A VARIATIONAL METHOD FOR TRIGONOMETRIC POLYNOMIALS¹

BY

R. P. BOAS, JR.

1. Introduction

Let f(x) be a trigonometric polynomial. We consider a linear functional \mathcal{L} defined by

$$\mathfrak{L}(f) = \sum_{\nu=1}^{m} \sum_{j=0}^{n_{\nu}} \alpha_{\nu}^{(j)} f^{(j)}(x_{\nu}),$$

where x_{ν} , α_{ν} are given real numbers, $0 \leq x_{\nu} < 2\pi$, with the x_{ν} all different. We suppose that $\alpha_{\nu}^{(n_{\nu})} \neq 0$ and that $n_{\nu} > 0$ for at least one ν . We call

$$l = n_1 + \cdots + n_m + m$$

the order of \mathfrak{L} ; thus f'(a) - f'(-a) is a functional of order 4. We are interested in the maximum of $|\mathfrak{L}(f)|$ when f runs through the class of trigonometric polynomials of type n which satisfy $|f(x)| \leq 1$ for real x. (It is convenient to say that a trigonometric polynomial is of type n if it is of degree at most n; a trigonometric polynomial of type n is an entire function of exponential type n.) In looking for this maximum it is enough to consider the subclass \mathfrak{I}_n whose members are in addition real for real x. For, if θ is real, we have $e^{i\theta}f(z) = f_1(z) + f_2(z)$, where f_1 and f_2 are elements of \mathfrak{I}_n . Since $\mathfrak{L}(e^{i\theta}f) = e^{i\theta}\mathfrak{L}(f)$, we can choose θ so that $\mathfrak{L}(e^{i\theta}f) = |\mathfrak{L}(f)|$, and so $\mathfrak{L}(f_1) = |\mathfrak{L}(f)|$. Hence the maximum of $|\mathfrak{L}(f)|$ is attained, if at all, for an fin \mathfrak{I}_n , and indeed for one for which $\mathfrak{L}(f) > 0$.

When $\mathfrak{L}(f) = f'(a)$, we have S. Bernstein's theorem that $|f'(a)| \leq n$ when $|f'(x)| \leq 1$ for all x. Here the bound for $|\mathfrak{L}(f)|$ is the same no matter which point a is selected; this is no longer true in the general case.

Bernstein's theorem on trigonometric polynomials is a special case of his theorem on entire functions of exponential type: if f(z) is an entire function of exponential type τ (which we may suppose is real for real x), and $|f(x)| \leq 1$ for all real x, then $|f'(x)| \leq \tau$ for all real x. This does not happen for more general functionals \mathcal{L} . In fact, Schaeffer and I [1] found that the maximum of $|\mathcal{L}(f)|$ in this class \mathfrak{F}_{τ} of entire functions is not, in general, attained for a trigonometric polynomial f. However, methods similar to those used in [1] still work for the class \mathfrak{I}_n . The general result is stated in §3 below; in §4 it is applied to the special functional $\lambda n^2 f(0) + f''(0)$. As corollaries, we obtain two theorems for ordinary polynomials. Further applications will be given elsewhere.

The problem of maximizing the functional f'(a) - f'(-a) is equivalent to the problem of maximizing $p'_n(x)$ for a given x on (-1, 1) when the poly-

Received October 11, 1957; received in revised form December 3, 1957.

¹ Research supported by the National Science Foundation.

nomial $p_n(x)$, of degree *n*, satisfies $|p_n(x)| \leq 1$ throughout (-1, 1). (Bernstein's well-known inequality $|p'_n(x)| \leq n(1 - x^2)^{-1/2}$ is not sharp except at the points $x = \cos(k + \frac{1}{2})\pi/n$.) This problem was solved by A. Markov [2] by other methods; this is the paper in which he also showed that $|p'_n(x)| \leq n^2$ throughout (-1, 1). The latter result is well known, but the former seems to have been completely forgotten.

Lemmas

We require a series of lemmas on the element of \mathfrak{I}_n which maximizes $|\mathfrak{L}(f)|$.

LEMMA 1. For a given functional \mathfrak{L} , if $n \geq \lfloor l/2 \rfloor$, the maximum $M = \sup | \mathfrak{L}(f) |, f \in \mathfrak{I}_n$, is finite, positive, and attained.

