
MAXIMALLY UNCLEFT RINGS AND ALGEBRAS

BY

B. VINOGRAD:E AND G. P. WEo

I. Definitions and elementary properties
1. We shall follow the definitions in [7] for semiprimary, primary, and

completely primary rings. Our rings are semiprimary with nilpotent radical,
and our algebras are of finite dimension over a base field F. On these rings
and algebras we shall place an additional restriction which for commutative
completely primary rings makes them exactly coefficient rings, not fields (see
[4] for definition of coefficient ring).

In ring A, with radical N C A (proper inclusion), there may exist a
subring A* such that A* is semisimple and maps onto A/N in the natural
homomorphism of A onto A/N. A is called cleft if A* exists, otherwise,
uncleft. The existence of and relation between such subalgebras when A is an
algebr and A/N is separable is known as the Wedderburn-Malcev Theorem
[3]. When A is complete equal characteristic local ring, the existence of A*
is due to I. S. Cohen [2]. (See also [4], [5], [9].) We shall say that the ring A
is maximally unclefl (briefly, m.u.) if A/J is uncleft for every ideal J, J : N,
N {0}. The corresponding statement defining an m.u. algebra is of course
relative to the base field.
Our main purpose here is to prove that (a) the study of m.u. rings and

algebras reduces to a study of m.u. completely primary rings and algebras,
(b) the presence of the m.u. property in algebras with central radicals is
determined by the 2-dimensional cohomology groups of pure inseparable field
extensions, and (c) the product of two division algebras is m.u. if .and only if
the product of their centers is m.u. Before proceeding, we note some ex-
amples of m.u. rings and algebras:

(1) C/(pr), where C is the ring of integers, p a prime, and r > 1.
(2) F(), where is algebraic over the field F with minimum function

(xq c)n, q pe, n > 1, e > 0, p the characteristic of F, x c irreducible
over F.

(3) Any coefficient ring of an unequal characteristic complete local ring,
hence of a commutative unequal characteristic completely primary ring.

(4) Bn, a primary matric ring with B an m.u. completely primary ring.
The second example is m.u. as an algebra over F, not as a ring.

2. We now give some convenient equivalent definitions and properties of
an m.u. ring or algebra. We always assume N {0}, N A.

Let T denote a residue system (system of representatives) for the classes of
A/N. Let (T) denote the subring of A generated by T. If A is an algebra,
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we shall understand that T is a linear set over the base field, so (T) is a sub-
algebra.

(I) A is m.u. if and only if (T) A for every choice of T.

Proof. LetNl= (T) nN. If aeA, then a= tn, where e T and
heN. If nleN, then an= tnl-nnl and na= nt-nln. But nn
and n n are in N, while tn and nt are in N1. Hence I (N1, N2), the
subring generated by N and N, is an ideal of A such that A/I is cleft. If A
is m.u., we may infer that I N, so N N (rood N). Thus N contains a
residue system for N/N. But every element of N is a sum of power products
of such a residue system, hence N N and (T) A. On the other hand,
let (T) A for every T. If A/J were cleft for some ideal J N, then there
would exist a system T such that (T) n N c J, a contradiction, Q.E.D.

(II) A is m.u. if and only if A contains no proper subring B such that
(B, N)/N A/N, where (B, N) is the subring generated by B and N.

Proof. If B exists in A, then B contains a residue system T for A and
(T) c B :: A. Hence A is not m.u. On the other hand, if A is not m.u.,
then there exists a residue system T in A such that (T) ::: A. Hence (T) B
is a proper subring of A, Q.E.D.

(III) A is m.u. if and only if A/J is uncleft (in fact, m.u.) for every ideal J
such that N c J N. Thus, A is m.u. if and only if A/N is .m.u.

