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An ordered pair of subsets (A, B) of a given group G shall be said to satisfy
the Engel condition if to each a e A and b e B there corresponds an integer
/ =/(a, b) such that

[a, b, ..., b] 1.

(Here Ix1, x2] stands for the element x-lx2 xlx and, for /c > 1,
Ix1, ..-, xk+l] [[x, ..-, xk], x+].) The fact that (A, B) satisfies the
Engel condition will be denoted by the symbol A e B. If, moreover, the
integer/ can be chosen independent of the element a in A, or of b in B, then
this will be written Ale B, or A el B, as the case may be.
We shall be mainly concerned with situations in which one of the sets A, B

consists of a single element and the other of the whole group. It will be
convenient to have a terminology specially adapted to these cases. Let us
therefore call an element g a left Engel element, or bounded left Engel element
according as G e g, or G ]e g; and a right Engel element, or bounded right Engel
element according as g e G, or g e] G. Thus, for example, an element in a locally
nilpotent normal subgroup is a left Engel element, and one in a nilpotent
normal subgroup is a bounded left Engel element; while an element in any
term of the ascending central series is a right Engel element, and one in a
finite term of this series is a bounded right Engel element. Just how typical
these examples really are is at present unknown. The best that can be said is
the following" in a group, satisfying the maximal condition on subgroups,
the set of all left Engel elements coincides with the set of all bounded left
Engel elements and forms the maximal nilpotent normal subgroup; while the
set of all right Engel elements coincides with the set of all bounded right Engel
elements and forms the hypercentre of the group. These exceedingly elegant
results are due to Reinhold Baer [3].
Our main aim in this paper is to show that, besides the groups with maximal

condition, there exists another class of groups in which the Engel elements are
well behaved" we shall, in fact, prove that in every soluble group the sets
consisting of the four types of Engel elements all form subgroups. However,
unlike the situation in the groups studied by Baer, it is here quite possible for
no two of these subgroups to coincide" we shall construct a soluble group in
which the four subgroups are distinct from each other and from the hyper-
centre. We begin, in 1, by considering four conditions analogous to, but
considerably stronger than, the four Engel conditions, and we show that, in
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Plotkin calls a left Engel element a nilelement.
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any group, the set of elements satisfying any one of these conditions forms a
subgroup. It then turns out (in 2) that in a soluble group these four sub-
groups coincide precisely with the four different sets of Engel elements.

1. Radicals

The strengthened versions of the four Engel conditions to be studied in this
section all depend on Wielandt’s notion of "Nachinvarianz".
By a series from a subgroup H to the group G we shall always mean a well-

ordered ascending normal system in the sense of Kurosh [7], p. 171. If H
can be linked to G by a series, it will be called serial, and we shall write
H <:l G. If, in particular, there exists a finite series linking H to G, we
shall say that H is finitely-serial and (following Wielandt) write H <:l<:l G.
(If H is normal, we write H <:l G.) An element g will be called serial or fi-
nitely-serial according as the subgroup generated by g is serial or finitely-serial.

It is rather easy to see that g <:l G implies G g and g<:l G implies
G I g. We are therefore dealing with conditions which genuinely are restric-
tions of the two left Engel conditions.

Let us denote the set of all serial elements in G by a(G) and of all finitely-
serial elements by (G). It was shown by Baer [2] that (G) is always a
characteristic subgroup, and it will be proved below that the same is also
always true of a(G). Our proof of this fact is closely modelled on Baer’s
argument, but first we must establish that a group generated by serial ele-
ments is locally nilpotent. This turns out to be a very easy consequence of
the theorem of Hirsch [6] and Plotkin [8] that local nilpotence is a multi-
property. (A property is called a multiproperty if, whenever two normal
subgroups possess P, then their product also possesses .)
The proposition that follows below is not really needed until 2, but since

it leads to a new way of looking at the Hirsch-Plotkin theorem, we have
thought it worth while to place it here. Our tools in the following lemmas are
the basic commutators.

Let X be a finite subset of a given group, and define X0-- X; if subsets
X0, ..., Xk_l and elements bl, ..., bk_l have already been defined, then
choose bk to be any element in Xk_l of lowest possible weight (in the elements
of X), and define X to be the set consisting of all elements

[b, b, ..., b]

r

for r >- 0 and b e X_I, b b .4 The resulting sequence of elements bt, b,
b, is called a basic sequence in X, and we shall call X0, X1, X., the
corresponding generating sequence.

Some authors use the term "accessible", others the German "nachinvariant."
Baer calls a finitely-serial element a nilelement.
Ix, y, y] is interpreted to be x.

0
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Suppose F is a free group of finite rank and b, b, a basic sequence in a
free set of generators of F. If b is the last basic commutator of weight n,
and K is the normul closure of b+, b+., ..., then one can show, by an
argument very similur to thut used to prove Lemma 5.1 in [5], that every
element of F can be written in the form

with integers ]c, ]c and c e K. From this, and Theorem 5.6 in [5], it
follows immediately thut K is actually the nt term of the descending central
series of F. This fact is due to P. Hall.
Throughout this paper we shull write the descending central series of a

group G as
G (G) >_- ,(G) >_-

and, for a sulset S of G, denote the subgroup that S generates by Gp{ S I.
Thus

,(G) Gp{[gl, g], all g G}.

