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Introduction
To each a, 0 < a _<- 2, there corresponds a symmetric stable density K.

defined by

(0.1) K.(x) r
-1 fo cos xz. e-’’" dz.

Associated with Ka are the transition probabilities

.(t, x, S) -/" fs K"(t-l"[x y]) dy,(0.2)

where > 0, < x < , and S is a Borel subset of the real line. These
transition probabilities define a separable Markovian process {X(t)l if the
distribution of X(0) is prescribed. With probability 1 the path functions are
continuous except for jumps (cf. [2] p. 422), and we shall assume them con-
tinuous on the right.

Let (a, b) be a finite open interval. For any path function X(t) with
a < X(0) x < b, let Tx be the first for which X(t) assumes a value out-
side of the interval (a, b).
The "a-absorbing barrier process" on (a, b) is derived from the a-process

by stopping it at time Tx. Its path functions are given by

(0.3) X,(t) X(t), < Tx.
In this paper we shall consider the interval (-1, 1) for simplicity. A simple
change of scale is involved in translating these results to an arbitrary (a, b).
We were led to consider the a-absorbing barrier process by a paper of M. Kac
[4], in which he discusses a method of calculating the distribution of the ran-
dom variable T. D. Ray, in a forthcoming paper, has obtained results
closely connected with ours, for a semi-infinite interval.
We shall denote the transition probabilities of the a-absorbing barrier

process by ,(t, x, S) and the corresponding densities (which will be shown
to exist) by e(t, x, y). Furthermore, we shall also use the notation

(0.4) e.(t, z) t-/"K.(t-/"z),
where K. is given in (0.1).
Our main results may be outlined as follows:

(a) Relation between the stable processes and the absorbing barrier processes
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(0.7)

and

for 0 < a < 1. In the a-process a particle can move from a point x (- 1, 1)
to a Borel subset S of (-1, 1) in one of two ways: either the particle moves
from x to S in time without leaving the interval (-1, 1), or at some inter-
mediate time r it jumps out of the interval and returns in time r. The
probability of the first event is (t, x, S), the a-absorbing barrier transition
probability. To derive the probability of the second event heuristically, we
note (cf. Lemma 1.3) that for 0 < a < 1,

(0.5) limt0

where C(a) is a constant. This makes it plausible that the following relation-
ship should hold between . and 92.

3.(t, x, s) 9.(t, x, s)

(0.6)
+ C(a) dr 9.(r, x, du) 3,(t r, z, S) z u dz.

zl>l

In Theorem 1.2 we derive (0.6) in terms of the Laplace transforms

P.(X;x-- y) / e-Xt6’.(t, x y) dt

(0.8) A.(),; x, y) e-x’ a.(t, x, y) dt,

where (P. and a, are the densities corresponding to 3, and ,, respectively.
We derive this relationship by a limiting process, using (1.1) and (1.2) as a
starting point. In [3], we studied the absorbing barrier process for a 1
from a slightly different point of view. There we began by solving the inte-
gral equation (1.51) and then proved that the solution must be the Laplace
transform of the absorbing barrier process. In the case 0 < a < 1, which is
considered in this paper, we find it more convenient to derive the integral
equation directly. The method used is outlined in (d).

(b) Backward and forward equations for the a-absorbing barrier process and
the semigroups associated with them. If g L(-1, 1), the transformation U*
defined by (2.46) defines a linear transformation from L(-1, 1) to itself. If
9 is the probability density of Xabs(0) then

(0.9) Pr{Xabs(t) S} fs U*g(y) dy

for > 0 and S a Borel subset of (-1, 1).