Proof. Suppose that A is m.u., and let A* A/J for any J such that
N c J c N. If A*/J* is cleft for some J* properly contained in the radical
of A*, then to J* there corresponds an ideal J’ of A properly contained in N
and such that J’/J J*. But then A/J’ is cleft, contrary to the assumption
on A. Suppose, on the other hand, that A* is uncleft for every J such that
N J c N. If there is an ideal J’ of A properly contained in N and such
that A/J is cleft, let I (J’, N) be the ideal of A generated by J and N
together in A, and let K I/N. Since J’ N (rood N) we have I N
(rood N2). But then (A/N)/K is cleft, contrary to assumption, Q.E.D.

3. Since a semiprimary ring with nilpotent radical is an SBI ring, we can
investigate the superficial structure of m.u. rings by application of idempotent
decompositions.

THEOREM 1. A ring is m.u. if and only if it is the sum of primary rings at
east one of which is m.u. while the others are simple if not m.u.

Proof. The ring A is the sum of a finite number of primary rings plus a
module in the radical: A P -[- No. If No {0}, then there clearly
exists a system T, selected piecewise from the Pi’s, such that (T) No {0}.
If some Pi is neither simple nor m.u., then a system T clearly exists with the
property (T) : P. On the other hnd, if P P. is a sum of m.u. primary
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rings, let T be a system of representatives and T1 the subset of T representing
P1. Let e be the identity of P and t e T the representative of he class
el-t-N. Then t= e-n-t-n.=fl-n., fl= eWnleP,nePnN.
Nowf n2 n2f O, so t (f + n)k f for suitably high k. But f
(e -t- n)k

el -t- n, that is, (T) contains e e + nl, n e P. Now if
x x m2 e T represents a class of (P, N)/N, with x e P and ms e P n N,
then e x xl nl x e P and represents the same class. Hence (T) contains
a system T such that (T1) P. The same applies to P.. Hence (T) A.
The extension of this method is clear. This completes the proof.
Every primary ring has the structure of a matric ring Bn, where B is a

completely primary ring. Concerning Bn we prove the following theorem.

THEOnEM 2. A primary ring Bn is m.u. if and only if the completely primary
ring B is m.u.

Proof. Every ideal of B is of the form J., where J is an ideal of B. In
particular the radical of B is N, where N is the radical of B. If J : N,
then Jn C Nn and Bn/J,

_
(B/J),. Hence B,/J, is cleft if B/J is cleft.

Thus if B is not m.u., then Bn is not m.u. On the other hand, if Bn is not
m.u., there is an ideal Jn cN such that the primary ring B/J, is cleft. But
by Lemma 5 in [13] this is equivalent to cleavage of B/J;hence B is not m.u.,
Q.E.D.

4. As is well known, a commutative ring with identity is a direct sum of
completely primary rings. Somewhat more generally one has the following
lemma (wherein A center of A).

LEMMA 1. If A is a ring with identity and N A", then A C,
where C is simple if its radical is {0 }, and C is completely primary with C/N
a field if its radical is not {0}.

Proof. In terms of the idempotent decomposition A P -t- ’ P,where P is primary andP eAe is in N, we see that eAe e eAee
e e Pi O. Therefore A ’ P. Now consider any P P and call
its radicalN. AssumeN {0}. Letn0, neN, andletK= (J,N),
where J= {xeAIxn=O}. K is an ideal; hence K=N or K=A.
If Kn N, then xy yx N for all x, y because (xy)n x(ny) n(yx)
(yx)n, and hence A/N is commutative. If K A, then the identity e of A
is of forme =jn,jeJandneN. This implies thaten n

0, contrary to the assumption n 0. Hence K N. (Actually we
used only the existence of a cyclic module AnA {0} in the center of A
mod N.) This completes the proof.

Since a completely primary ring is (under our restrictions) complete local if
it is commutative, we know that it cleaves as a ring (although not necessarily
as an algebra over a given field) if and only if its characteristic equals the



MAXIMALLY UNCLEFT RINGS AND ALGEBRAS 275

characteristic of its residue class field. If commutativity is replaced by
centrality of the radical, we encounter uncleft rings.

