
by

(5.15)

vhere ti0 0 approaches zero as i, i, ti, and ti6 approach zero.
Finally, for any in 7 we have, from (5.6), (5.7), (5.8), (5.9), and (5.10),

o p(a) >__ n(__ 0 e0. + 2 + 2. + + 2) o 0

(5.16) -+- n(-I rl g. -t- 21t -+- 2ti. -+- it + 266) log r

_-> n (H(X) - t),
where itlx > 0 approaches zero as ti, i, ti, and ti6 approach zero.
Now choose , , ti, and ti so small that

2( + 0 + ) < e/8.
For all n sufficiently large we then have that

p(vo) >-_

(5.17)
1/2.2_,(n(r) +**+,0+, )

2-n(H(Y)+e/s).

This proves Lemma 1.
(The reader has no doubt noticed that we have not made use of (3.15).)

6. An alternate proof
In this section we briefly sketch an alternate proof of the strong converse

of the coding theorem for the s-c.m.c. This proof will apply directly to a large
class of channels without requiring the use of such auxiliary devices as are
employed in [2] and [3]. The sketch is very brief and makes free use of the
combinatorial lemmas of [1].
Transform the real line, say continuously, into the unit interval. Let f0

and f be densities on this interval with respect to Borel measure. Suppose
f0 and f are bounded above and also bounded below by a positive number.
In general this will not be the case, and a passage to the limit will be needed
to remove this assumption, which for simplicity we make in this sketch.

Let i > 0 be sufficiently small (how small will appear later). Divide the
unit interval into a finite number of Borel sets {T.} with the following proper-
ties"

(a) Let m. and M- be, respectively, the minimum and maximum of

f in T. Then M. -< (1 + t)m..
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(b) Each set Tj has the same measure t.
The reader will object that the second property cannot always be realized.
This is true. We require it only for simplicity, and how to treat the general
case will be easy to see.

Define

ci-- I fi(b) db,
T

V(TI) , c.. log c,

W(T r) . ( c,.) log ( cir.) }.
Let u be any u-sequence of a code all of whose u-sequences are 1 u-se-

quences. (We want to bound the length of such a code. The proof for a
general code then proceeds as in Section 4.) By an argument not too different
from that of Lemma 3 above, and by employing the combinatorial arguments
of [1], one can conclude that A’i, defined as in Lemma 3, lies in a Borel set
whose volume is at least

tn 2n( V(Tlr)--e).

Within this volume the ratio of the maximum density to the minimum density
is < (1 -t- ti)n HenceA’ must occupy a volume no smaller than

a.(1 - i)--n’tn’2"(v(rl)-),
where a > 0 is a constant.
By a combinatorial argument from [1] one can show that the maximum

volume available for all such A together is less than

tn.2n(W(Tl)+e).

Hence the length of the code is less than

(l/a).(1 - i).2"(W(rl)-v(rl)+2).

When is sufficiently small this gives the desired result.
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