We shall also adopt the notation

Ix, y, ..., y] Ix, ry].

r

LEMMA 1. Let F be the free group on a finite set X and bl b, a basic
sequence in X. Define E to be the normal closure in F of b, ha, ..., and
choose any positive integer ]. Then any b of weight wt b __> ]c ]c W 1 either
satisfies b, "(E) or involves Ibm, rb], where r >= ] and b X.

Proof. Let wt b >__ ]: ] - 1, and suppose the only simple basic com-
mutators with b involved that occur in b, are, with correct multiplicities,

[bj b], i 1, p,

where 0 < r < ] for each i. (To assert that, for example, c [bj, b] occurs
with correct multiplicity in the above set of p commutators simply means
that the number of integers i for which j j and r r is precisely the
number of times c occurs in b8 .) We shall prove b8 e k(E).
Suppose to the contrary that b8 ,k(E). We choose any p distinct nonunit

elements lying in E but not in X, say b_, b-o, replace the occurrence
(in b) of

[bj ,.,bl]

by b_ (i 1, p), and denote the resulting element of E by $8. Our
hypothesis that b8 /(E) implies that wt $8 < / (where wt 8 represents the
weight of $, as commutator in b_, b-o, X). Consequently

(1) wt 58 wt 8 -t- (r + + ro) < k -t- (rl + nu
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and since, clearly,
wtb8 >-_ p+ (rl+ +rp),

we conclude

(2) __< - .
Now, by hypothesis, wt b8 / ] 1, and so (1) implies

/ k -t- 1 < / -- (r -{- -t-rp) -< / -F- p(/ 1),

which, by (2), yields

l- l-- 1 < 1+ (l- 1) /-/c+ 1,

a visible contradiction. Hence b, e ,(E), as required.

PROPOmTON 1. Let H be a normal subgroup in G GpJH, g I, and suppose
H has a generating set Y such that [y, g] i for all y e Y. If H is nilpotent
of class c, then G is nilpotent of class <= m(m 1), where m mx(/, c -F 1).

Proof. It is clear that we need only prove every finitely generated subgroup
of G to be nilpotent of class =< m(m 1). Now every such subgroup is con-
ruined in subgroup generated by u set of the form /g, Y, Yqt, where
yieY. PutK Gp{g,y, ...,yql.

Let F be a free group of rank q -F 1 and bl, b, a basic sequence in a
free set of generators of F. The mapping

b--g

b+--.y for i- 1,...,q

extends to a homomorphism of F onto K, and the image under of E, the
normal closure of b, b., is contained in K n H. If m max (k, c -- 1)
and wt b >- m m -t- 1, then, by Lemma 1, either b, e w(E), or b, involves
Ibm, b] with r >__ m. Hence either b e (H), or b involves [y._, g] with
r >_- k, so that anyway b 1. But, as was noted above, the normal closure in
F of all b8 of weight >_- m m -t- 1 is precisely .y,._,+(F), and hence

_+(F) ._+(K) ,
as required.

LEMM 2. Let the subset Y of G generate the subgroup H. If the element g is
such that g-lyg <= H and Y g, then g-Hg H.

Proof. Since g-Yg <= H implies g-Hg <= H, it only remains to show that
gHg- <- H. It is therefore sufficient to prove gYg- <= H.

Writing y [y, rg], we see, by a simple induction on m, that, for all m >= 0,

g--,nyg, w(m)y.,

where w(m) is word in y0, y, y-. Now y e H implies g-yg’ e H
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for all m _>_ O, and so, if we already know that y0, ym-1 all lie in H, we
obtainymeH. ThusyeHforalli >- O.
We observe next that [y, g-l] [yl -11-1 -1g yl and, by repeated application

of this identity, deduce that, for any given positive integer k, [y, g-l] is a word
in yl, "", yk, [yk, g-l]. Choose y e Y and k such that y+l 1. Then
[y, g-l] 1, and hence [y, g-i] is a word in yl, y, whence [y, g-i] e H.
Thus gyg-1 H for all y e Y.

THEOREM 1. Let G be a group generated by a finite set X, and bl b_ a
basic sequence in X with generating sequence Xo, X1, .... If there exists
l _>_ 0 such that Gp{X} is nilpotent and Xi-1 bi for each i 1, ]c, then
G is nilpotent.

bi Xi bi <-Proof. Putting Hi Gp{Xi} we see that Hi_l Gp{Xi, bi} --1

Hi and, for i -< k, Xi bi (because X_I bd. Hence, by Lemma 2, Hi <3 Hi_
for all i < /.