LEMMA 2. If A is a primary ring, N c AA, and A has the same characteris-
tic as A/N, then A is cleft if and only if A is commutative.

Proof. If A is cleft, that is, A A*- N, A* A/N, then the com-
mutativity of A* and the centrality of N imply that A is commutative.
Conversely, if A is commutative, it is an equal characteristic complete local
ring, and hence it cleaves, Q.E.D.

COROLLARY. If A is a noncommutative primary algebra over F and N
then A does not cleave as a ring or algebra.

Proof. Since A is a primary algebra, it is equal characteristic; hence it
cannot be cleft, Q.E.D.
When dealing with m.u. algebras it is convenient to have the following

generalization of Theorem 1 of [10].

THEOREM 3. Let A be a primary algebra over a field F. If N c A, then
A/N is a field, and there exists a unique separable field K which is contained in A
and is an extension of F such that either A is an algebra over K and A/N is pure
inseparable over K, or A K N.

Proof. The fact that A/N is a field over F is a consequence of Lemma 1,
interpreted for algebras. There exists a unique maximal separable subfield
K*, F K* A/N, over F. Let A0 be the subalgebra of A generated by
the elements of the classes {a -t- N} which define K*. Then A0 is separable
modulo N, hence cleft: A0 K + N, where K K* over F. By Lemma 2,
A0 is commutative. Now let aeK, acN, and n= aa-aa. Since a

exists, a aaa-l+ n’ for n’ e N. If the characteristic of F is zero, then
K* A/N and A K N. If the characteristic of F is p 0, then a
aaa- for suitabllargef, that is, aa aa for all a A. ButK is separable
over F, hence K() K for all f, which implies that aa aa for all a e K
and a e A. Thus A is an algebra overK and A/N is pure inseparable over K.
If K ---/ A,/ a subfield over F, let/ a(]) denote the isomorphism.
Since K* is unique, we have a(tc) t + n(k). If f(x) is the minimum
function of ] over F, then f(lc) f() O. Hence if n(]) 0 for some/ K,
then 0 f() f(k - n(t)) f(tc) - n(tc) g(k) n(k) g(k). Now g(]) 0
(because f(x) is separable) and is a polynomial in elements of K; hence g(k) has
an inverse. Thus n(]) 0, a contradiction if/ K, Q.E.D.

5. As noted above, if A is a commutative completely primary ring, then
it is a local ring which in our case is complete. Therefore, from the known
embedding theory we may deduce the following elementary facts concerning
the structure of m.u. commutative primary rings.
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THEOREM 4. Let A be a commutative primary ring. Then A is m.u. if and
only ifA is of unequal characteristic and a coejcient ring, hence if and only if it is
a principal ideal extension of C/(pr) with same index of radical and r > 1.

Proof. A complete local ring must be of unequal characteristic in order
that it be uncleft, and a coefficient ring which is not a field is of unequal
characteristic modulo any ideal contained properly in the radical (because N
is a principal ideal generated by the prime p, [9]). Hence, coefficient rings
are m.u. Furthermore, every unequal characteristic local ring A contains a
coefficient ring. Thus in order that A be m.u., A must equal its coefficient
ring. As for the structure of the coefficient rings, we have given the one
implied by [12], p. 50 and p. 54, Q.E.D.
The proof that Example 2 is the most general m.u. polynomial algebra may

be found in [14].

1. Since an algebra A is m.u. if and only if A/N is m.u., we consider the
structure of A/N in this part. The algebra A/N may be regarded as a
singular extension [6] of R by the R-R module N/N with R ---A/N and
2-cocycle g(x, y). Here, g(x, y) AA Ax Z(R, N/N2), x Ax is a
linear correspondence over F (hence g is normalized) between R and a residue
system T {A }, and xn A n, nx nA for n N/N2, x R. Further-
more, since by Lemmas 1 and 2 a completely primary algebra is the basic
type of m.u. algebra, we shall consider singular m.u. completely primary
algebras, so N= {01, and R is a division algebra. We shall write A
Ext(R, N, g) for these singular extensions. N is an R-R module of equal
left and right dimension over R. We call this dimension the defect of A.
We seek in particular the relations between the defect and g(x, y) when A is

m.u., especially for the case N c AA, and apply these relations to the con-
struction of m.u. algebras.

