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Introduction
The object of this study is to generalize a theorem of W. Ambrose (see [2])

to the non-Riemannian case. The outline of our proof is the same as that of
the theorem of Ambrose, but many features must be modified and are more
complicated. We refer the reader to the bibliography for all definitions of
fundamental concepts on C manifolds and connexions.
Our theorem characterizes a simply connected C manifold, on which is

defined a complete affine connexion, by the behavior of the curvature and
torsion forms under parallel translation along finitely broken geodesics
emanating from some fixed point. In the analytic case, one need only con-
sider unbroken geodesics. As an immediate consequence of our result, we
obtain the (known) theorem which states that a simply connected manifold,
on which is defined a complete connexion having zero curvature and torsion
invariant under parallel translation, is a Lie group. Relaxing the simply
connected hypothesis to iust connected and adding an assumption that the
holonomy group be the identity, we can prove the manifold is a homogeneous
space, and an example shows we cannot hope to prove M is a Lie group under
these hypotheses.

1. Notation and statement of the main theorem

Let M be C manifold and m a point in M; then we denote the tangent
space at m by M. Let B(M) denote the bundle of bases over M, and v the
map of B(M) onto M. Given a connexion on B(M), thus an "affine" con-
nexion, we denote its 1-form by , i.e., is a C 1-form with values in gl(d, R),
the Lie algebra of the general linear group GL(d, R), where d is the dimension
of M and R is the field of real numbers. By a complete connexion we mean
one in which our geodesics can be indefinitely extended (indefinitely in terms
of the parameter, for the geodesic may be closed). A complete connexion
on B(M) allows us to define a map exp :M-- M, for any m M, and a
map Expb :M-- B(M), for any b e B(M). The latter allows us to carry
information in B(M) back to the simpler space M. We define these maps
and denote the tangent field to a curve by T.
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DEFINITION. Take p e Mm and let denote the unique geodesic such that
(0) m and T(0) p. Then expm p (1). Now let , be the unique
horizontal curve in B(M) with 7(0) b and r o7 . Then Expb p
’(1).
Our completeness assumption assures us that both exp and Expb are

defined on all of M. These mppings enioy the following properties"
(1) r o Expb expb.

(2) exp and Exp re C. (See [2] for proof.)
(3) dexp nd dExp are nonsingular at 0 e Mm.

Here we denote by d, where is any C map, the induced mpping on tangent
vectors.

DEFINITION. A connexion-preserving diffeo of a C manifold M, with con-
nexion o given on B(M), onto a C manifold ’M, with connexion % on
B(’M), is a diffeo of M onto ’M such that , the induced diffeo of B(M)
onto B(’M), carries % into 0, i.e., % d$.

We now define a space X, independent of any manifold. If we choose a
manifold M, a complete connexion on M, and a "key" base b B(M), then
the curvature and torsion forms on B(M) will induce certain real valued
functions on X. An element of the space X can be thought of intuitively as a
finitely broken geodesic emanating from the fixed point r(b) m, plus a
pair of tangent vectors at the final point of . In the following we
let ul, u denote the canonical coordinates on Rd, and/ (&l, &d)
denote the unit points in Rd (j is the Kronecker symbol).

DEFINITION. We denote by Xd the set of all finite sequences (r, r
v, w)with n variablewhere the r are any points in Rd and v, w are each
arbitrary tangent vectors to Ru at o. We use X to characterize d-dimensional
manifolds and we henceforth fix the dimension and drop the superscript.

We let Y be the set of all finite sequences (rl, r)with n variable
Rd"and r e Hence X Y X Ro X Ro, where o is the origin in R. We call

Y the space of broken segments.
Given M as above and a fixed key base b (m, e, ..., e) in B(M),

where e, e is a base of M, we define a mapping, denoted by m, of Y
into M, anda mappingb of Y into B(M). First let I, wherec (p,f, ,f)
is any point of B(M), be the linear transformation of Rd -- M carrying
into f. Then define

exp0 exp Ib, Exp0 Exp Ib.