If X_ is finite and Xi_ e bi, then Xi is finite. But X0 X is given to be
finite, and hence Xi is finite for all i N ]c, whence Xi_l le bi for all i -< /c. It
now follows from Proposition 1 that. if Hi is nilpotent, then H_ is also nilpo-
tent. Since H is given to be nilpotent, it follows that H0 G is nilpotent.

COROLLARY (Hirsch-Plotkin). If U and V are locally nilpotent normal
subgroups of a given group, then so is UV.

Proof. We must prove the nilpotence of every subgroup of the form
G Gpl S, T} where S is a finite subset of U, and T a finite subset of V.
Let bl, b, be a basic sequence in {S, T} with generating sequence
X0, X1, .... If ,(Gp{S}) /(Gpl TI) 1, then every b, of weight -> c
lies in U n V, and hence there exists k such that X <__ U n V. Obviously
Xi_t bi for all i -> 1, and therefore Xk is finite, and so Gp{X} is nilpotent.
Thus G is nilpotent by Theorem 1.

The fact that local nilpotence is a multiproperty implies that the union of
all locally nilpotent normal subgroups in any group G is itself locally nilpotent.
We shall denote this subgroup by (G) and call it the Fitting radical of G.

Let us recall that a local system of subgroups of a group G is a set of sub-
groups such that (i) every element of G is contained in some subgroup of the
set, and (ii) any two subgroups in the set are contained in at least one other
subgroup of the set (see [7], p. 166). If (P is a given group property and G
has a local system all of whose members have (P, then G is called locally
while if it should happen that all the subgroups of the local system re also
serial in G, then we shall say G is a-locally 5). The property (P is called a-local
if -locally (P is the same thing as
The reader should observe that the class of a-locally (P groups is contained in

Plotkin calls this the nilradical.
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the class of locally (P groups, but that, on the other hand, the class of a-local
properties contains the class of local properties.

LEMMA 3. If 6 is a multi-, and a a-local, property and K is a serial sub-
group of G possessing 6, then K, the normal closure of K in G, also possesses 6.

Proof. LetK K0 <KI< <K, G be a series from K to G and,
for each , define Hx to be the normal closure of K in Kx. Thus K H0 H1
and H, K. It is clear that Hx <:l Hx+l, and we easily verify that, for each
limit ordinal h, Hx IJ<x H,. Hence

K H <= H2 <= =< H, K <

is a series, and so each Hx is serial in G.
We prove the lemma by an induction on ,. Suppose we already know that

H, has (e for all < . If h is a limit ordinal, then the set of all H with
,, < , provides a a-local system of Hx all of whose members have (. Thus
Hx is a-locally 6 and hence is (P. If, however, is not a limit ordinal, then
x-lHx_ x H_I is normal in Kx_ for every x e Kx, and so

H IIH_.

The product of any finite number of conjugates of Hx_l by elements in Kx
again has (P since (P is a multiproperty and also, of course, is a normal sub-
group of Hx. Thus the set of all such products is a a-local system of Hx
whose elements all possess (P, and so Hx is a-locally (e. Thus, whatever the
nature of ,, Hx is (P, and the induction is complete.

Since a local property is necessarily a-local, we may apply Lemma 3 with (P

the property of local nilpotence and K the subgroup generated by a serial
element to obtain

PROPOSITION 2. The normal closure of a serial element is locally nilpotent.

We are now in a position to begin the proof of the fact that a(G) is a sub-
group.

LEMMA 4. Let H be a subgroup of G and g an element such that H e g. If
K ,=_g Hg thenx Kif, andonlyif, [x,g] Hforallr >- O.

Proof. Clearly x K implies x" g-’xg H for all integers m. As in
the proof of Lemma 2, we may conclude that x Ix, g] H for all r __> 0.

Conversely, let x H for all r >__ 0, and let X Gp{x, r >- 0/. Then
X <__ X (because xg x x+), and X g (because X __< H and H g), whence,
by Lemma 2, g lies in the normaliser of X. Hence x X for all values
of m satisfying ( m ( -[- , and so x H for all m, i.e., x K.

For our next lemma we need some further terminology. If S is given
subset of G and K cn be linked to G by u series all of whose terms are invariant
under the inner automorphisms determined by S, we shall say that K is S-
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serial. If ( is a given group property and there exists a series from K to G
in which quotients of all successive terms possess (P, we shall say that K is
serially- in G; and if, in particular, 1 is serially-(p in G, then G will be said
to be serially-5). Finally, we recall that a variety of groups is the class of all
groups which satisfy a given set of identities, and that (P is called a varietal
property if the class of all groups having ( forms a variety.

LEMMA 5. IfK is serial in G and the left Engel element g lies in the normaliser

of K, then K is g-serial.
Further, if 5 is a varietal property, and K is serially- in G, then K is g-

serially-5 in G.

Proof. LetK K0 < K1 < <K, G be a series from K to G, and,
for each ,, define

Lx f3m_-_ K[.
Then L0 K, because g is in the normaliser of K, and L, G. Moreover,
for each),,L Lx,andL<3Lx+. HenceK L0_ L1 =< =< L, G
is a series provided only that, for every limit ordinal ,,

L U,< L,.