2. By g(R, R) we mean the subalgebra of A generated by g(x, y) as x and y
vary through R. Then Ng Rg(R, R)R (= Rg(R, R) g(R, R)R because
tg 0) is an ideal of A contained in the radical. (The following theorem is
also true when A is a ring, with x -* A a linear correspondence [8].)

THEOREM 5. If A Ext(R, N, g), then A is m.u. if and only if N, N
for every g’ cohomologous to g.

Proof. If A is m.u., consider the residue system T {A}. Then (T)
A. If n e N, then n is a polynomial in the elements A. But AxA A +
g(x, y), and A is linear in x. Hence n Rg(R, R)R. On the other hand,
suppose Ng,- N for all g’ cohomologous to g. Suppose also that some
residue system T" {A’} is such that (T") a N :: N, that is, A is not m.u.
But g"(x, y) A" A" A ) N which implies that Rg"(R, R)R
(T’) N. This is a contradiction, Q.E.D.
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3. If nl, ,nd is a left basis of N over R, then for every x, y e R we have
uniquely

g(x, y) = p,(x, y)n,, p,(x, y) e R.

Each p is a single valued bilinear function on R to R. We call p a projection
of g, and the set p, p the projections of g with respect to nl, n.
We derive some preliminary properties of these projections.

LEMMA 3. If N N, and el,... e, is a linear basis .of R over F, then
there exists a finite set of pairs (ai, b) of these basis elements such that g
g(a b), i 1, d, is a left basis of N over R.

Proof. Since g is a cocycle, ig 0. Hence, in particular,

g(eb ec)e eb g(ec e) g(e ec e) + g(e ec e), Q.E.D.

LEMMA 4. If N N let g g be the basis described in Lemma 3 and
n n any other basis. Let g(x, y) ,(x, y)g p(x, y)n
Then p(x, y)= r(x, y)ar for a nonsingular matrix (aii) with air R.
Furthermore r(a br) r

Proof. g ’an for a nonsingular (a), Q.E.D.
LEptA 5. If N N and r p are as in Lemma 4, then

for all x, y, z R and j 1, ,d.

Proof. Let f(x, y) r(x, y)a. Then

(if,)(x, y, z) xf,(y, z) f,(xy, z) + f,(x, yz) f,(x, y)z

xr(y, z)a v(xy, z)ai -. r(x, yz)a (x, y)a z

()(x, y, z) + r,(x, y)(za- a z).

Apply this to r(x, y)ai termwise. This completes the proof.

4. All projections are in C(R, R). We now ask for the conditions equiv-
alent to all projections being in Z(R, R).
LEMMA 6. Let N N. If every projection of g is a cocycle, then the

matrix (ar) has coecients in R.
Proof. By Lemma 5," r(x, y)(za ar z) 0 for all x, y, z, j. Take

x a, y b to get zar arz 0 for all z, k,j, Q.E.D.
LEMMA 7. The projections r, i 1, ..., d, are cocycles if and only if

g g are in A’.
Proof. g 0 implies (r)(x, y, z)g-

_
r(x, y)(zg g z) 0 for

allx, y,z. Letx ar.,y= btoget

(r)(a Dr, z)g + (zgr gr z) 0
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for allzandj. Now, iftii= 0fori= 1,...,d, thenzg- gz=Oforall
jandz, that is, Azg gAz. SinceN {0}, we haveg.eAA. On the
other hand, if zg-gz 0 for all z and j, then (ri)(x, y, z)g= 0;
hence (i)(x, y, z) 0 for all x, y, z, i, Q.E.D.