By Bernstein's theorem M is finite; it is attained because \mathfrak{I}_n , a collection of trigonometric polynomials of bounded type, is sequentially compact. To show that M is positive we have to exhibit an element f of \mathfrak{I}_n such that $\mathfrak{L}(f) \neq 0$. (This is impossible without some restriction on n since, for example, f''(a) + f'(a) = 0 for all a and all elements of \mathfrak{I}_1 .) To do this we appeal to the following simple lemma which will be used several times.

LEMMA 2. If x_1 and x_2 are real points, not congruent mod 2π , there is an element g of 5_1 , not identically zero, such that $g(x_1) = g(x_2) = 0$. There is also an element g of 5_1 with a double zero at x_1 .

For the first part put

 $2g(x) = 2\sin\frac{1}{2}(x - x_1)\sin\frac{1}{2}(x - x_2) = \cos\frac{1}{2}(x_1 - x_2) - \cos(x - \frac{1}{2}(x_1 + x_2));$ for the second part put $2g(x) = 1 - \cos(x - x_1).$

We now complete the proof of Lemma 1. We have some $n_{\nu} > 0$; for definiteness suppose that $n_1 > 0$. Then by taking products of functions gfrom Lemma 2 we can obtain a real trigonometric polynomial g such that $g^{(k)}(x_{\nu}) = 0$ for $\nu = 2, \dots, m$ and $k = 0, 1, \dots, n_{\nu}$, and for $\nu = 1, k = 0, 1, \dots, n_1 - 1$; while $g^{(n_1)}(x_1) \neq 0$. Since this g has l - 1zeros in a period, we require $\frac{1}{2}(l-1)$ functions from Lemma 2 if l-1 is even, $\frac{1}{2}l$ if l-1 is odd, so that g is at worst of degree $\lfloor l/2 \rfloor$; and $\mathfrak{L}(g) \neq 0$.

LEMMA 3. Let f be an element of \mathfrak{I}_n , not a constant, maximizing L(f), with $n \geq \lfloor l/2 \rfloor$. Then |f(x)| = 1 for some real x; and if $F \in \mathfrak{I}_n$ and F has a zero at each of the different points in a period where $f(x) = \pm 1$, then $\mathfrak{L}(F) = 0$.

The first statement is immediate since if |f(x)| < 1 we can choose b > 1 so that bf(x) takes one of the values ± 1 and still belongs to \mathfrak{I}_n , while $\mathfrak{L}(f)$ is increased.

We begin the proof of the second statement by showing that if F(z) is any element of \mathfrak{I}_n and

(2.1)
$$\sup_{x} |f(x) + \varepsilon F(x)| = 1 + o(\varepsilon), \qquad \varepsilon \to 0,$$

where ε is real, then $\mathfrak{L}(F) = 0$. Let $0 < \rho < 1$. According to (2.1), if $|\varepsilon| < \varepsilon_0(\rho)$, the function

$$\psi_{arepsilon}(z) \ = rac{f(z) \ + \ arepsilon F(z)}{1 \ + \ arepsilon \ arepsilon \
ho} rac{f(z) \ + \ arepsilon F(z)}{1 \ + \ arepsilon \ arepsilon \
ho}$$

belongs to \mathfrak{I}_n . If $\mathfrak{L}(F) \neq 0$, then

$$\mathfrak{L}(\psi_{\varepsilon}) = (1+ | \varepsilon | \rho)^{-1} \{ \mathfrak{L}(f) + \varepsilon \mathfrak{L}(F) \}.$$

Choose ρ so that $\rho \mathfrak{L}(f) < |\mathfrak{L}(F)|$, then ε so that $|\varepsilon| < \varepsilon_0(\rho)$ and so that $\varepsilon \mathfrak{L}(F) > 0$. We then have $\mathfrak{L}(\psi_{\varepsilon}) > \mathfrak{L}(f)$, contradicting the maximizing property assumed for f. Hence $\mathfrak{L}(F) = 0$.