Clearly U,<x L, =< Lx, so that it only remains to prove the converse inequal-
ity. Let x e Lx and suppose [x, kg] 1. By Lemma 4, [x, rg] e Kx whenever
0 =< r < k, and so there exists g < X such that [x, rg] K for 0 =< r < k,
whence, again by Lemma 4, x e L,, as required.

Finally, assume that for every h, Kx+/Kx has the varietal property (, and
let w(x,, xn) 1 be one of the identities holding in the variety deter-
mined by (P. Choose any a, an in L+ and any integer m. Then we
can find elements b,, bn in Kx+ such that ai b for all i, and hence
w(a an) K[". This is true for every m, and so w(al an) Lx
whence w(x, .-., xn) 1 holds identically in Lx+/Lx. Consequently
L+/Lx has (P, and the lemma is completely proved.

The next three lemmas do for serial elements what Baer’s Lemmas 3 and 4
and Theorem 1 in [2], pp. 416-417, do for finitely-serial elements. The reader
will note that Baer had no need to state explicitly the analogue for finitely-
serial elements of our Lemma 5 simply because this analogue is completely
trivial. We have worded the whole of the following argument leading to
Theorem 2 in such a way that it remains true when "serial" is replaced by
"finitely-serial".

LEMMA 6. If K is serial in G and the serial element g lies in the normaliser of
K, then Gp{K, g} is serial in G.

Proof. Since g <:1 G we have G g, and so, by Lemma 5, K is g-serial in
G. So letK K0 < < K, Gbeag-seriesfromKtoG, and define
Hx Gp{Kx, g}. Now g <:l G implies g < Hx+, and so, since Kx
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is normal in Hx+I, gKx < H+I/K, i.e., H,/K < Hx+/K, whence
Hx <:l Hx+l. Since this holds for every and, as we easily verify,
Hx (3,<x H, for every limit ordinal , we deduce that H0 <:1 G, as required.

LEMMA 7. If K is normal in G Gp{K, g} and every element of the set
{K, g is serial in G, then every element of G is serial.

Proof. Choose any x in G and write it in the form x yg,n with y e K. So
X Gp{x, g} is the same as Gp{y, g}, and since y and g are both serial in X,
it follows, from Proposition 2, that X is nilpotent. Hence x <<:1 X, and it
only remains to prove that X <:l G.

Since X n K is a finitely generated nilpotent group, there exists a series

1 Xo < X < < Xn X ffl K

where X < X.+ Gp{X, } for all i. If X <:I G, then, since x < G
and x-(X x X, it follows from Lemma 6 that X+ <l G. But X0 is
obviously serial in G, and so we have X n K <:l G. Since however g < G
and g-(X n K)g X r K, we again use Lemma 6 to conclude

X Gp{XnK, g} <:lG,
as had to be shown.

LEMMA 8. If U and V are normal subgroups all of whose elements are serial,
then the same is true of UV.

Proof. Choose any x UV, and write x in the form x uv with u e U,
v e V. Now v < UV implies vU < UV/U, and this, in turn, that
Gp{x, U} Gp{v, U} <:l UV. But x <:l Gp{x., U}, by Lemma 7 (with
v g and U K), and hence x < UV.

Let 6 be the property defined by the statement that a group G has 6 if, and
only if, every element of G is serial. Then Lemma 8 asserts that 6 is a multi-
property, and we easily verify that (e is also a-local. Hence by Lemma 3, the
normal closure of every serial element has (P, and consequently the union of all
such normal closures has (P. This union contains every serial element and
thus is precisely a(G). This fact, together with Proposition 2, yields

THEOREM 2. The set of all serial elements in any group forms a characteristic
subgroup and is contained in the Fitting radical of the group.

It is not known whether a(G) can ever be strictly less than (G). This is
certainly not the case when (G) is countably generated, nor, as we shall see in
2, when G is soluble (or even serially-cyclic).

We shall now introduce conditions that relate to the right Engel conditions.
If a is a given element of a group G and x another element, then let us write a,

This paragraph remains true when "serial" is replaced by "finitely-serial" provided
that also a is replaced by and the reference to Lemma 3 by the corresponding result
for -local properties and finitely-serial subgroups.
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for the subgroup generated by x and the normal closure of a in G"

a Gp/x and -1g ag for all g G}.
We shall denote by p(G) the set of ll a such that x is serial in a, for all
x e G. So if a e p(G), then, for any x, x e (a) and hence, in particular, a x,
from which it follows that a is a right Engel element in G. It should also be
observed that a e p(G) implies a <:1 aa and so, since aa is normal in G, a o<:1 G.
Thus p(V) <- (G).
Next suppose b is a finitely-serial element in G. By the defect of b we under-

stand (following Baer) the length of the shortest series linking Gp/b} to G,
and we shall write this integer as d(b). The notation b <:l<:l_n G will
mean that d(b) <-_ n. We now introduce the set (G) of all elements a such
that, for all x in G, x is finitely-serial in a and of defect =< m, where m is
independent of x (but may depend on a). Thus x <:l<:l _< a for all x and so
[a, +lx] 1 for all x, whence a 1 G. Moreover a e (aa), and so (G) =< (G).
The conditions that define p(G) and (G) are rather strong, and it should

therefore come as no surprise that one can prove very easily both these sets to
be subgroups. (They are then actually characteristic subgroups, as is im-
mediately seen if one observes that (a) (a) for any automorphism .)