If (rl, r) is any point in Y, we define by induction on n

expr expexp0r IExp0r

exp(r,...,r) eXpexp(r.....r_)rn o IExp(r rn_l)rn
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Then define, again by induction on n

re(r1) exp0 rl b(r) Exp0 r,

m(r rn) exp(rl,....rn_l)rn

b(r rn) Exp(rl,...,r_l)rn

The effect of exp(,... ,.) is to map R into M by first mapping it into Mm,
then parallel-translating Mm (and thus R) along the geodesic into which
exp carries the ray from o to Ib rl in M, namely to exp Ib rl m(rl), then
parallel-translating M() along the geodesic into which exp() carries the
ray from o to I(r)r in im(rl) namely to m(rl, r),.... etc., until we reach
m(r, rn) which is the last point on this succession of broken geodesics,
then spray R into M via the geodesics emanating from m(rl, r,).
We note that

exp(....,r) o Exp(l,...,) m(r r,) r o b(r r,).

Hence we define e(r,... r) for i 1, d (a standard domain for i
and j) by

b(r rn) (m(r r,), e(r r,), e(r r,)).

Recall the connexion on B(M) gives rise to d C real valued 2-forms
2 and to d C real valued 2-forms 2 called the curvature forms and torsion
forms, respectively (see [1]). Furthermore the connexion gives rise to d C
vector fields E on B(M) such that E(b), E(b) span the horizontal
subspace of B at any point b in B(M).
We now define d W d real valued functions on X, denoted by K. and K

fori, j 1,... ,d. Letx (r,...,r;v, w) be any point inX. Let
) Z )K(O/OUK)(O), W Z Wa(O/OUa)(O); then define

g(x) (vE:(b(r r,)), w E(b(r r,))),

g(x) (’ v E(b(rl r)), w Ea(b(r rn))).
The effect of K(x) is to determine the 2 value of the pair of horizontal
vectors at b(r, rn) which lie over the parallel translates of v e and

Wa e along the broken geodesic determined by (r,-.., r). These
functions K., K are well defined for any triple consisting of (1) a C mani-
fold M, (2) complete connexion on B(M), and (3) u key base b e B(M).
Our main theorem can now be stated precisely:

THEOREM 1. Let M and ’M be two d-dimensional simply connected C
manifolds each carrying a complete ajne connexion. If after choosing b e B(M)
and ’b B(’M), the functions K ’K and K ’K on X, then there is a
connexion-preserving diffeo of M onto ’M.

We prove this theorem in 3.
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2. Induced structure on the tangent space
In this section we assume we have given a complete connexion on B(M)

for some fixed M. For any b (m, el, e) B(M) we define forms 0,
)b0., O ) on Mm as follows" 0 oi dExpb, 0 oi. o dExpb,

t2 o dExp, 0 t2 dExp.
Here are the natural 1-forms on B(M) and i y 0 where y. are the

natural (linear) coordinate functions on gl(d, R). The above forms are all
C. Henceforth in this section we fix b and drop it as a superscript on the
above forms. We also sometimes use the symbols el, e as functions on
Mm defined by Exp p (exp p, el(p), e(p)) for p e M. The follow-
ing two lemmas are proved in [2].
LEMMA 1. If S is a tangent vector to M, at p, then dexp s Oi(s)e(s).
:LEMMA 2. Let p be any point in M. We define the curve p(t) tp for
>= 0 and call p the ray through p. Then
(1) a exp p is a geodesic emanating from m.
(2) O(T,) p, where p pe.
(3) O,(Tp) O.

Carrying the Cartan structural equations back to Mm yields

(ii) dO 0. 0. + 0.
These are the main tools in the next theorem.

THOnM 2. The 2-forms and 0 determine the 1-forms O and 0.
This will follow from Theorem 2’ below. Let zl, z be the dual linear

funetionals to el, ..., ea; thus the z give us global coordinate functions
on M.
TnOlM 2’. Let p p e be any point in M such that p 1.

Let o(t) tp for >= 0 be the ray through p. Let T be the tangent to o. Let A
a O/Oz be a constant field, i.e., the a are real numbers. Then along o we

have the following functions of t" O(tA), O(tA), O(T, tA), O(T, tA) with
(a) O,(tA)(O) O, TO(tA) O(T, tA) for >= 0.
(b) O,(tA)(O) O, (TO tA)(O) a

T20(tA) p, O,(T, tA) + TO(T, ta) for >= 0.

Theorem 2 follows immediately from Theorem 2’, for having and
allows us to solve the above differential equations for any ray and any A,
and thus determine 0 and 0i at any point of M.