Now suppose that F has a zero at each of the distinct points in $[0, 2\pi)$ where $f(x) = \pm 1$. Let λ be one of these points. Then there is an interval I with center at λ such that

$$|f(x)| \leq 1 - h(x - \lambda)^{2\mu}$$

in I, where h > 0 and μ is a positive integer. Since $F(\lambda) = 0$, Bernstein's theorem shows that

$$|F(x)| = \left|\int_{\lambda}^{x} F'(t) dt\right| \leq n |x - \lambda|,$$

and so

$$|f(x) + \varepsilon F(x)| \leq 1 - h(x - \lambda)^{2\mu} + \varepsilon n |x - \lambda|$$

in *I*. The maximum of the right-hand side does not exceed $1 + B\varepsilon^{1+1/(2\mu-1)}$, where *B* depends only on *h*, τ and μ . Thus $|f(x) + \varepsilon F(x)| \leq 1 + o(\varepsilon)$ in the intervals *I*, while $|f(x) + \varepsilon F(x)| \leq 1$ for small ε when *x* is in the rest of [0, 2π). This establishes (2.1) and so $\mathcal{L}(F) = 0$.

LEMMA 4. Given a set of $2r \leq 2n - 2[l/2]$ distinct real points λ in $[0, 2\pi)$, there is an element g of \mathfrak{I}_n such that $g(\lambda) = 0$ for each λ and $\mathfrak{L}(g) \neq 0$.

Let g_1 be a real trigonometric polynomial of degree at most r with zeros precisely at the λ which are not in $\{x_{\nu}\}$; if the number of such λ is odd, let g_1 have also a zero at some point which is neither a λ nor an x_{ν} . As in the proof of Lemma 1, let g_2 be a real trigonometric polynomial of degree [l/2]with $g_2^{(k)}(x_{\nu}) = 0$ for $\nu = 2, \dots, m$ and $k = 0, 1, \dots, n_{\nu}$, and for $\nu = 1$, $k = 0, 1, \dots, n_1 - 1$, while $g_2^{(n_1)}(x_1) \neq 0$. Then $g_3 = g_1g_2$ is of degree at most $r + [l/2] \leq n$ and $g_3(\lambda) = 0$ for every λ ; also $g_3^{(k)}(x_{\nu}) = 0$ for $\nu = 2, \dots, m; k = 0, 1, \dots, n_{\nu}; \nu = 1, k = 0, 1, \dots, n_1 - 1$; and

$$g_3^{(n_1)}(x_1) = g_2^{(n_1)}(x_1)g_1(x_1) \neq 0.$$

Finally, $g = \varepsilon g_3$ belongs to \mathfrak{I}_n if ε is a sufficiently small positive number.

LEMMA 5. If f is not a constant and is an extremal function for \mathfrak{L} in \mathfrak{I}_n , where $n \geq \lfloor l/2 \rfloor$, then f is of degree greater than $n - \lfloor l/2 \rfloor$.

Suppose that f is of degree $m \leq n - \lfloor l/2 \rfloor$. Let λ_j be the points in $[0, 2\pi)$ where $f(x) = \pm 1$ (each counted once), and suppose for definiteness that $n_1 > 0$. Then f'(x) vanishes at each λ_j . By Lemma 4 there is an element g of \mathfrak{I}_n vanishing at each λ_j and with $\mathfrak{L}(g) \neq 0$; but this contradicts Lemma 3.

3. The main theorem

We are now in a position to establish the following theorem.

THEOREM 1. Let $n \ge \lfloor l/2 \rfloor$. An extremal element f of \mathfrak{I}_n for \mathfrak{L} is either constant, or a trigonometric polynomial whose degree is $m > n - \lfloor l/2 \rfloor$. If f is not a constant, $1 - f^2$ has at most 2k imaginary zeros in a period strip, where $k/2 < m - n + \lfloor l/2 \rfloor$, and f satisfies a differential equation

(3.1)
$$\frac{f'(z)^2}{1-f(z)^2} = R(z)/S(z),$$

where R(z) and S(z) are real trigonometric polynomials of degree $q \leq k$; S(z) has the form

(3.2)
$$S(z) = \prod_{j=1}^{k} P(b_j, z),$$

where $P(b, z) = \cosh \mathfrak{F}(b) - \cos(z - \mathfrak{F}(b)) = 2 \sin \frac{1}{2}(z - \bar{b}) \sin \frac{1}{2}(z - b)$, and the b_j are not real; R(z) has zeros of even multiplicities not occurring at any b_j . If $n \ge 2[l/2] + 1$, the extremal function, if not constant, is unique.