THEOREM 6.
only if N AA.

Let N N. Then every projection of g is a cocycle if and

Proof. Suppose all projections of g are cocycles. Then in particular
lgl,"’, gd} AA and {ai} c RR. Now (bi)= (ai)- has coefficients
in RR, and
0 zg giz z(Eainj) (Ean)z Ea(zn, nz)

for all z e R. Hence zn n z 0 for all z, tc. Since every n 0 can occur
in some basis of N over R, we conclude that N is in AA. On the other hand,
letNbeinA. Sinceig =0, wehave

(pi)(x, y, z)ni + p(x, y)(zni n z) 0

for all x,y,z in R. Hence _(pi)(x,y,z)n=O, or (pi)(x, y, z) =0,
i 1, ..., d, Q.E.D.

COROLLARY. If N N then every projection or g is a cocycle if and only if
N is in A" and R is a field.

That R is a field is a consequence of N being in A, by Theorem 3,

5. Let us refer to an algebra as almost commutative if N c A and A/N is
a field. In the rest of Part II we shall consider almost commutative algebras
only.

LEMMA 8. If A Ext(R, N, g) is almost commutative, then every projection
of g is cobounding if and only if g is cobounding.

Proof. Suppose g is a coboundary, that is, there exists a 1-cocycle
f Z2(R, N) such that g(x, y) (f)(x, y) xf(y) f(xy) + f(x)y. If
n,..., ndis a left basis of N, then f(x) f(x)n, hence g(x, y)

(fi)(x, y)n p(x, y)n. Thus p tiff, i-- 1,...,d. On the
other hand, if pi fi i 1, d for f Z(R, R), then, defining f(x)
’.if(x)n, we have g(x, y) (fi)(x, y)n (f)(x, y), Q.E.D.

LEMMA 9. Let A Ext(R, N, g) be almost commutative. If p is any co-
boundary of C(R, R), then for any u in N the function defined by p(x, y)u is a
coboundary of C(R, N).

Proof. Since p(x, y) (f)(x, y) for some f C(R, R), we have

p(x, y)u x[f(y)u] [f(xy)u] -+- [f(x)u]y (g)(x, y),

where we define g(x) by g(x) f(x)u, Q.E.D.
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6. The elements of C(R, R) constitute a vector space over R, as do there-
fore the elements of Z(R, R), B2(R, R), and H2(R, R) Z(R, R)/B(R, R).
When we talk of linear independence of projections in what follows, we mean
modulo B(R, R). As usual A Ext(R, N, g).

LEMMA 10. If A Ext(R, N, g) is an m.u. almost commutative algebra,
then the projections with respect to a basis of N are linearly independent non-
cobounding cocycles.

Proof. If A is m.u., then g must be non-cobounding (else A would be cleft).
Again letting nl, ,nd be a basis of N and g(x, y) pi(x, y)ni, sup-
pose pl is a coboundary. Then g’(x, y) g(x, y) pl(x, y)nl is a non-co-
boundary. A being m.u., we know that N Rg’(R, R). But then the
dimension of N is less than d, a contradiction; hence pi is non-cobounding.
Further, suppose the pi’s are linearly dependent, say p(x, y)
_,= rk pk(x, y) + (f)(x, y) for some [r R and all x, y. Then g" (x, y)
g(x, y) (itf)(x, y)n _,=2 pk(x, y)(r nl + nk) is a non-coboundary, which
implies N is of dimension less than d, a contradiction, Q.E.D.
LEMMA 11. If p,’’’, p8 are given linearly independent non-cobounding

cocycles of Z2(R, R), then there exists an m.u. almost commutative algebra A
Ext(R, N, g) of defect s and with p p8 the projections of g with respect to a
basis of N.