Proof of Theorem 2’. Define the function r (E z)1/2, for q 0 in M.
We denote the "radial" vector field by R r- z O/Oz. Computing will
show that

(1) JR, rA] r-l( at z)R.
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Lemmas 1 and 2 add

(2) (R) 0,

(3) 0i(R) zi,
r

(4) ROi(R) O.

We use the exterior differentiation formula and the structural equation (i)
to evaluate dOi in two ways"

d(R, rA) ROi(rA) rA(R) [R, rA]_, O(R)O(rA) + _, O(rA),(R) + Oi(R, rA).

Hence by (1), (2), and (3),

RO(rA) rAt(R) + r-l(., az)O(R) + _, O(rA)O(R) + O(R, rd)
--2(5) ai r-2z(_, a z) + r z(_, a z) -t- _, Oi,(rA)O(R)

+ O(R, rA),
and on p,

(6) TO(tA) a- _, O,(tA)O,(T) + O(T, tA).

Thus TOi(tA)(O) a. By applying T again to (6), and using (4),

(7) T20(tA) _, p, TO,(tA) + TO(T, tA).

We similarly treat dO.
d0(R, rA) R(Oi rA) rA(O R) Oil[R, rA]

_
O(R)O(rA) -t- _, O,,(rA)O(R) -- Oi(R, rA).

Using (1) and (2), we obtain

(8) R(Oi rA) O(R, rA).

Evaluating (8) on p gives (a), and substituting this into (7) gives (b), Q.E.D.

3. Proof of Theorem
We assume the hypothesis of Theorem 1. Let B(o, ) denote the open ball

of radius i about the origin in Rd, i.e., B(o, ) [r Rd’lrl < t]. The key
bases, b and ’b, allow us to define a real valued function A on Y as follows"
let y e Y; then A(y) max[i e R" exp maps B(o, ) diffemorphically onto a
neighborhood of re(y), and ’exp maps B(o, ) diffemorphically onto a neigh-
borhood of ’m(y)]. We define a set Z c Y by

Z [(rl, rK) e Y’lr: < A(rl, rK_l)].

Now define an equivalence relation, , on the points of Z as follows" z
if all three of the following hold" (1) m(z) m(z.), (2) ’m(z) ’m(z.), and
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(3) b(Zl)g b(z2) implies ’b(zl)g ’b(z.). Let W be the set of equivalence
classes of this equivalence relation. Let I denote the natural mapping of
Z -- W by I(z) the equivalence class containing z, and let Iy be the map-
ping of the ball B(o, A(y)) in R into W defined by Iy(r) I(y, r). We then
define e:W --> M by e(w) m(z) for any z e w; and we define ’e:W -- ’M in a
similar way. From the definition of equivalence these mappings are in-
dependent of the representative z.
A topology is defined on W by requiring that each Iy, for all y e Y, be an

open mapping of B(o, A(y)) into W. Thus the topology is generated by all
sets of the form Iy 0 where y e Y and 0 is any open subset of B(o, A(y)). We
define Py Iv B(o, A(y)).

LEMMA 3. e maps Py 1"1 onto By expy B(o, A(y)), ’e maps P 1"1 onto
and Iv maps B(o, A(y)) 1"1 onto Pu.

Proof. By definition of A we know exp maps B(o, A(y)) 1" 1 onto B,
but exp e Iy. Hence since I maps B(o, A(y)) onto P, both e and Iv
must be 1"1 onto.

LEMMA 4. e and ’e are continuous.

Proof. The proof is similar to that of Lemma 3 in [2], p. 355.
For each y e Y we define the spray S, which is a mapping of B onto ’B,

by Sy ’exp (expl B). We will show eventually that each S is a
connexion-preserving diffeo of By onto ’B. Again for each y e Y let
J" Mm(y) -- ’Mm(y) by J%i(y) ’ei(y). We abbreviate by letting 0 0(),
etc.

Y YLEMMA 5. If Ki ’K and Ky ’K, then 0 0i o dJ and Oij
y0 dJ for each y e Y.

Proof. Choose p

_
p e(y) M,(y) Let v, w be in (M())p, and

let c Expb(y) p. Then

Oi(v, w) i o dnxpb(u)(y, w) i( O(v)EK(c), Oa(w)Ea(c))
,a (V)Oa(W) ei(Eg(C), Ea(c)).