That m > n - [l/2] is the content of Lemma 5. The imaginary zeros of $1 - f^2$ (if any) occur in conjugate pairs. Let them be b_j , \bar{b}_j , with $0 \leq \Re(b_j) < 2\pi$, $j = 1, 2, \dots, k$. Defining S(z) as in (3.2), we see that

$$Q(z) = \{1 - f(z)^2\}/S(z)$$

is entire, and hence is a real trigonometric polynomial of degree 2m - k. Now Q(z) has only real zeros, at the same points and with the same multiplicities as the real zeros of $1 - f^2$; and $f'(z)^2$ has at least these real zeros. Hence $f'(z)^2/Q(z) = R(z)$ is a real trigonometric polynomial of degree k, and its zeros are those zeros of $f'(z)^2$ which are not real zeros of $1 - f^2$; these (if there are any) are of even multiplicity and (if imaginary) occur in conjugate pairs. We thus have

(3.3)
$$\frac{f'(z)^2}{1 - f(z)^2} = R(z)/S(z).$$

Now since $1 - f^2$ has 2k imaginary zeros in a period strip, it has 4m - 2k real zeros in a period. These are of even multiplicity, and so occur at at most 2m - k distinct points. If k is even, Lemma 4 contradicts Lemma 3 unless m - k/2 > n - [l/2], i.e. k/2 < m - n + [l/2]. If k is odd, the same thing happens unless $m - k/2 + \frac{1}{2} > n - [l/2]$, which leads to the same conclusion.

If R and S in (3.3) have zeros (necessarily imaginary) in common, we can divide them out and obtain (3.1) with a new R and S of degree q < k.

The remaining assertion of Theorem 1 is that there is only one extremal function f, other than a constant, if n is large enough. Suppose that there are two nonconstant extremal functions f_1 and f_2 . Then $f_3 = \frac{1}{2}(f_1 + f_2)$ is also an extremal function, and at any real point where f_3 takes one of the values ± 1 , f_1 and f_2 take the same value (since neither exceeds 1 in absolute value). Consider $g = \frac{1}{2}(f_1 - f_2)$, an element of \mathfrak{I}_n , which has double zeros at the real points where $f_3 = \pm 1$. Let f_3 have degree m, which we know exceeds n - [l/2]; then $1 - f_3^2$ has 4m - 2k real zeros in a period, and hence g has at least this many. On the other hand, g is at most of degree n and so has at most 2n real zeros in a period. Hence $4m - 2k \leq 2n$, or $k/2 \geq m - n/2$. However, we know that k/2 < m - n + [l/2]. Combining these inequalities, we obtain n < 2[l/2] + 1. Hence a nonconstant extremal function must be unique if $n \geq 2[l/2] + 1$.

4. A functional of order 3

When the order of the functional \mathcal{L} is 2, an extremal function, even in the larger class \mathcal{F}_n , is of the form $\sin(nz + c)$, and the problem of identifying it is trivial.

The next case to consider is l = 3. In this case, if $n \ge 1$, a nonconstant extremal function is of degree n, and it is unique if $n \ge 3$. Since $\lfloor k/2 \rfloor < \lfloor 3/2 \rfloor = 1$, we have k = 0 or 1.

We now consider the functional

$$\mathfrak{L}(f) = \lambda n^2 f(0) + f''(0),$$

which was studied in [1] for $f \in \mathfrak{F}_n$. It was shown in [1] that when $\lambda \leq \frac{1}{3}$ the maximum of $\mathfrak{L}(f)$ for $f \in \mathfrak{F}_n$ is furnished by $\pm \cos nz$, and so this function also maximizes $\mathfrak{L}(f)$ in \mathfrak{I}_n . If $\lambda > \frac{1}{2}$, the maximum of $\mathfrak{L}(f)$ cannot be provided by $\pm \cos nz$, since $\mathfrak{L}(1) > \mathfrak{L}(\pm \cos nz)$. If $\frac{1}{3} < \lambda < \frac{1}{2}$, $\mathfrak{L}(-\cos nz) > \mathfrak{L}(1)$. Hence we have to consider solutions of (3.1) with q = 1 and decide whether the maximum of $\mathfrak{L}(f)$ for these exceeds $\lambda n^2 = \mathfrak{L}(1)$ if $\lambda \geq \frac{1}{2}$, and whether it exceeds $(1 - \lambda)n^2 = \mathfrak{L}(-\cos nz)$ if $\frac{1}{3} < \lambda < \frac{1}{2}$.