Proof. Choose any trivially two-sided R-R module of dimension s and
call it N. Let n, ..., n be a basis of N and define g(x, y) by g(x, y)

’= p(x, y)n. Also define N {0/. Then by the proof of Lemma 8, g
is a non-cobounding cocycle. Now if N Rg(R, R) N, then we have a
proper subspace N of N with basis say m, ..., m,, s’ < s, such that
g(x, y) ’= q(x, y)m for all x, y. This implies the existence of a matrix
(d) with coefficients in R such that m E__I d. n, i 1, s’. Then
g(x, y) . qi(x, y)d n p(x, y)n yields p(x, y) ’ q(x, y)d
j 1, .-., s. Now the q’s are cocycles of C(R, R); hence we have that
p, p are linearly dependent, contrary to assumption. Hence N N.
Suppose g’(x, y) g(x, y) - (f)(x, y). If we write g’(x, y) p(x, y)n
and f(x)

_
fi(x)n we get g’(x, y) g(x, y) [p’i(x, y) p(x, y)]n

(Sf)(x, y) (fi)(x, y)ni. Hence p(x, y) pi(x, y) (f)(x, y). If
r p’(x, y) e B(R, R), then r p(x, y) B(R, R), a contradiction. Thus

the projections p, p arelinearlyindependent. Consequently, N, N,
and, by Theorem 5, A is m.u., Q.E.D.
THEOREM 7. Let A Ext(R, N, g) be almost commutative. Then A is m.u.

if and only if every set p, p2,... p8 of cochains of C(R, R) generated by
g(x, y) _-1 pi(x, y)n for a basis n n of N over R is a linearly inde-
pendent (over R) set of non-cobounding cocycles of Z(R, R).

Proof. If A is m.u. then the claim on the p’s follows from Lemma 10.
On the other hand, if the p’s are as claimed, construct an m.u. extension
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A’ Ext’(R, N, g) using Lemma 11 with the N of our given algebra as the
two-sided module. But there is a 1-1 correspondence between classes of
isomorphic singular extensions and 2-dimensional cohomology classes [6].
Thus A’ --- A, and A is therefore m.u., Q.E.D.

7. An example of construction of an m.u. singular extension as mentioned
in Lemma 11 follows:

Let F be the field P(I 2) of characteristic 2 obtained by adjoining to the
prime field of integers P. the algebraically independent indeterminates 1 and. Let R be the field F(al, a) F(al) X F(a.) obtained by adjoining al and
a to F, where the minimum polynomials over F of al and a are x W al and
x W a2, respectively. The multiplication table for R is of course

1 al a. al a2

I al a_ CI a2

2 C2 al
01 02

Let us define a bilinear map p of R into R by

p(a2 al) 1, p(al a2 al) al

p(a2 al a2) a p(a a2 a a2) a a2

p(x, y) 0 for all other pairs (x, y) taken from the basis of R over F. Then
p is a cocycle. If p were cobounding, then there would exist an f in C(R, R)
such that p(x, y) xf(y) f(xy) + f(x)y for all x, y in R. But p(al, a2)
af(a2) f(a a) W a2f(al) O, while p(a2, al) a.f(al) f(a a2) "" all(a2)
1, a contradiction. Thus, p is a non-cobounding cocycle. There must then
exist a singular m.u. extension of defect 1 by the field R, with a radical of
dimension 1 over R (or of dimension 4 over F). To this end, define g(x, y) as
g(x, y) p(x, y)n, where n 0 is an element of a trivially two-sided vector
space over R. Consider the subspace N Rn spanned by n, and define
N {0}. Using the fact that g(x, y) A,A A,, where {A,} is a residue
system of A/N for the A which is yet to be produced, we see that A must have
the multiplication table

1 a,_ a2 al a2 n al n a2 n al a2 n
a a= a a2 c1 a2 al ol n al a2 n 01 a2 T

a2 al a2 -- n a2 a2 al W a n a2 n al a2 n c r a2 al

a a2 a a2 - a n a2 al 1 as al a2 n al a2 n al a2 c2 a n a . n,

where we have written al for Aal, etc. One can verify that this is an m.u.
algebra A, hence an m.u. ring because it is not commutative.

