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1. Introduction

Let f(x) be a trigonometric polynomial. We consider a linear functional
defined by

oc(f) _, _, a)f()(x),

where x, a are given real numbers, 0 _-< x < 2r, with the x all different.
We suppose tha a) # 0 and that m > 0 for at least one v. We call

l=n+... +n,+m

the order of 2; thus f’(a) f’(-a) is a functional of order 4. We are in-
terested in the mximum of 2(f) when f runs through the class of trigono-
metric polynomials of type n which satisfy If(x) _-< 1 for real x. (It is
convenient to sy that trigonometric polynomial is of type n if it is of degree
at most n; a trigonometric polynomial of type n is an entire function of ex-
ponential type n.) In looking for this maximum it is enough to consider
the subclass 5n whose members are in addition real for real x. For, if is
real, we have ef(z) f(z) + f(z), wheref and f are elements of 5. Since
2(ef) e2(f), we can choose 0 so that 2(ef) I(f)I, and so
(f) I(f)I. Hence the maximum of (f) is attained, if at all, for an f
in 5, and indeed for one for which 2(f) > 0.
When 2(f) f’(a), we have S. Bernstein’s theorem that ]f’(a) <= n when

f’(x) --< 1 for all x. Here the bound for (f) is the same no matter which
point a is selected; this is no longer true in the general case.

Bernstein’s theorem on trigonometric polynomials is a special case of his
theorem on entire functions of exponential type" if f(z) is an entire function
of exponential type r (which we may suppose is real for real x), and If(x) =< 1
for all real x, then f’(x) <-- for all real x. This does not happen for more
general functionMs . In fact, Schaeffer and I [1] found that the maximum
of I(f) in this class Y, of entire functions is not, in general, attained for a
trigonometric polynomial f. However, methods similar to those used in
[1] still work for the class 5n. The general result is stated in 3 below; in
4 it is applied to the special functional hn2f(0) + f" (0). As corollaries, we
obtain two theorems for ordinary polynomials. Further applications will be
given elsewhere.
The problem of maximizing the functional f’(a) f’(-a) is equivalent

to the problem of maximizing p’,,(x) for given x on (-1, 1) when the poly-
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nomil p,(x), of degree n, satisfies y,(x) -< 1 throughout (-1, 1). (Bern-
stein’s well-known inequality p(x) -< n(1 x)-/ is not sharp except st
the points x cos(It -{- 1/2)-/n.) This problem was solved by A. Msrkov [2]
by other methods; this is the pper in which he also showed thst __< n
throughout (-1, 1). The ltter result is well known, but the former seems
to have been completely forgotten.

2. Lemmas
We require series of lemms on the element of which mximizes

LEMMA 1. For a given functional J, if n >= [//2], the maximum
M sup 2(f)1, f e ,, is finite, positive, and attained.

By Bernstein’s theorem M is finite; it is attained because 5, s collection
of trigonometric polynomials of bounded type, is sequentially compact. To
show that M is positive we hve to exhibit n element f of 5 such that 2(f) 0.
(This is impossible without some restriction on n since, for example,
f’"(a) - f’(a) 0 for ll a nd 11 elements of .) To do this we ppel to
the following simple lemms which will be used several times.

LEMMA 2. If X and x are real points, not congruent mod 2r, there is an ele-
ment g of not identically zero, such that g(x) g(x.) O. There is also an
element g of with a double zero at x
For the first prt put

2g(x) 2sin1/2(x x)sin1/2(x x) cos1/2(x- x) --cos(x 1/2(x -{- x.));

for the second prt put 2g(x) 1 cos(x x).
We now complete the proof of Lemm 1. We hve some n > 0; for

definiteness suppose that n > 0. Then by taking products of functions g
from Lemm 2 we cn obtain s real trigonometric polynomial g such that
g)(x) 0 for 2,..., m and /c O, 1,..., n, and for
P 1, /c 0, 1,...,n- 1;whileg<’)(x) O. Since thisghasl- 1
zeros in s period, we require 1/2(l 1) functions from Lemm 2 if 1 is even,
1/21 if 1 is odd, so that g is t worst of degree [//2]; nd 2(g) 0.

LEMMA 3. Let f be an element of 5n not a constant, maximizing L(f), with
n >- [//2]. Then If(x) lforsomerealx;andifFeS,andFhasazero
at each of the different points in a period where f(x) -+-1, then 2(F) O.