Actually, there is a third possibility, namely that the particle proceeds to 4-1 with-
out jumping from an interior point of the interval. In other words, there may exist a
r such that IX(t) < 1 for < r and limt.- X(t) 4-1. However, it will follow
from our rigorous derivation of (0.6) that the probability of this event is 0.
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It is to be expected that a. satisfies the Chapman-Kolmogoroff equation,

(0.10) a.(t - s, x, y) f a.(t, x, u)a.(s, u, y) du,
J_

and hence that {Ut*} forms a semigroup. In Section 2 we show that this is
indeed the case. We also determine the infinitesimul generator *, of this
semigroup. For any g e domain *, this gives the relation

o u*(x) -* *. u g(x)
Ot

(0.11)
-r() sin- g(Y) Y x sgn(y- x)dy.

This is the "forward equation" associated with the -absorbing barrier process
and is the analogue of the well-known diffusion equation for 2. We
begin in Section 2, however, not with the forward equution und {Ut*l, but
with the semigroup {U} given by (2.38) on the space Co[-1, 1] of continuous
functions on [-1, 1] which vanish at the endpoints. Using the fact that
is the adjoint of U restricted to L(-1, 1) we obtain the result mentioned
above. The equation (0.11) with Ut* replaced by U and g e C0[-1, 1] is
the "backward equation" for the a-absorbing barrier process.

(c) Mean absorption time. In Theorem 2.7 we show that if a particle
starts from some point x e (-1, 1) and continues according to the a-process
until the time Tx when it first leaves (-1, 1), the expected vlue of Tx is
given by (2.47). In other words, (2.47) gives the expected duration of the
a-absorbing barrier process.

(d) Outline of method. The method used may be briefly described as fol-
lows" we first consider an approximation to the a-absorbing barrier transition
probabilities ?I,(t, x, S). Let ,(n, A; x, S) be the probability that in the
a-process, a particle starting at some point x e (-1, 1) at time 0 will be
in the Borel set S (-1, 1) at time hA, and will be inside the interval
(-1, 1) at times t kh, 1 <= n. If n and A are fixed, then the sequence
{I,(2n, 2-A; x, S)} is a decreasing sequence as /c - oo. The limiting
function, call it ,(t, x, S) is the probability that the particle goes from x to
S in time t, remaining inside (-1, 1) at all times r which are of the form
r mA. 2- for some m and/. The set of all r having this form is dense on
(0, oo). Since the path functions are continuous on the right, we see that
l, coincides with
As an approximation to the integral equation (0.6) we employ the relation

between ?I,(n, A; x, S) and the ,(nA; x, S) given by (1.2). This equation
follows directly from the probabilistic definition of ,. In Section 1, how-
ever, we actually define the sequence {,(n, A; x, S)} inductively by (1.1)
and (1.2). From this point on we have then to show that in the limit (1.2)



ABSORBING BARRIER PROCESSES

gives rise to the integral equation of Theorem 1.2. In Section 2, we make
a study of the semigroups {Ut} and {Ut*} mentioned above.

In this paper we restrict ourselves to the case 0 < a < 1. The result for
1 < a < 2 seems to be similar, but the analytic difficulties are greater, and
we have not carried through this case in all detail.

1. Convergence of the approximations
For the probabilistic motivation and interpretation of this and the follow-

ing section, the reader is referred back to the Introduction. From now on,
we shall be concerned with the purely analytic side of the problem stated
there.

Suppose that x e (-1, 1) and S is a Borel subset of (-, ); for each
A > 0 and 0 < < 1, we define a sequence /l(n, A; x, S)} inductively as
follows:

(.1) (0, ; x, s) 1, x S,

0, x S,

.(na; x, S) .(n, a; x, S)

+ (, a; , u) (, , ).[( k 1), z, Sl ,,
k=O zl >1

where is defined in (0.2).
Since satisfies

.(t + , x, S) f .(t, x, du).(r, u, S) du,

we easily obtain the following properties of .(n, A; x, S):

(.3) ,(1, ; x, s) %.(a, x, ),

0

S c (-1, 1),

Sn(-1,1) =0,
and

(1.4) l.(n -{- 1, A; x, S) Ii .(n, A; x, dz)l.(1, A; z, S).