RLet r (p, p) e and x (y, r; O/Ou, O/Ou,) eX. Then
b(y, r) c and thus K(xa) (E(c), E(c)). Hence

(*) o(v, w)

This allows us to substitute (*) into the differential equations of Theorem 2’
and thus implies that knowing the functions K and Ki. allows one to inte-
grate and obtain the 1-forms 0 and 0. (on any M()).
The hypothesis of our lemma implies that 0 and ’0 o dJy satisfy the same

differential equation and initial conditions on M(y) and hence are equal.
YSimilurly 0. 0. dJy, Q.E.D.
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LEMMA 6. Each S is a connexion-preserving diffeo of B onto ’B such that
if lr < A(y) then S m(y, r) ’m(y, r), and dS e(y, r) e(y, r).

Proof. By definition of the mppings S, m, and ’m we have S m(y, r)
’m(y, r). The lst equation in the lemma follows by a proof similar to the
proof of Lemma 4, part (d), p. 356 in [2].

It remains to show S is connexion-preserving, e., letting
S’B(B) --) B(’B) by (n, f, ,f) -- (Sn, dSf, dSf), we must
show % o d. It is equivalent to show d E" E and d E ’E.
That d E E is immediate, for if h’GL -- B(M) is an admissible map

for defining E on a fiber in B(M), then o h’GL -- B(’M) is admissible for
defining ’E since R R .

--1We show d E ’E for points on the cross section Exp() exp()(B),
which is sufficient since o R R . Henceforth in this proof we let
S S., J J, exp exp() and Exp Exp() Let U exp-iBu,
ndwe showoExp =’ExpoJ on U. Takep =pe(y) eU, and let
r (p, p); then

Exp(p) (b(y, r)) (S o re(y, r), dSe(y, r), dSe(y, r))

’b(y, r) ’Exp J(p).
--1Let c Exp(p) b(y,r),andletv dexp ei(y,r). Thusd(roExp)v

ei(y, r), so dExp(v) E(c) -t- O(v)EJK(c). Hence d E(c)
d dExp(v) OK(v)d EJ(c) d’Exp(dJv) ’O(dJv)’E(c)
’E’(c), Q.E.D.
For convenience we will write exp for (exp B(o A(y))-1 in the next

lemma.

LEMMA 7. Let z (r, r:) and z (s, s) be in Z, and let
y (rx r:_a), y (s si_). If zx z then there are a neighbor-
hood O of r: and a neighborhood 0. of st, with Oi B(o, A(y)), such that all
the following hold"

--1(1) expu o expu maps O diffemorphically onto O
--1 --1(2) exp o ’exp is the same as exp exp on O,

(3) if one takes p e Oi then exp p exp p implies

(y, pl) (y2, p2).

Proof. The proof is similar to that of Lemma 5 in [2], p. 357.

LEMMA 8. Each Iv is continuous.

Proof. The proof is similar to that of Lemma 6 in [2], p. 358.

LEMMA 9. For any y and y2 in Y, the mappings I and I2 are C-related,
C0i.e. (I;) (P. n P,)) o

Proof. The proof is similar to that of Lemma 9 in [2], p. 359.
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:LEMMA 10. W is a Hausdorff space.

Proof. The proof is similar to that of Lemma 7 in [2], p. 359.

LEMMA 11. W is arcwise connected.

Proof. Let w0 Io O, where 0 and o are the respective origins in R and
R. We show we can connect any point of W to w0 by a curve. Take any
wWandlet (rl,... ,rK) ew. Let pl be the ray from o to rl in R,p.the
ray from o to r in R, etc. Then let Ioop,a. Irop.,a3
I(rl,r) o p3,... (rK I(rl,...,r._l)o p. Then the curve ... a 1 joins
w0 to w, Q.E.D.
The above lemmas imply that W is an arcwise connected C manifold, and

we proceed to define a connexion on B(W).

DEFINITION. Let & denote the 1-form of a connexion on B(W) defined as
follows" if v is any tangent vector to B(W), then (o(v) o de(v) % d’e(v).

The last equality holds since ’e S o e on P and S is connexion-preserv-
ing.

LEMMA 12. W is complete.