III. The product of division algebras
1. In this part our algebras are assumed to have an identity element.

We wri Z AA and Nz (= Z n N) for the center of A and the radical of
the center respectively.
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2. We first prove some lemmas not concerning products in particular.

LEMMA 12. Let J be an ideal inA and Jz an ideal inZ such that N J N
Nz Jz N and Z/J --- (A/J)A/J. Then Z/J is cleft if A/J is cleft.

Proof. Let A’ A/J, Z’ Z/Jz, so Z’ --- (A’)A’. Now assume a
cleavage A’ A* - N’ of A’. Identifying Z’ with (A’)’, we have for any

Ntz’ Z’ a unique expression z’ z’* nz, where z’* A*, n For every
a* e A* we hve a*z’ zta*, hence a*z’* z’*a* for M1 z’*. Thus Z’*
{z’*} (A*)*. Furthermore, for every n’ e N’ we hve n’’ z’n’, so
n’z’* z’*n’ for all z’*. Thus Z’* Z’. Hence Z’* is semisimple (a sum of
fields), so Z’ Z’* N, is a cleavage of Z’, where Nz, {nz, }, Q.E.D.

LEMMA 13. Let A be such that Z/Nz ._ (A/N). Then A is cleft if Z
i,s cleft.

Proof. Consider a cleavage Z Z* -{- N. Then Z* $ Z* with
ZZ t.Z where Z is a field whose identity element e is central idem-
potent of A, hence A ’ A where A is a two-sided ideal of A with identity
element el. NOW Z A and "(A/N)"/’ (A/N)/v Z/Nz

Z, where N is the radical of A. Thus A/N is central simple over
Z, which implies the separability of A, hence its cleavage, as an algebra
over Z. Finally each Z is an algebra over the ground field K of A, Q.E.D.

LEMMA 14. There exists a cleavage A A* N with (A*)* Z if and
only if there exists a cleavage Z Z* Nz with Z* (A/N).

Proof. Suppose the cleavage of A exists. Then let Z* (A*)*. Now
if K is the base field of A, then [Z/Nz’K] <= [(A/N)’K] [Z*’K] -<
[Z/Nz’K], becauseZ* Z, hence[Z/Nz’K] [Z*’K]. ButthenZ/Nz---Z*
and hence Z Z* - Nz, the desired cleavage of Z. Conversely, for a
cleavage of Z as described, Lemma 13 and its proof imply that A " A
is cleft in the manner desired, Q.E.D.

LEMMA 15. Let N {0} and (A/N)"/v Z/Nz Then A A* + N
if and only if Z Z* - Nz.

Proof. This follows from Lemmas 12, 13 with J Jz {0}.
3. Let L and M be two finite algebraic extension fields of K. We recall

some well known facts. If L or M is separable, then L X M $ C,
where Ci [LM] is a field and an ideal of L X M, and the collection [LM],
i 1, is the set of all distinct composites of L and M. When L and M
are both inseparable, then C is a primary commutative algebra whose residue
class field is isomorphic to [LM]. If L and M are both pure inseparable,
then L X M is itself primary. (See [11].)

If A is a central simple algebra over K and if B is any algebra (also with
identity) over K, then the two-sided ideals of A X B are of the form A X B0
where B0 is a two-sided ideal of B. (See [1], p 62.)



282 B. VINOGRADE AND G. P. WEEG

LEMMA 16. Let S and T be simple algebras over K, and let L S, M Tr.
Every two-sided ideal of S X: T is generated by an ideal of L XK M. Also
S XK T (R) A i, where A is an indecomposable two-sided ideal of S X: T,
and A C.

Proof. The first part follows from the following formulas" S X T ---(S XM) XM T, S XM--- S X L (L XKM). The second partfollows
from the fact that the identity element e of Ci is a central idempotent, hence
defines a two-sided ideal A of A. But Ci is primary, and any decomposition
of A would lead to a central decomposition of the identity element of Ci,
which is impossible, Q.E.D.