THEOREM 2. Let $\mathfrak{L}(f) = \lambda n^2 f(0) + f''(0)$. If n > 1, the largest value of $|\mathfrak{L}(f)|$ for $f \in \mathfrak{Z}_n$ is furnished by $\pm \cos nz$ if $\lambda \leq \frac{1}{3} + 1/(6n^2)$ and by a function of the form

(4.1)
$$\pm \cos\{n \cos^{-1}(\omega \cos z + \omega - 1)\}, \qquad 0 < \omega < 1,$$

if $\lambda > \frac{1}{3} + 1/(6n^2)$. In the second case, the maximum of $| \mathfrak{L}(f) |$ is the maximum for $0 < \theta < \pi$ of $| \lambda n^2 \cos n\theta - \frac{1}{2}n \cot \frac{1}{2}\theta \sin n\theta |$. For n = 1, the maximum is furnished by $\pm \cos nz$ if $\lambda \leq \frac{1}{2}$ and by ± 1 if $\lambda \geq \frac{1}{2}$.

(Thus when $\lambda = \frac{1}{2}$ there are two distinct extremal functions in \mathfrak{I}_1 .)

If f(z) is an extremal function for \mathfrak{L} , so is f(-z); for $n \ge 3$ the extremal function is unique if not constant, and so it must be even. Again, if $f(z) \ne f(-z)$ and f is an extremal function, $\frac{1}{2}[f(z) + f(-z)]$ is an even ex-

tremal function in any case. Hence to determine the maximum of $\mathfrak{L}(f)$ we need consider only even extremal functions f.

We require the following lemma.

LEMMA 6. Under the hypotheses of Theorem 1, if f is a nonconstant extremal function and is either even or odd, and k = 1, then $f'(0) = f'(\pi) = 0$, and $1 - f^2$ vanishes at one of the points 0, π and not at the other.

Let f be a nonconstant extremal function, either even or odd. If k = 1, the function $1 - f^2$ has, in a period strip, a single pair of conjugate imaginary zeros, and $f'(z)^2$ has a single pair of zeros which are not real zeros of $1 - f^2$. Since these zeros are also zeros of f'(z), there must in fact be a single zero of $f'(z)^2$ of multiplicity 2. Since f'^2 is even, this zero can only be at 0 or π (otherwise its symmetric point with respect to 0 would be another zero of f'^2 which is not a real zero of $1 - f^2$). On the other hand, the zeros of f' (since it is even or odd) occur in symmetric pairs except perhaps for zeros at 0 or π . Since one of these points is a simple zero of f' and f' has an even number of zeros in a period, there must be an odd number of zeros besides the one at 0 or π , hence one at the other of these points. Since there is only one zero of f' which is not at a real zero of $1 - f'^2$, we must have $1 - f^2 = 0$ at 0 or at π but not at both of these points.

We now return to extremal functions for $\mathfrak{L}(f)$. If k = 1 and f is an even extremal function, $1 - f^2$ has (in a period strip) a single pair of conjugate imaginary zeros. Since $1 - f^2$ is even, these zeros must have real part either 0 or π . Hence we may take S(z) in (3.1) as $c \pm \cos z$, where c > 1. By Lemma 6, f'(z) must have a zero at 0 or π (but not both) which is not a zero of $1 - f^2$. Now if f(0) = 1, $f''(0) \leq 0$ and so $\mathfrak{L}(f) \leq \lambda n^2$. If $\lambda \geq \frac{1}{2}$, then, $\mathfrak{L}(f) \leq \mathfrak{L}(1)$, so either f is not an extremal function, or f makes $\mathfrak{L}(f)$ no larger than $\mathfrak{L}(1)$, in which case we do not need to consider f any further. If $\lambda < \frac{1}{2}$, $\mathfrak{L}(f) < \lambda n^2 < (1 - \lambda)n^2 = \mathfrak{L}(-\cos nz)$, so f is not an extremal function. If f(0) = -1, $\mathfrak{L}(f) = -\lambda n^2 + f''(0)$, and since $|f''(0)| < n^2$ by Bernstein's theorem (since |f''(0)| = 1 only for $\pm \cos nz$), we have $\mathfrak{L}(f) < n^2(1 - \lambda)$, and again f is not an extremal function. Hence $f(0) \neq \pm 1$, while f'(0) = 0. Hence we may take $R(z) = A^2(1 - \cos z)$, where A is real. Thus we have

$$\frac{f'(w)}{\{1-f(w)^2\}} = A \frac{(1-\cos w)^{1/2}}{(c \pm \cos w)^{1/2}}.$$