Proof. LetweWandletzew. LetpeWand let de(p) p in M,)
We know there exists an indefinitely extendable geodesic a in M such that
T(0) p. Letp pe(z) andletr (p,... ,p)eR. We definea
curve in W by r(t) I(z, tr, 0) for all t. Then e o e(t) e I(,)(0)
exp(z,r)(0) exp tr exp() tp a(t). Since e is a connexion-preserving
local diffeo it follows that is an indefinitely extendable geodesic with T(0)
p, Q.E.D.
We now generalize a theorem proved in [2]. Following a suggestion by

R. Palais, we give a direct proof.

THEOREM 3. Let M and N be d-dimensional connected C manifolds each
carrying aine connexions. Let N be complete, and let be a connexion-preserv-
ing local diffeo of N into M. Then N is a covering space of M.

Proof. To show is onto, we show (N) is both open (which is trivial
since is a local diffeo) and closed. Let m e (N). Though M is not as-
sumed to be complete, the map exp is defined and nonsingular in a neighbor-
hood U of 0 e M. We may further assume that U is an open ball with
respect to some base at m as metric in M. Let V exp U be the cor-
responding neighborhood of m. By our assumption there is an

m (V(N)). Let p (exp U)-(m) Then (t) exp tp, for
tel0, 1] is a geodesic from m to m with T(0) p. Let a(t) (1- t);
thus a is a geodesic from m to m. Choose any n e N such that (n) m.
Let q d-IT,(O) Nn. Let ,(t) exp. tq for all t. Then , is a geodesic in
N; hence o v is a geodesic in M since is connexion-preserving. Moreover,
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,(0) a(0) m and To.(O) de(q) T(O), which implies a.
Hence ,(1) m, and is onto. Note we have also proved that M is
complete.
We next show evenly covers any m e M. Let U and V be associated with

m as in the first paragraph. We show V is evenly covered by . Let n e N
and O(n) m. Since is a local diffeo, d-1 maps Mm isomorphically onto
Nn. Define f’V ---. N by f expn db-1 o (expm [U)-1. Let f(V) V’.
Then (1) f is C by definition; (2) o f identity map on V for f lifts geo-
desics in V that emanate from m into geodesics in V’ that emanate from n;
moreover, since is connexion-preserving, projects these geodesics back into
geodesics that have the same tangent vectors at m, and hence for such geo-
desics , f ; (3) similarly f o ( V’) identity. Thus
diffeo of V’ onto V, and with this fact it is trivial to show V’ is the connected
component of n in -(V), Q.E.D.

Proof of Theorem 1. The mappings e and ’e are connexion-preserving local
diffeos of the complete manifold W into M and ’M, respectively. By Theorem
3, W is a covering space for both M and ’M. By the hypothesis of Theorem
1, M and ’M are simply connected; hence e and ’e are connexion-preserving
diffeos (in the large) of W onto M and ’M respectively. Thus
connexion-preserving diffeo of M onto ’M which maps the key base b into
the key base ’b, Q.E.D.

4. The analytic case

Let Y R X X R (k times), and let X Y X Ro X Ro. For
an admissible triple (M, , b) let K Ki[X, and

THEOREM 4. Let M and ’M be two d-dimensional simply connected analytic
manifolds each carrying a complete (analytic) alne connexion. If for key bases
b e B(M) and ’b e B(’M), Ki ’K and K ’Ki on X, then there exists
a connexion-preserving analytic homeomorphism of M onto ’M which maps
b into

k kProof. We first showK K andK K for any k -> 1. These
functions are analytic on the finite-dimensional space X, where the analytic
structure on X is induced by the natural coordinate functions on R. Hence
by analyticity it is sufficient to show K ’K and Ki ’K on some
neighborhood of "zero" in X.

Let b (m, el,...,e) be the key base of M. Let U(m, )=
[peM’p peandp < 8]. Let U U(m,)forsomet (fixed)
such that exp maps U(m, ) diffemorphically onto a neighborhood of m.
Let V exp U, and for n e V let b(n) be the base at n obtained by parallel-
translating b along the unique geodesic in V from m to n. Then for n e V
and real > 0 let U(n, ) the open ball, in M,, of radius with respect
to b(n); let V(n, ) exp,, U(n, ); and let S(n, ) exp, [the boundary of
U(n, )].
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LEMMA. Take l >- 1, m, and as above. For each j 1, k there is
a real number (j) > 0 such that if n e Vd(m, (j 1)/]c) then V(n, e(j))c
V(m,