Furthermore, it follows from (1.3) and (1.4) by induction that

(1.5) ?I.(n, A; x, S) 0

when S (-1, 1) 0, that

(1.6) t.(n, A; x, S) >= 0

for all Borel sets S, and that for n >_- 1, .(n, A; x, S) defines an absolutely
continuous measure whose density we denote by a.(n, A; x, y). In the

If we knew beforehand that the event described in footnote 2 was a null event, then
the derivation of (0.6) might be approached more directly using results of G. A. Hunt [6].
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sequel we shall use these densities primarily; consequently, for convenience
we shall state (1.2) in terms of densities: if Ix < 1, Yl < 1, then

(P.(nA; x y)

(1.7) a,(n, ,; x, y) -+- f .(A; x z)([(n 1)a, z y]
zl>l

-t- a.(k, A; x, u) du @.(A, u z).[(n k 1)A, z y] dz,
kl zl >I

where is the density defined in (0.4). We have used here the fact that. and . both satisfy (1.1). On the other hand, if ]x < 1 and [y > 1,
then

.(A, x z)[(n 1)A, z yl.(nh; x y)

(.a) + a,(,a;,) (,

Before proceeding go ghe main resul of ghis seegion, we sge some pre-
liminary lemmas"

1.1. For

(.) a , , e(, ; ,).

Pro@ By (1.a) and (1.4), we have

,;,

he gheorem hen follows by induction by using (1.4) for densities.

L 1.2. If

(1.11)

where M is a constant indepeent of and x.

Proof. We rewrite the integral as

(1.12) fo eiV-tv {tnvnO + Cn}v- dv C. e-t’" v- dr,
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whereCn (n- 1)"-lifn lor0, andC1 1, C0 0. We need only
show that the estimate holds for the first integral, since the second is a special
case of the first for n 0.
comes for x > 0,

After a change of variable, the first integral be-

(1.13) x- fo eivf(t’ x, v) dv

where

(1.14)

For/ > 0 and > 0, f(t, x, v) is a decreasing function of v for v > 0 (since
e-V{v -t- Cn and v- are decreasing for v > 0), and

(1.15)

when n 0, and

0 <- f(t, x, v) <= C, v-
0 <= f(t, x, v) <= v-

when n 0. Now, taking an arbitrary A > 0 and using the second mean
value theorem on the real and imaginary parts of (1.13) in the region of inte-
gration v > A, we see that the absolute value of (1.13) is bounded by

(1.17) f(t, x, v) dv -4- 4f(t, x, A x’-1,

for x > 0. Now an application of (1.15) and (1.16) proves the theorem for
x > 0. The proof for x < 0 is entirely similar.

LEMMA 1.3. If (P,(t, Z) is defined as in (0.4), then

(1.18) <Mlzl--", t>0,

where M is a constant, and

(1.19)

with

(1.20)

t>O

(1.21)

2  o(t, z)I,-0 c(.)I z]-’-"Ot

C(a) r-. r(a -t- 1). sin (ra/2).

The first part, (1.18), follows as a corollary to Lemma 1.2, for if

o .(t, z) -Ot
cos vz(v"e-’) dv

sin vz v"-[ tv"]e-t dr.
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The result follows immediately since 0 < a < 1. From (1.21), it follows
easily that

(1.22) lim t ,(t, z) C(a) z 1-1-"
t--)0

(see [1], p. 23).

LEMMA 1.4. For each 0 < a < 1, there exists a constant M(a) such that

(1.23)
_-< AM(a)[I x y 1-1-" - mini(1 x)-1-", (1 y.)-l-,}].

Proof. For simplicity, we shall use the abbreviation

(1.24) G.(t, t. ;z) (P,(t, z) (P,(t., z).