Integrating this, we find

(4.2)
$$f(z) = \cos\left\{A \int_0^z \frac{(1 - \cos w)^{1/2}}{(c \pm \cos w)^{1/2}} dw + B\right\}.$$

Consideration of the behavior of the two sides as $z \to \infty$ through pure imaginary values shows that the + sign can be excluded and that $A = \pm n$. The

integral can be evaluated in terms of elementary functions:

$$\int \frac{(1 - \cos w)^{1/2}}{(c - \cos w)^{1/2}} dw = -\cos^{-1} \frac{2 \cos w - c + 1}{c + 1}.$$

Thus we have

$$f(z) = \cos\left\{n \cos^{-1} \frac{2 \cos z - c + 1}{c + 1} + B_1\right\}$$

= $\cos\left\{n \cos^{-1} \frac{2 \cos z - c + 1}{c + 1}\right\} \cos B_1$
 $- \sin\left\{n \cos^{-1} \frac{2 \cos z - c + 1}{c + 1}\right\} \sin B_1.$

Now $\cos n\theta$ is a polynomial in $\cos \theta$, so the first term on the right is a polynomial in $\cos z$. On the other hand, $\sin n\theta$ is of the form $\sin \theta P(\cos \theta)$, where P is a polynomial. Since $\sin(\cos^{-1} t) = \pm (1 - t^2)^{1/2}$, we have

$$\sin\left\{\cos^{-1}\frac{2\cos z - c + 1}{c + 1}\right\} = \pm 2(c + 1)^{-1}\left\{(c - \cos z)(1 + \cos z)\right\}^{1/2},$$

and this has branch points at the zeros of $c - \cos z$. Hence f(z) cannot be an entire function, and so not a trigonometric polynomial, unless $\sin B_1 = 0$. Thus we finally obtain

(4.3)
$$f(z) = \pm \cos\{n \cos^{-1}(\omega \cos z + \omega - 1)\}, \quad \omega = 2/(c+1),$$

as the form of an extremal function which is neither $\pm \cos nz$ nor a constant.

Calculating $\mathfrak{L}(f)$ for (4.3), we find

$$\pm \mathfrak{L}(f) = \lambda n^2 \cos n\theta - \frac{1}{2}n \cot \frac{1}{2}\theta \sin n\theta,$$

where $\cos \theta = 2\omega - 1$, $0 < \theta < \pi$. Since every θ in this range corresponds to some ω , our problem is reduced to the question of whether

(4.4)
$$|\lambda n^{2} \cos n\theta - \frac{1}{2}n \cot \frac{1}{2}\theta \sin n\theta| > \begin{cases} \lambda n^{2}, & \lambda \geq \frac{1}{2}; \\ (1-\lambda)n^{2}, & \frac{1}{3} < \lambda < \frac{1}{2} \end{cases}$$

for some θ in $0 < \theta < \pi$: for a given λ , if (4.4) holds for some θ , the extremal function for this value of λ is given by (4.3), and the maximum of $\mathfrak{L}(f)$ is obtainable by calculating the maximum of the left-hand side of (4.4).

For $\lambda \geq \frac{1}{2}$, (4.4) holds if there is a θ for which either

(4.5)
$$-\cot \frac{1}{2}\theta \sin n\theta > 2(1 - \cos n\theta)\lambda n$$

or

(4.6)
$$\cot \frac{1}{2}\theta \sin n\theta > 2(1 + \cos n\theta)\lambda n.$$

Both (4.5) and (4.6) fail when n = 1; hence an extremal function for n = 1 is never of the form (4.3), and the last statement of Theorem 2 follows.