4. Let D1 and D. be division algebras over the field K. Let D D1 X D.,
Do Z1 X D2, Z Z1 X Z2, where Z, Z., and hence Z (see [1], p. 68)
are centers of Di, D, and D, respectively. Also we write D for D1 X e
and D for el X K D2 where no confusion ensues, and similarly for Z1 and Z..

LEMMA 17. If J is any two-sided ideal of D, then Z/J [ Z and the center
of D/J are isomorphic as algebras over K, Z1, and Z.

Proof. Let J0 JnDoandJz JnZ. For any fixed J, letv, eD0,
i 1, 2, be representatives of a basis [v], i 1, 2, for Do/Jo over
Z1, hence u basis for D/J overD1. Similarly letueZ, i 1, 2,... be
representatives of a basis [u], i 1, 2, for Z/Jz over Z, hence a basis
for Do/Jo over D. Thus

bo Do - b0 u d. - jo where do D, j0 J0
b D-b =dv +j where dD, jJ.

Then [b] e D/J is in the center of D/J if and only if (bx xb) J for all
x e D; so if d and d. are any elements of D1 and D respectively, we have in
particular

bd d b (E d v + j)d d(X dlq ) + j)

(d d dl dl)Vo (mod J)

0 (mod J).

Hencedod dld 0, thatisdeZ. We therefore write b bo j
where bo (= d v)e Do. Now we may represent this same b0 by bo
u d + j0, where j0 e J0, hence b b - j’ where b ud2 eDo

and j’ (jo - j) J. So in particular

bd d b (b + j’)d.- d.(b + j’)

(do d2 d. d)u (mod J)

0 (mod J); hence

0 (mod J0), because J n Do J0.
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Thus d2 d. d. d. 0, or d e Z, which means that b e Z.
correspondence b - b induces the desired isomorphism, Q.E.D.

Finally the

THEOREM 8. With respect to K, Z1, or Z., D @ A where A is a two-
sided ideal of D such that (A/N)"/N [Z1Z]i for each i.

Proof. By Lemma 16 we have A C, and by Lemma 17 we have C,
AiA and [Z1Z]i (A/A/N, Q.E.D.

THEOREM 9. D A* - N with (A*)* Z if and only if Z Z* - Nz

Proof. If D cleaves as in the statement of the theorem, then the cleavage
of Z follows by Lemma 14. Conversely, if Z cleaves, then by Lemraa 17
the condition Z* (D/N))/v is automatically fulfilled; hence, by Lemma 14,
D cleaves as desired, Q.E.D.

LEMMA 18. Let J be an ideal such that N J N.
cleft ( cleftm.u.)K, ZI, or Z., D/J iSm.u.( if and only if Z/Jz is

With respect to

Proof. Let D’ D/J, Z’ Z/Jz D/J has radical of index 2, its center
is isomorphic to Z/Jz by Lemma 17, and by the same lemma, D modulo its
radical has u center isomorphic to Z’ modulo its mdicul. Hence Lemma 15
is applicable and implies the mutual cleavage of D/J and Z/Jz.
Now suppose that D’ is not m.u. Then there exists an ideal J’

J’ N’, and corresponding ideal J’z Z’, J’z Nz, such that D D/J
Z/Jzby Lemma 17. Nowis cleft and with its center isomorphic to Z"

Lemma 15 is applicable to D" and Z"; hence Z’ is cleft. Thus, Z’ m.u. im-
plies D’ m.u. Conversely, the assumption that Z’ is not m.u. leads to the
existence of a J and J’ such that Z" is cleft; hence by the same argument
as before D" is cleft. Thus D’ m.u. implies Z’ m.u., Q.E.D.

THEOREM 10. With respect to K, Z or Z2 D is m.u. if and only if Z is m.u.

Proof. The theorem follows from a combination of (III) Part I, and
Lemm 17.
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