Then by (1.7),

Ot.(n + 1, A; x, y) a.(n, A; x, y) G.({n -[- 1}A, nA; x y)

Ct.(k, A; x, u) du
kl

f (,(A, u- z)G(In k}5, In 1}A; z y)dz
(1.25)

f 6’.(5‘, u- z)G.(ns‘, n 115,; z y)dz
zi>i

flaa(n 1,/;x, u)du f a(h,u- z)(P.(5‘,z- y) dz.
J_l z[>l

By (1.18),

(1.26) G.(t, t2 ;z) < MI t t2 I’lz -x-".

Therefore, using (1.25) and the fact that

(1.27) f (f’.(t, z) dz 1,

we have

(1.28)

a,(n + 1, 5‘; x, y) a,(n,/; x, Y)

_<_ K(.)a {Ix- sl--" +1 ,l-’-}

d-- K(a). A. (i y)--"

a.(, ; x, ) (P.(5‘, u z) dz.
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But it follows from (1.2) with S (-oo, that

1.

Since a(n, A; x, y) a(n, A; y, x), it follows that the term (1 y)--
in (1.28) cn be replaced by min[(1 x)--, (1 y)--]. This com-
pletes the proof.

DEFINITION 1.1. We define
(1.30) Pa(k,

and

(1.31) A,(k,

for each k O, A > O and x y.

That the series in (1.30) and (1.31) are convergent follows from the in-
equality

(1.32) 0 a,(n, A; x, y) ,(na, x y)

and the following lemma.

LEMMA 1.5. For all k 0 and 0 < a < 1,

(1.33) P,(k, a; z) < C z ["-
where C is a constant independent of

Proof. We have

n----1

(1.34)

If we let A1/% w,

(OS vze-nav" dv

cos vz(ea* 1)-1 dr.

z) < -1A1-1/" f cos(zwA-l/")(eW" 1)-1 dw.(1.35) P,(, A,

Since (ew" 1)-1 is positive and decreasing for w > O, we may use the second
mean value theorem to obtain an estimate for the integral on the right"

cos zw(e"- 1)-1 dw zl-l_f cos w(e’"’z’-’- 1)-1 dw
(1.36)

 lzl- {f (ewlz’-- 1 dw + 2(eAI’ 1)-

where A is n arbitrary positive number.
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The next two theorems incorporate the main results of this section.

THEOREM 1.1. Define
(1.37) F(,)(t, , x, y) a,(n, 2-h; x, y)

for 2-nA _<_ < (n + 1)2-. 5, when n > 1 and

(1.38) F(,k)(t, A, x, y) 0

for O <= < 2-kA. Then
--()(1.39) lim_/% (t, A, x, y) a,(t, x, y)

exists and is finite when x y. The limiting function (,, satisfies
(AO) a,(t, x, ) a,(t. x, ) < f(, ) t t ,
where f(x, y) 0 is finite for x y, and

(1.41) a,(t, x, y) O(t-/)

as t . Also fork 0

(t, A, x, y) dt A.(h, Alim e-’c), lim 2-;x, y)
(1.42)

(1.43)

for/ > 1.

(1.44)
fork > 1.

First suppose that 2-n4 for some l, n, and 4.

Fk)(t, /, x, y) a,(2-n, 2-h; x, y)

Also by (1.9),

Fik+l) (t, 4, x, y) <- Fi) (t, A, x, y)

Hence, for fixed 4, x, y (x y),

e a(t, x, y) dt.

Then

i= 1,2.

IF(,)(tl, A, x, y) F(,)(t, A, x,

a.(n, 2-/; x, y) a.(n, 2-a; x, y)I,

This completes the proof

(1.47)

Then

(1.48)

and (1.46) follows after an application of (1.23).
of (1.39). Clearly, (1.40) also follows from (1.46).