We now suppose that $n \ge 2$. Inequality (4.6) is equivalent to $\cot \frac{1}{2}\theta \tan \frac{1}{2}n\theta > 2\lambda n$, which is certainly satisfied when θ is slightly less than π/n . Hence for $\lambda \ge \frac{1}{2}$ and n > 1 the maximum of $\mathfrak{L}(f)$ is attained for a function (4.3), and its value is the maximum of the left-hand side of (4.4).

When $\frac{1}{3} < \lambda < \frac{1}{2}$, (4.4) states that

(4.7)
$$|\lambda n \cos n\theta - \frac{1}{2} \cot \frac{1}{2}\theta \sin n\theta| > (1-\lambda)n$$

As $\theta \to 0$ we have

 $\lambda n \cos n\theta - \frac{1}{2} \cot \frac{1}{2}\theta \sin n\theta = n(\lambda - 1) + \theta^2 \{ (\frac{1}{6} - \frac{1}{2}\lambda)n^3 + \frac{1}{12}n \} + O(\theta^4),$ so that (4.7) holds if $\lambda > \frac{1}{3} + 1/(6n^2)$.

To complete the proof of Theorem 2 we now show that $-\cos nz$ is an extremal function when $\frac{1}{3} < \lambda \leq \frac{1}{3} + 1/(6n^2)$. We have to show that, when λ is in this interval, and $0 < \theta < \pi$,

(4.8)
$$|\lambda n \cos n\theta - \frac{1}{2} \cot \frac{1}{2}\theta \sin n\theta| < (1 - \lambda)n.$$

We shall consider separately the intervals (i) $\theta \ge 3\pi/(2n)$, (ii) $\pi/n \le \theta < 3\pi/(2n)$, (iii) $0 < \theta < \pi/n$.

In (i), the left-hand side of (4.8) is at most

$$\frac{1}{2}\cot(\frac{3}{4}\pi/n) + \lambda n \leq 2n/(3\pi) + \lambda n = n(\frac{2}{3}\pi^{-1} + \lambda),$$

and this is less than $(1 - \lambda)n$ since $\lambda \leq \frac{1}{3} + \frac{1}{6n^2} \leq \frac{3}{8}$ $(n \geq 2)$.

In (ii), $\cos n\theta$ and $\sin n\theta$ are both negative, so the absolute value on the left of (4.8) is at most the larger of $\frac{1}{2} \cot \frac{1}{2}\pi/n$, λn . Now $\lambda n < (1 - \lambda)n$ since $\lambda < \frac{1}{2}$; and $\frac{1}{2} \cot \frac{1}{2}\pi/n < (1 - \lambda)n$ follows from $\frac{1}{2} \cot \frac{1}{2}\pi/n < n/\pi < n/3 < n(1 - \lambda)$, which in turn follows from $\lambda \leq \frac{1}{3} + 1/(6n^2) < \frac{3}{8}$.

In (iii), we have to show that

(4.9)
$$\lambda n \cos n\theta - \frac{1}{2} \cot \frac{1}{2}\theta \sin n\theta < (1 - \lambda)n$$

and that

(4.10)
$$\frac{1}{2} \cot \frac{1}{2}\theta \sin n\theta - \lambda n \cos n\theta < (1 - \lambda)n.$$

Since sin $n\theta > 0$, we can rewrite (4.9) and (4.10) in the form

(4.11)
$$\begin{aligned} \lambda n \cot \frac{1}{2} n\theta &- \frac{1}{2} \cot \frac{1}{2} \theta < n \csc n\theta, \\ \lambda n \tan \frac{1}{2} n\theta &+ \frac{1}{2} \cot \frac{1}{2} \theta < n \csc n\theta. \end{aligned}$$

Now the second of these implies the first. In fact, is enough to show that

$$\lambda n \cot \frac{1}{2}n\theta - \frac{1}{2} \cot \frac{1}{2}\theta < \lambda n \tan \frac{1}{2}n\theta + \frac{1}{2} \cot \frac{1}{2}\theta,$$

i.e.

$$\lambda n(\cot \frac{1}{2}n\theta - \tan \frac{1}{2}n\theta) < \cot \frac{1}{2}\theta,$$

or

 $\lambda n \cot n\theta < \frac{1}{2} \cot \frac{1}{2}\theta.$

This holds for $\theta < \pi/n$ since $\lambda < 1$ and $x \cot x$ decreases in $0 < x < \pi$. Hence it is enough to establish (4.11), or equivalently that

$$\lambda n \tan \frac{1}{2}n\theta < n \csc n\theta - \frac{1}{2} \cot \frac{1}{2}\theta.$$