LEMMA 9. The sets p(G), (G) are subgroups.

Proof. Take any a, b in p(G) and any x in G. Then x o<:l b implies
ax/aa o< b a/a, and this yields a 0<:1 b a. Now (ab) <__ b a, and
hence a n (ab) <l (ab) But x 0<:1 a,, so x <l a a (ab) and therefore
x oo< (ab). Thus abe p(G).

Next, suppose a, b in (G) and x <:l<:l =< a, x <:1<:1 _n b, for all x. Then, as
above, x <:1<:1 =< b implies a (ab)<<_n (ab), and this, with x <:1<:1

_
a,

gives x << <_,,+ (ab) so that abe (G).

In view of Baer’s result that in a group with maximal condition on sub-
groups the set of right Engel elements coincides with the hypercentre, we wish
to discuss the relation of the subgroups p(G), (G) of n rbitrary group G to
the hypercentre of G. We shall write the ascending central series as

1 a0(G) <- l(V) =<
and denote the hypercentre (which is the limit of this series) by (G). It is
well-known that an element g lies in a(G) if, and only if, to every sequence
Ix1, x, of elements in G there corresponds an integer / such that
[g, x, x., x] 1.

]_EMMA 10. a(G) =< p(G) and a(V) <= p(G).

Proof. If a e a(G), then aa is contained in a(G), and hence a __< a(a) for
any x e G. If we put Xx Gp{ax(a), x} and assume that (a) (a), we
see that
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Gp{x} =X0-<XI__< _X-- a
is a series and hence that x is serial in a. Thus a e p(G).
To establish the second inequality it is sufficient to prove an(G) <- (G) for

every integer n. So let a e an(G) and choose any x in G. Then a _<_ an(a),
and so a/an(a) is cyclic, whence an(a) ax. Thus x <:l<:l <__n a and, since
this holds for all x in G, we conclude that a e (G).

The inequalities of Lemma 10 are, in a sense, the best that are possible.
In 3 we shall meet a group in which (G) < a+l(G) and another in which
a(G) < (V).
We sum up our conclusions concerning p(G) and (G) in

THEOREM 3. The sets p(G), (G) in any group G form characteristic sub-
groups satisfying (G) <-p(G) <-(G)and a,(G) <-(V) <-_ (G).

The accompanying diagram illustrates the inclusion relationships satisfied
by the groups discussed in this section.

o

a- o"’o p

po oo

\(
2. Soluble groups

The mi obiee i hi eei i he poo o the o]loin result.

THEOREM 4. In a soluble group G, the sets of all (i) left Engel elements, (ii)
bounded left Engel elements, (iii) right Engel elements, and (iv) bounded right
Engel elements coincide respectively with (i) a(G), (ii) #(G), (iii) p(G), and (iv)
(V).

Parts of this theorem remain true in more general classes of groups than the
soluble groups. Accordingly, we shall present the proofs of the four parts in
the most general form in which they remain valid. The reader will note that
a consequence of (i) is that, in a soluble group, the set of left Engel elements
coincides with the Fitting radical. This fact has also been fouDd by Plotkin [9].
There are two classes of generalised soluble groups that enter our discussion.

The first is the class of serially-cyclic groups. It will be recalled that, by the
definition given in 1, a group is serially-cyclic if it has a series from 1 to the
whole group in which quotients of successive terms are cyclic. The second
class consists of the groups that we shall call hyperabelian" If (P is a subgroup

Serially-cyclic groups are called SN*-groups in the book of Kurosh [7].
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property (i.e., a property which a subgroup of a group may, or may not pos-
sess), then we call a group G hyper-d if every homomorphic image G 1 con-
tains a nontrivial normal subgroup K having ( in G. Thus the hyper-
abelian groups are precisely the SI*-groups of Kurosh and the soluble groups
of Baer. Note also that the hypercyclic groups are the ones often referred to
as supersoluble groups, and that the hypercentral groups are the ZA-groups of
Kurosh and the upper nilpotent groups of Baer.

LEMMA 11. Let A be an abelian normal subgroup of G Gp {A, g}.
(i) If g is a left Engel element, then g is serial in G;
(ii) if g is a bounded left Engel element and Ix, g] 1 for all x e G, then g

is finitely-serial in G and d(g) <- k; and
(iii) if g is a right Engel element, then g is a left Engel element.

Proof. (i) Choose any nonunit a e A, and suppose [a, (+l)g] 1 but
[a, g] 1. Then [a, g] is in the centre of G. This argument may be ap-
plied to any homomorphic image of G, and so G is hypercentral, whence
g < G.