Proof. For j 1 this is trivial. Consider any j 1. Then certainly
for every n e ?(m, (j 1)i/) there is a real e(n) such that V(n, e(n))
V(m, j/k) since the latter is open. We show s(n) are bounded away from
zero, i.e. e(n) > > 0 and then e(j) .
Suppose no such exists. Then for every sh 1/h there is a point

nh P(m, (j 1)i//) and a point m S(m, j/) with m V(n, ). Com-
pactness of ?(m, (j- 1)/]) implies n -- n e ?(m, (j- 1)//) and we
reorder to have n - n. Consider any real p > 0. There is an integer H0
such that for h >= Ho, n V(n, p). Moreover, since the V(n h) become
arbitrarily small (i.e., -- 0), we may choose H >= H0 such that
V(n,, ,) V(n, p). Hence m, V(n, p). Hence m -- n, and since
S(m, j/) is closed, n S(m, j/]c) which contradicts the fact that exp is a
diffeo on U. This completes the proof of the lemma.
We may now define our neighborhood in X. Let be chosen so that both

U(m, ) and ’U(’m, ) are mapped in a 1"1 way. Let (1), (k) be the
sequence of ’s provided by the lemma applied to k, m, and i; and let
’(1),-.. ’(/) belong similarly to ], ’m, and t. Let i(j) min[(j), ’(j)]
forj= 1,... ,]. Thenlet0 B(o, i(1)) X B(o, (/c)),and we prove
K ’K, etc., on 0 X Ro X Ro.

Let y (r, ..., r)e 0. Then for e [0, 1] the points m(tr),
m(r, try.), m(r ,... r_, try) lie in V by the lemma. Thus we may use
(exp, U)- on V to lift the broken geodesic a determined by y to a broken
curve , in U. Similarly we obtain 7 in ’U. Let be the unique horizontal
curve in B(M) lying over a with (0) b and let a Exp ,. We define the
curve g in GL by R o . Similarly define ’e, ’, and ’g. The as-
sumption K ’K and K ’K on X1 implies (by Lemma 5 with y o)
that ’OodJ and OodJ on M. Then by Lemma 6, S
’exp, J exp is a connexion-preserving analytic homeomorphism of V
onto ’V, hence ’ , ’ o , and g ’g.
Letv O/Ou w O/Ou and x (y;v,w). Then

K(x) 2(E(b(y)), E(b(y))) 2(E’((])), E((/c)))

where all curves are to be evaluated at ]. If we let ,(]c) pi ei, r
(pl ,-’-, pd)eRd, and xl (r; O/Ou,, O/Ou), then U,(E"(a), E’(a))
K,(xl) ’K,(xl) by hypothesis, since xl e X. Hence by substitution into
the above equation K(x) ’K(x), and similarly K(x) ’K(x) for all
x 0 x Ro Ro.
Thus K ’K ’Kand K. . on any X which implies the equality of

the K’s and ’K’s on X since auy x is in some X. Then by Theorem 1 we
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have a connexion-preserving diffeo of M onto ’M. Locally, in any B,
’exp o exp1, and thus both and -1 are analytic, Q.E.D.

5. Two pp]ication$
THEOREM 5. Let M be a simply connected manifold on which is defined a

complete ane connexion with zero curvature and torsion invariant under parallel
translation. Then M admits a Lie group structure such that left translations
induce the original connexion.

Proof. Simple connectedness implies the global holonomy group equals
the local holonomy group, and zero curvature then implies the latter is the
identity (see [1]). Thus choosing a key base b B(M) we obtain a unique
horizontal cross section through b. The vector field form of the Cartan
structural equations is (see [1])

[Ei, Ej] - k(E, EJ)E (E, E)E,
which in this case becomes [E, E’] c. E, where c.k -2(E, E’) is
constant on the horizontal section through b. The constants cii give us
a set of structural constants for a Lie algebra L over the real field. Let G
be the corresponding simply connected Lie group. Taking the affine con-
nexion on G induced by left translation we obtain a complete connexion.
Let Y, ..., Y be a basis of L such that [Y, Y] ci Y, and let ’b
(e, Y(e), Y(e)) be the key base in B(G). Then K rKj 0 and
trivially K ’K at 0 X Ro X Ro and hence everywhere. By Theorem 1
we obtain a connexion-preserving diffeo of M onto G which induces the group
structure on M, Q.E.D.

THEOREM 6. Let M be a connected manifold on which is defined a complete
ane connexion with the identity as holonomy group and torsion invariant under
parallel translation. Then M is diffemorphic to a homogeneous space. Indeed,
there is a connexion-preserving diffeo of M onto a homogeneous space G/K where
G is a simply connected Lie group, K is a discrete subgroup of G, G/K is the space
of right cosets, and the connexion on G/K is induced by the left invariant vector
fields on G.