--k2-kn4 =< t < 2 (n+ 1)A,

(1.45) lim,_0 F*)(t, A, x, y) a.(t, x, y)

exists and is finite for of the above form. Such t’s are dense on the real line.
To show that the limit in (1.45) exists for all t, we shall prove that

(1.46) F(,*)(t A, x, y) F*)(t., A, x, y) < f(x, Y)l t, t, / 2-*A i,
where 0 =< f(x, y) < oo, when x y. Suppose that
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To prove (1.41), we note that

(1.49) a.(t, x, y) <- (P.(t, x y) -< r-t- Jo dw.

Finally, to show the convergence of the Laplace transforms in (1.42), we
need only show that given > 0, we can find a T independent of/, such that

(1.50) F() (t, A, x, y) dt < e.

THEOREM 1.2. If P, and A, are defined as in (0.7) and (0.8) respectively,
then

p.(x; x y) A.(x; x, y)
(.5) i __.+ C() A.(X; x, u) du P.(; z y) z u dz

zl>l

(=) (1.20).

Poo/. For each A, follows from (1.7) and Definition 1.1 h when
I < ,lul < lwehve

P.(X, ; u) =(x, ; , u)

1>1

+ -x [ e=(A, z- )P=(X, ;- u)z.
l>1

When z < 1, ] > 1, i follows from (1.8) and Definition 1.1 ha

P=(X, ; u)

e A(X, h; x, ) du h-(h, u z)P(X, h; z y) dz

(.53)

zl>l

To prove the theorem, we shall let A run through a sequence {A} with
A .2-, for some fixed , in (1.52) and (1.53). It will be sufficient to
show that

u a ; )lira A(X, , ) du )e( d
(1.54)

() (x z, ) P(X ) ! u ,
zl>i
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since limk P(, Ak x y) P(; x y) and the extraneous terms in
(1.52) and (1.53) are O(Ak). The result then follows from dominated con-
vergence by using Lemmas 1.3 and 1.4 with the inequality

(1.55) As(X; x, y) -< P,(h; x y).

2. The backward and forward equations
Associated with each of the stable symmetric densities of order , there is

a semigroup {T} on the space of totally finite measures to itself given by

(2.1) Tt lz(S) fs dx f_: 5),(t, x y)(dy),

where S is a Borel subset of the real line. The resolvent Rx of the semigroup
is the transformation defined by

(2.2) M,(S) R, (S) fo e-tVt (S) dr.

Both T and Rx are absolutely continuous measures.
If is a totally finite measure, we shall use the notation

extl(dt)

and if f e L(- , o ), we shall write

(2.4) ](x) f_: eider(t)dE.

In the next three theorems we state some properties of the semigroups
associated with the symmetric stable densities.

THEOnEM 2.1. If is a totally finite measure, and M, is defined as in (2.2),
then for >= 0

(2.5) (x) n(x)(x + Ix I")-.
Proof. This follows directly from the definitions of R and T by using

(0.4) and (0.1).
As a matter of notation we let

(2.6) (x) {(-- , x)}

whenever is totally finite measure on the real line.

THEOreM 2.2. If X and x are points of continuity of the totally finite meas-
ure , then for each >= 0

X[R (x) R (x)] [(x)
(2.7) u u

where Mx is defined as in (2.2).
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Proof. We have from (2.5),

(2.s) (x) (x)

Since Rx t is an absolutely continuous measure, and Xl and x. are points of
continuity of u, we can apply the Lvy inversion formula to (2.8) to obtain
(2.7).

COROLLARY 2.1. If is an absolutely continuous measure with density
f eL(--, ), then for each k 0

dx R (x) f(x)
(2.9)

In he sequel we shall mainly use ghe special ease in which is an absolugely
eonginuous measure. o ghis end we shall sgage he following gheorem.

To 2.. The ranformion

(2.10) Tt f(x) ,(t, x y)f(y) dy

define a semigroup from L(-, ) to itself, being defined by (0.4). The
infinitesimal generator is of the form

a d(2.11) (x) -F(a) sin

Proof. It follows from Corollary 2.1 that the infinitesimal generator of
the semigroup (2.10) is

lim (e- 1)(v) v -1 sgn v dr.(.1) a e() -i(-
We shall firs show

(2.1g) lim (v) v - sgn v dv

exisgs.