(ii) We show G is nilpotent of class -< /. So consider c Ix0, ..., x]
where eachxieA orxi g. If x0 g, thenxl eA, whence

c [, x0, x, x]

and so, without loss of generality, we may assume that x0 e A. Then either
one of xl, x lies in A, or xl x g, and in either case c 1.

(iii) For any a e A we clearly have

[g, gal [g, a, (_)g] [a, gl-,
and from this our assertion follows.

PROPOSITION 3. An element in a serially-cyclic group is a left Engel element
if, and only if, it is serial.

Proof. Let G be our serially-cyclic group and G e g. From Lemma 5 (with
(P the property of being an abelian group and K 1) we deduce that 1 is g-
serially-abelian in G. So let

I=A0<A< <A,=G

be a g-series such that Ax+/Ax is abelian for all ), and define Bx Gp{Ax, g}.
When ), is a limit ordinal, it is clear that Bx (J,<x B because Ax I.l,<x A.
On the other hand, when 1 exists, Ax_l <:l Bx, and Ax/Ax_I is abelian,
whence gA_ < B/Ax_ by Lemma 11 (i), i.e., Bx_/Ax_ < Bx/Ax_
and consequently Bx_ Bx. We conclude B0 Gp{g} <:] G, as re-
quired.

This fact is probably well known: cf. Lemma 2, p. 224 of [7].
See Baer [3], p, 259.
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LEMMA 12. If G is soluble and Ix, g] 1 for all x e G, then g <<3_ G,
where is the derived length of G.

Proof. We may use induction on since the lemma is trivially true for
abelian groups (i.e., groups of derived length one). So we assume that
gA << <=(t-1) G/A where A is the last nontrivial term of the derived series of
G. Then by Lemma 11 (ii), g <:1<_<_ Gp{A, g}, and hence g <:l<:l G with
d(g) <= tc -q- (t 1)/, so that the induction is complete.

The following result may already be found in Baer [3], p. 258.

LEMMA 13. If G is hyperabelian, then g e G implies G e g.

Proof. Since the assertion that G is hyperabelian is clearly the same as
saying that it is G-serially-abelian, we know that there exists a series
1 =.A0 < < A, G, in which, for all , Ax is normal in G and
Ax+I/Ax is abelian. Put Bx Gp {Ax, g and assume we already know that
B, e g for all t < ),. Then obviously also Bx e g if is a limit ordinal, while if

1 exists, B/A,_I e gA,_ by Lemma 11 (iii), and so Bx e g. Hence, by
an induction on , we conclude B, e g, as required.

LEMMA 14. In any group G, the set of all right Engel elements contained in
(G) forms a subgroup.

Proof. Take any right Engel elements a, b lying in (G), any x in G, and
defineX Gp{a, b,x/ and Y {[a, rx], [b, rx],r >= 01. Then Yexand
Y _<_ Gp{ Y}, whence Gp( Y <:1 X by Lemma 2. Also Gp{ Y is nilpotent
because Y is a finite subset of (G), and hence, by Proposition 1, X isnilpotent.
Thus, in particular, lab, x] 1 and [a-1, x] 1 for a suitable integer/.

It should be remarked that Lemma 14 can also be deduced from Baer’s
result in [3]" In the notation of the above argument, we have Gp{ Y} is nil-
potent and finitely generated, and X/Gp{YI is cyclic, whence X satisfies the
maximal condition on subgroups, and therefore, by Baer’s theorem, a and b
belong to the hypercentre of X. Thus a(X) >- GpIY}, and so X is nilpotent
because X/Gp{ Y/ is cyclic.

LEMMA 15. If G is any group such that, for every subgroup H, the set of all
left Engel elements in H coincides with a(H), then p(G) coincides with the set of
right Engel elements lying in (G).

Proof. Suppose a G and a e (G). Then the same holds for all coniugates
of a, and so, by Lemma 14, a (the normal closure of a in G) consists entirely
of right Engel elements. Choose any x G, and observe that every element of
a Gplaa, x} can be written in the form b xu with u e a. Now
[b, x] [u, rx], and consequently a x because a, G. Thus x is a left Engel
element in a, and so, by our hypothesis concerning G, x <:1 a. We conclude
that a p(G).

Proposition 3 and Lemmas 13 and 15 combine to yield
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PROPOSiTiON 4. An element in the hyperabelian group G is a right Engel
element if, and only if, it belongs to p(G).

It now only remains to establish the last part of Theorem 4. If a is a
bounded right Engel element, we shall write r(a) for the smallest of the in-
tegers/ such that [a, kx] 1 for all x in the group.

LEMMA 16. If G is a soluble group and a, b are bounded right Engel elements,
then ab and a-1 are also bounded right Engel elements, and there exists an in-
creasing integer-valued function g(nl, n2, n) such that

r(ab) <- g(r(a), r(b), t(G)) and r(a-) <__ g(r(a), r(1), t(G)),

where t(G) is the derived length of G.