Since $\lambda \leq \frac{1}{3} + 1/(6n^2)$, it is enough to show that

(4.12)
$$(\frac{1}{3} + 1/(6n^2)) n \tan \frac{1}{2}n\theta < n \csc n\theta.$$

Now the Laurent expansions of all the functions in (4.12) (about $\theta = 0$) are valid in $0 < \theta < \pi/n$, and we have (for $n \ge 2$)

$$(\frac{1}{3} + 1/(6n^2))n \tan \frac{1}{2}n\theta = \frac{1}{6}n^2\theta + \frac{1}{12}\theta + (\frac{1}{3} + 1/(6n^2))n \sum_{n=2}^{\infty} A_n n^{2n-1}\theta^{2n-1}$$

$$\leq \frac{1}{6}n^2\theta + \frac{1}{12}\theta + \frac{3}{8}\sum_{n=2}^{\infty} A_n n^{2n}\theta^{2n-1}, \qquad A_n = \frac{2(2^{2n} - 1)}{(2n)!} B_{2n-1}$$

(the B's are Bernoulli numbers, the significant thing for our purposes being that they are positive). We also have

$$n \operatorname{csc} n\theta - \frac{1}{2} \operatorname{cot} \frac{1}{2}\theta = \frac{1}{6}n^2\theta + \frac{1}{12}\theta + \sum_{n=2}^{\infty} n^{2n}C_n \theta^{2n-1} + \phi(\theta),$$

where

$$c_n = 2(2^{2n-1} - 1)B_{2n-1}/(2n)!$$

(the coefficients in the expansion of $\csc x$), and $\phi(\theta) > 0$ (ϕ is the "tail" of the expansion of $-\frac{1}{2} \cot \frac{1}{2}\theta$). Hence (4.12) is implied by

$$\frac{3}{8}\sum_{n=2}^{\infty}A_n n^{2n}\theta^{2n-1} < \sum_{n=2}^{\infty}n^{2n}C_n \theta^{2n-1},$$

and hence by $\frac{3}{8}A_n < C_n$, i.e. $\frac{3}{8}(2^{2n} - 1) < 2^{2n-1} - 1$, which is true for $n \ge 2$.

The point 0 plays no special role in Theorem 2 since $f(z + a) \epsilon \mathfrak{I}_n$ when $f(z) \epsilon \mathfrak{I}_n$. Hence we can replace 0 by any other point in Theorem 2. Applying the more general result to $p_n(\cos \theta)$ and to $p_n(e^{i\theta})$, we obtain the following corollaries.

COROLLARY 1. If $p_n(z)$ is a polynomial of degree n > 1 and $|p_n(z)| \leq 1$ for -1 < x < 1, then

$$|\lambda n^2 p_n(x) - x p'_n(x) + (1 - x^2) p''_n(x)|$$

does not exceed $(1 - \lambda)n^2$ if $\lambda \leq \frac{1}{3} + 1/(6n^2)$, and does not exceed the maximum of $|\lambda n^2 \cos n\theta - \frac{1}{2}n \cot \frac{1}{2}\theta \sin n\theta|$, $0 < \theta < \pi$, if $\lambda > \frac{1}{3} + 1/(6n^2)$.

The particular cases x = 0, x = 1 are of interest.

COROLLARY 2. If $p_n(z)$ is a polynomial of degree n > 1 and $|p_n(z)| \leq 1$ for |z| < 1, then $|\lambda n^2 p_n(z) - z p'_n(z) - z^2 p''_n(z)|$ does not exceed the bounds given in Corollary 1 when |z| < 1.

References

- 1. R. P. BOAS, JR. AND A. C. SCHAEFFER, Variational methods in entire functions, Amer. J. Math., vol. 79 (1957), pp. 857–884.
- A. MARKOV, On a question of D. I. Mendelyeev's, Zapiski Imperatorskoĭ Akademii Nauk (St. Petersburg), vol. 62 (1890), pp. 1-24 (in Russian).

Northwestern University Evanston, Illinois