If e domain , ghen for some X > 0, is also in ghe range of ghe re-
solvent, of ghe semigroup. Therefore, by Theorem 2.1, we have (v)
(v)(X + v )- for some f L(- , ) and some X > 0. Hence,

(v). v - sgn v dv 2i f(x) dx sin vx(X + dv

(.)

Since Gr(z) < M < and lim Gr(z) exisgs, we conclude by dominaged
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convergence that the limit in (2.13) exists as T --. .
generator can thus be written

The infinitesimal

e-(v) iv -1 sgn v dv(2ri)-1- r r

(2.15) (2r)-1 x lirm f: q(u) du f:sin v(u x)., v - s v dv

-r().sin (u) sgn ( ) d

for almos all .
We now urn o he semigroups assoeiaged wigh ghe -absorbing barrier

process.

THEOREM 2.4. For each h O, 0 < a < 1 and f e C[-1, 1], the equation

d [ Fx(u) u- x - sgn (u- x)du(2.16) hfx(x) r- F(a) sin
_

f(x)

has a unique solution Fx e C[-1, 1] given by

J-1
(2.17)

Furthermore,

A(0; x, y) dy [r( + )1-( x),
and for all X >= 0,

(2.19) Fx(x) -< f .[F( / 1)]-x(X x)/2,

if we use the norm off in C[-1, 1].

Proof. Let

(2.20) qx(x) f-i P(X; x y)f(y) dy.

From (1.51) by defining F as in (2.17),

(2.21) (y) Fx(y) + C(a) P(X; z-- y)dz Fx(x) lx z dx.
zl>l

For simplicity, we put
(z) o, zl < l,

(2.22) .[_: Fx(x) dx

I zl/’ Izl > o

It is easily seen that g e L(- , ), since by (1.55) and Lemma 1.5, Fx(x) is
bounded for all X -> 0. It follows from Theorem 2.3 that whenever
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h e L(- , the function defined by

(2.23) (x) f_: P,(X; x y)h(y)dy

satisfies kb t,* b h. We conclude, therefore, from (2.21) that

(2.24) f(x) hCx(x) x(z) XFx(x) Fx(x)

for x < 1. This establishes that Fx is a solution of (2.16).
We next show that Fx is continuous in the open interval (- 1, 1). We shall

do this by showing that the left and right members of (2.21) are in C(-1, 1).
It is easily shown that e C(-1, 1) by dominated convergence with the use
of Lemma 1.5. That the right member is also in C(-1, 1) follows from
dominated convergence with Lemmu 1.5 and the fact that the function g
deed in (2.22) is integrable over (- , ).
So far we hve shown that for 0, Fx is a bounded solution of (2.16),

continuous in (- 1, 1). We shall have to use a rather circuitous argument to
show the continuity at the endpoints. We shall first prove that when h 0,
there is only one bounded solution of (2.16) in C(-1, 1); in other words

F() x sgn ( x) d 0(2.25)
dx

has no nontrivial solutions in C(-1, 1). Suppose that such an F exists, and
let F+ and F- be the positive and negative parts of F. The function de-
fined by

is in C[-1, 1]. Let x be interior to an inrval in which F(x) O. We may
assume without loss of generality that F+(x) O. Then

On the other hand, if x is interior to an interval in which F(x) O, then

d F-() -x ]-" sgn ( x) d E 0,(2.28) d
and therefore ’(x) O. Since e C[- 1, 1], it follows that is a nondecmas-
ing function, but this is impossible since

(2.29) (- 1) F+() + 1 g > 0

and

(.aO) ,(1) -[ +() 11 d < O.
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We are now ready to prove (2.18) and (2.19), which will also establish that

(2.31) lim+/-l F,(x) O,

thus proving that Fx e C[-1, 1].
It is proved in [5] that

(2.32)

f-- 0 in [-1, 1].