Proof. Choose any x in G and define

X- Gp{a, b,x}, Y- /[a, rx], [b, rx],r >_- 0}, H Gp/Y}.

Then, as in the proof of Lemma 14, H is a nilpotent normal subgroup
of X. Now

S {all x-’ax with 0 <= m < r(a) and all x-’bx with 0 <__ n < r(b)

is another generating set of H (cf. the second paragraph of the proof of Lemma
2), and every element s e S is a bounded right Engel element with r(s) equal to
r(a) or r(b). Hence H has a set of r(a) r(b) generators S such that
[s;, h] 1, for all s e S and all h e H, where m max(r(a), r(b)).

Next, choose any three nonnegative integers n, n2, n3, and let F be the
free group on some set Z of nl -t- n elements. Define N to be the least normal
subgroup of F containing (i) the elements

[z, x(,
thfor all z e Z and all v e F, and (ii) the n3 term of the derived series of F. Then

FIN is a soluble group generated by a finite number of right Engel elements
and so, by Proposition 4, is nilpotent. We shall denote by f the function

(nl, n, ha) --> class(F/N),
so that class(F/N) f(ni, n, n). (Observe that f(n, n., n) 0 if, and
only if, (n, n2, ha) equals (0, 0, ha) or (n, n, 0).) It is clear from the
definition that f is an increasing (but not necessarily strictly increasing!)
function of each of its three arguments.

If now ni r(a), n r(b), and n t(G), then any mapping of Z onto S
extends to a homomorphism of F onto H and, in view of what we know about
H, the kernel of this homomorphism contains N, so that, in fct, H is homo-
morphic image of FIN. Hence H is nilpotent of class =< f(r(a), r(b), t(G))

f0, say, whence, by Proposition 1, X Gp{ Y, x/ is nilpotent of class
<= m(m 1), where m max(r(a), r(b), f0 - 1). Then

lab, (m_)x]- 1,
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and since m is independent of x, this is true for all x, whence r(ab)

_
m(m 1).

Further, if b 1 in the above argument, then we conclude that Gp{a, x has
class __< ( 1) where

and so
max(r(a), r(1), f(r(a), r(1), t(G)) -[- 1),

r(a-1) <= (- 1).

Thus g(nl, n2, na) m(m 1), where m max(n1, n2, f(nl, n2, ha) -{- 1)
is a function with the required properties.

LEMM/k 17. If G is a soluble group, then a 1 G implies aa 11G.
Proof. It is a consequence of Lemma 16 that the set of all bounded right

Engel elements in G forms a subgroup, which is then obviously characteristic.
So, in particular, every element of aa is a bounded right Engel element, i.e.,
in our notation, a 1 G. From this alone, however, it certainly does not follow
that a lei G.
We shall prove the lemma by an induction on t(a,), the derived length of

a. Since aa is a normal subgroup of G, the same is true of every term of the
derived series of aa. If t(a) O, the lemma is trivially true. Assume it
proved when t(a)

_
m, and consider the case t(a) m 1. Thus there

exists an integer p such that [u, x] e A, for all u e a and all x e G, where A
is the last nontrivial term of the derived series of aa. If we can prove that
there exists q such that [v, qx] I for all v e A and all x e G, then [u, (+q)x] 1
for all u e a and all x e G, thus completing the induction argument.

Let S() be the set of all coniugates of a in G and, if S(k) has already been
defined, let S(k+l) be the set of all elements [u, v] for all u, v e S() and all
x e G. Thus S(t) generates the th term of the derived series of a and, in
particular, Gp{ Sera) A. We shall prove that to each k there corresponds
an integer l* such that r(u) k* for all u e S(). Then, in particular,
[u, m,x] i for all u e S() and all x e G. Since A is abelian and normal in G,
we have, for any v, v in A and any x in G,

and
[v-, x] [,, z]-,

so that Iv, ,x] 1 for all v e A and all x.
The lemma will therefore be proved if we can establish the existence of the

integers k*. We do this by an induction on k. Since r(a) r(a) for every x,
we may put O* r(a). Assume k* has already been proved to exist, and
consider a typical element w [u, v] of S(+). Since [u, v] u-u and
r(u) r(u), we know from Lemma 16, that

r(w) r([u, v]) g(r(u-), r(u), t(G)),
nd

r(u-) g(r(u), r(1), t(G)).
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By the induction hypothesis, r(u) <= ]*, whence, because g is an increasing
function of each of its arguments,

r(u-) <= g(]*, r(1), t(G)),
and so, finally,

r(w) <__ g(g(]*, r(1), t(G)), t*, t(G)).

We complete the induction by defining (k W 1)* to be the integer on the
right-hand side of this last inequality.

LEMMA 18. If G is soluble and a el G, then a (G).

Proof. By Lemma 17, there exists ]c such that [u, kx] 1 for all u e aa and
all x G.