Proof. Let N be a simply connected covering of M, and let v :N - M be
the projection map. Since is a local diffeo, we have an induced map "B(N)
--, B(M). Letting 0 be the connexion form on B(M), we define a connexion
form on B(N) by & 0 o d. Thus becomes a connexion-preserving local
diffeo, and hence the connexion & has zero curvature and torsion invariant
under parallel translation. By Theorem 5 we may define a group structure
on N such that N becomes a simply connected Lie group G and & becomes
the connexion induced by the left invariant vector fields on G.

Let e be the identity of G; let m0 (e); and let K -(m0). Then K,
as a point set, is in 1 1 correspondence with the group of deck transformations
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of G, i.e., each element/c e K gives rise to a diffeo/’G -. G such that/(e)
/c and r o/ r. With this transformation group structure K is isomorphic
to the fundamental group of M. We next prove three lemmas concerning K.

LEMMA 1. Each deck transformation tc is connexion-preserving.

Proof. Let tc.’B(G) --> B(G) be induced by /. Then & o od
o d( o/c.) d/c., Q.E.D.

LEMMA 2. Each deck transformation is equal to left translation by It, which
we denote by

Proof. We use the fact that a connexion-preserving diffeo is completely
determined by its action on one base, and thus we need only show/ and Sk
are the same for the base (e, X1, X) where X1, X is any base of G.
First note/(e) /c and (e) /ce /c. Let dX X (thus making the

dkX X.X into left invariant vector fields) and we show that
Since G is connected, let a be any (broken) C curve with a(0) e and

a(1) /c. Let e(t) (r(t), X(a(t)), X(a(t))); thus e is a horizontal
curve in B(G) lying over a. Let dTrX e define a parallel base along the
closed curve r o a. Thus dTX e(a(1)), but zero holonomy implies
drX e((0)) drX. On the other hand, drX dr(dlcXe).- Hence

dkX X &bXdr(dkXe) drX and since dr is an isomorphism,
Hence/ $k, Q.E.D.

LEMMA 3. The set K is a discrete subgroup of G, and the group structure on
K induced by the declc transformations is isomorphic to the subgroup structure.

Proof. If kl, k2 ! K then r(/cl -1) 71" O )k20 (k-1(1 k"1) r(e) m0

implies/Cl -1 {! K, and thus K is a subgroup. The discreteness of K follows
from the fact that r is a local diffeo. Finally, / o/2 $1 o $2 $12,
Q.E.D.
Now let ’M [Kg] be the right coset space G/K. With the usual manifold

structure on M, the projection q’G M:g ----) Kg is a local diffeo, the kernel
of is K, and for all ] e K. We define a connexion on ’M by giving
a section in B(’M). Let X,..., X be, as above, a base of L. Then
dqX1, dvX defines a base at every point of ’M. This follows since if g
kgl ,then dXI dq dX dqX2 at the point Kg Kg. in ’M. By def-
inition, v is connexion-preserving for V maps a horizontal section in B(G)
onto a horizontal section in B(’M). This implies the torsion of % is invari-
ant under parallel translation, and the existence of a horizontal section im-
plies the holonomy group is the identity.
The map "M -- M by b(Kg) (g) is a well defined diffeo. Since

bo rwe have 0odod 0od %od. Since isalocal
diffeo, d is an isomorphism; thus o d %, Q.E.D.
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Example. The following example indicates that under the hypothesis
of Theorem 6 we cannot hope to prove M is a Lie group, even if we assume
further that the fundamental group of M be abelin.
We define M. Let S be the 3-sphere considered as the set of unit quater-

nions. Let K be the subgroup of S consisting of the elements [e, i, -e, -i].
The subgroup K is abelian but not normal in S. Let M be the space of right
cosets of S modulo K. With the connexion on M defined as in the proof of
Theorem 6, M satisfies the hypothesis of that theorem. But M is a compact
3-dimensional manifold with a fundamental group equal to the cyclic group
of order 4. By the Curtan-Killing classification, the only compact 3-di-
mensional Lie groups are S and Ra, the rotation group on Ra. Neither S
nor R has the same fundamental group as M. Hence M cannot be a Lie
group.
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