(2.33)

where

--{F(a -+- 1)}-’F(a) sin
2

"d- "]u x .sgn (u x) du =- 1,

when Ix[ -<_ 1. By our uniqueness proo above, it follows that (2.18) must
hold. Since A,(h; x, y) >_- 0 and decreasing in }, for all X _>_ 0, the inequality
(2.19) is an immediate consequence of (2.18).
This completes the proof of the theorem except for the uniqueness when

h > 0. Suppose that there exists a solution G e C[-1, 1] of (2.16) with
We then define

H(x) o (-)’S G(x),

SxG(x) ’f A,(h; x, y)G(y) dy.(2.34)
J_

The series in (2.33) is meaningful, since for any G C[-1, 1],

(2.35)

Hence, as a transformation from C[-1, 1] to itself,

Now H satisfies the equation

(2.37) H(x) XS H(x) G(x),

and by the first part of the theorem, this implies that H is a nontrivial solu-
tion of (2.25) in C[-1, 1], which we have shown to be impossible. Our proof
is now complete.

THEOnEM 2.5. The transformation

u, f x)

defines a contraction semigroup on the space C0[-1, 1] of functions continuous
on [- 1, 1] and vanishing at 1, to itself. The infinitesimal generator is given by

d
(2.39) , F(x) v-F(a) sina _ F(u) u x sgn (u x)du
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the domain of consisting of those F e Co[-1, 1] for which the right side of
(2.39) is also in Co[-1, 1]. The resolvent of the semigroup is given by the
transformation Sx of (2.34).

Proof. For each f e Co[-1, 1], we have

(2.40) f e-XUt f(x) dt Sx f(x).

Theorem 2.4 shows that Sx is a transformation from Co[-1, 1] to itself, and
that Sf Fx is the unique solution in Co[-1, 1] of (2.16). Therefore, by
the Hille-Yosida theorem all we need show in order to prove that Sx is the
resolvent of a contraction semigroup is that the domain of , in (2.39) is
dense in Co[-1, 1]. To accomplish this, we shall show that

(2.41) limx.][ kSx f f 0

for all f Co[- 1, 1]. We may consider (2.10) as a semigroup from C[- ,
to itself, with resolvent transformation f-o Cx given by

(2.42) x(x) f P,(X; x y)f(y) dy.
j_

Hence for any f C[- , ],

(2.43) limxll ),xf f 0,

by using the norm of C[-
equation

(2.44)

we have

(2.45)

]. Furthermore, using (2.21), (2.30) and the

P,(h; x y) dy

Hence, the left side of (2.45) tends uniformly to 0 as -. .
this with (2.43), we conclude that (2.41) holds.

P,0; z y) u z du <= II f ll.

Combining

Proof.
L(-1, 1).

Tt* is the adjoint transformation to Tt, acting on the space
Therefore Tt* is a contraction semigroup on L(-1, 1) to itself.

from L(-1, 1) to itself is a contraction semigroup whose infinitesimal generator
:, satisfies (2.39) with , replaced by *,

(2.46) U** g(x) a.(t, x, y)g(y) dy

THEOREM 2.6. The transformation
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That its resolvent S’ satisfies the same equation as Sx is easily proved by the
method used in the previous theorem.

We wish to make a final comment on (2.18), which has an interesting
probabilistic significance:

THEOREM 2.7. If T is the random variable defined in he Introduction, hen

(2.47) E(Tx) [F(a - 1)]-(1-
this is the expectation of the time taken for a particle starting at some point
x (- 1, 1) to be absorbed at one of the boundaries +/- 1 in the a-absorbing barrier
process for 0 < a < 1.

Proof. Let Fx be the distribution of Tx. Then we have

d Fx(t) d (,(t, y) dy

(2.48) . t=

dy.
j_ t.-o J-

It then follows from (1.41) that the next to the lust term in (2.48) vanishes.
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