Choose any x and consider the group a Gp/aa, x}. If is the derived
length of aa, then that of a is -< -[- 1. Moreover, Iv, kx] 1 for all v ax
and hence, by Lemma 12, x is finitely-serial in a and of defect

_
(t - 1)/.

The integer (t - 1) is independent of x, and we may therefore conclude that
a (G).

3. Examples
In this final section we shall construct a metabelian group (i.e., a group with

abelian commutator group) in which the four subgroups of Theorem 4 are
distinct and, moreover, none of them coincides with the hypercentre. Our
group is the direct product of three groups whose definitions follow.

The first group, U, is the symmetric group on three symbols. It is clear
that the unique subgroup C of order 3 is a(U) and that p(U) 1. Hence

c,
and

p(v)

The second group, V, is a group of the type given by Baer on p. 408 of [2].
More explicitly, V Gp{A, b}, where A is normal in V and abelian of type
2 and b-lab a for all a e A. Suppose A is generated by al, a., where
ai ai_l and a0 1. Then for any positive integers k, r, we have

b-a b a
and so

[a,, ,b] -(*-)
(i

If 2 is the exact power of 2 dividing (3 1), then

[a+, b] al 1,

and thus b is not a bounded left Engel element. Since the inverse of a
bounded left Engel element is another of the same type, we conclude that

o(V) n Gp{b} 1.

0 As a matter of fact, this is true when A is of type p (and b-ab a+) whatever
the prime p.
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Clearly A =< a(V), and hence we have e(V) A. In particular, a(V) A
and, since a, a,(V), a, a,_(V), for all n >- 1, it follows that a(V) A
and hence a+(V) V. In the group V therefore,

a(V) (V) (V) A,
and

(v) (v) (v) v.
The third group, W, is a group in which both W’, the commutator group of

W, and W/W are of exponent 2 nd the centre of W is trivial. An example
of such a group was given many years ago by Baer [1], p. 412. We shall pre-
sent here nother example, partly for the sake of variety, and partly because
the construction of our group is so very simple. If F is the free product of a
countable number of cyclic groups, each of order two, then our group is
W F/(F’), where (F’) is the subgroup generated by the squares of all
elements in F’, the commutator group of F. It is clear that W/W and W’
are both of exponent 2, and from this alone it follows that Ix, y, y, y] 1 for
all x, y in W" for if c e W, then [c, y] 1 because y e W and W is abelian,
while, on the other hand, [c, y] [c, y] [c, y, y] [c, y, y] because W has
exponent 2. Thus

(W) (W) (W) (W) W.
To show that

a(W) 1

mounts to proving that a(W) 1. A quick way of doing this is to use
Theorem 5.1 of [4]. If c, c., are the generators of the free factors of F
and w, w, re their images under the natural homomorphism F --. W,
then we know, first, that W/W’ is an elementary abeliun 2-group with basis
w W’, w. W’,... and, secondly, by Theorem 5.1 of [4], p. 47, that W is an
elementary abelian 2-group with basis consisting of all commutators of the
fOrm

[w w w],

wherein, ...,iaredistinct, i> i.,i < <i,andr-> 2. Ifxliesin
the centre ofWundx eW’,letx w....w.,c, wherej < <j, and
ceW’. Then, for ally eW,
(3) [y, x] [y, w. w,] 1.

Ifj lands= 1, then

[, w, w] [w, w, w]-[w, , w],
More generally, we could take W F(F’)F", where F is u free product of a count-

able number of cyclic groups, each of order equal to the prime number p. The proof that
(W) W and (W) 1 is similar to that given above for the case p 2.
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and this contradicts (3) with y IT3, w.] (because both commutators on the
right-hand side are basis elements of W’). If jl > 1, we take y [w#, wl]
where j > j8 nd observe that IT#, wl, w. w#] can be written as a product,
of bsis elements of W’, in which the commutator [w#,
occurs exactly once. Hence again (3) is contradicted, and there only remains
the possibility jl 1 and s > 1. But w 1 and so [w., w, w] 1, whence

[w, w, o.,1 [, o, o.... o1,
and we are back at the case just dismissed. Thus our assumption x W’
was wrong, and we know x w(b, b), a word in elements b, bn
of our basis of W’. If bl,..., binvolve onlywl,..., w, then

Ix, w+l] w([b, w+], ..., Ibm, w+]),

and this is not 1 because each [b, w+l] is again a basis element. Hence
x 1 as required.

The possibility of obtaining a useful group by forming a direct product
rests on

PROPOSITION 5. If G A X B, then (G) (A) X (B), where is
any one of a, , p, , a,

The proof of this Proposition is entirely straightforward and will
be omitted.
The group that we are after is G U X V X W, where U, V, W are the

three groups defined above. In view of Proposition 5 we may now assert:

(a) c x v x w,
p(G) 1 X V X W,

(G) t X V X ,
This hs established our final result:

e(G) C X A X W,

(a) 1 X A X W,

a(G) 1 X A X 1.

THEOREM 5. There exists a countably generated metabelian group in which
the subgroups determined by , , p, , o, o, are all distinct.
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