The first statement is immediate since if if(x) < 1 we cn choose b > 1
so that bf(x) takes one of the values =t=l and still belongs to 5n, while 2(f)
is increased.
We begin the proof of the second statement by showing that if F(z) is ny

element of 5 nd

(2.1) supl f(x) - eF(x) 1 - o(), O,
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where e is real, then (F) 0. Let 0 < p < 1. According to (2.1), if
!1 < e0(p), the function

g,,(z) f(z) + eF(z)
1+1 1 

belongs to 5,. If 2(F) O, then

Choo p so that p(f) < (F), then e so that < e0(p) and so that
(F) > 0. We then have 2() > 2(f), contradicting the maximizing
property assumed for fi Hence 2(F) 0.
Now suppose that F has a zero at each of the distinct points in [0, 2) where

f(x) 1. Let k be one of these points. Then there is an intervM I th
center at k such that

f(x) <= 1 h(x- X)

in I, where h > 0 and z is positive integer.
theorem shows that

and so

Since F(h) 0, Bernstein’s

IF(xD

If(x) + eF(x) <- 1 h(x- X)2" + enlx- X

in I. The maximum of the right-hand side does not exceed 1 Be1+1/("-),
where B depends only on h, r and . Thus If(x) + eF(x)] 1 + o(e) in
the intervals I, while ]f(x) + sF(x)] 1 for small when x is in the rest
of [0, 2). This establishes (2.1) and so 2(F) 0.

LEMMA 4. Given a set of 2r 2n 2[//2] distinct real points in [0, 2),
there is an element g of 5 such that g(h) 0 foreach and 2(g) O.

Let g be a real trigonometric polynomial of degree at most r with zeros
precisely at the h which are not in {x}; if the number of such is odd, le
g have also a zero at some point which is neither a nor an x. As in the
proof of Lemmu 1, let g be a real trigonometric polynomial of degree [//2]
with g)(x) 0 for 2, m and k 0, 1, n,, and for 1,
k 0, 1,...,n 1, whileg’)(x) O. Thenga gg is of degree at
most r + [//2] n and ga(h) 0 for every ; also g)(x,) 0 for

2,.-.,m;k 0,1,...,n;, 1, k 0,1,.-.,n- 1;and

(’)x "("’)(x)g(x) O.

Finally, g cg belongs to 3 if e is a sufficiently small positive number,

LEMMA 5. If f is not a constant and is an extremal function for in 5.,
where n [//2], then f is of degree greater than n [//2].
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Suppose that f is of degree m -< n [//2]. Let ), be the points in [0, 2r)
where f(x) +/-1 (each counted once), nd suppose for definiteness that
n > 0. Then f’(x) vnishes t ech h.. By Lemm 4 there is n element
g of 3 wnishing t ech nd with 2(g) 0; but this contradicts Lemm 3.

3. The main theorem

We re now in position to establish the following theorem.

THEOREM 1. Let n >- [//2]. An extremal element f of , for 2 is either
constant, or a trigonometric polynomial whose degree is m > n [//2]. If f is
not a constant, 1 f has at most 2l imaginary zeros in a period strip, where
]/2 < m n - [1/2], and f satisfies a differential equation

f’ (z) R(z)/(z),(3.1)
1 f(z)

where R(z) and S(z) are real trigonometric polynomials of degree q <= ; S(z) has
the form

k

(3.2) S(z) II P(b z),

where P(b, z) cosh (b) cos(z 9(b)) 2 sin1/2(z ) sin1/2(z b),
and the b are not real; R(z) has zeros of even multiplicities not occurring at any b

If n >- 2[//2] 1, the extremal function, if not constant, is unique.

That m > n [1/2] is the content of Lemm 5. The imaginary zeros of
1 f (if ny) occur in conjugate pirs. Let them be b, , with
0 -< 9(b) < 2r, j 1, 2, k. Defining S(z) s in (3.2), we see that

Q(z) {1 f(z)}/S(z)
is entire, and hence is a real trigonometric polynomial of degree 2m
Now Q(z) has only real zeros, at the same points and with the same multiplici-
ties us the rel zeros of 1 f; and f’(z) has at least these rel zeros. Hence
f’(z)/Q(z) R(z) is a real trigonometric polynomial of degree k, and its zeros
are those zeros of f’(z) which are not real zeros of 1 f; these (if there are
any) are of even multiplicity and (if imaginary) occur in conjugate pairs.
We thus have

f’ (z) R(z)/(z).(3.3)
1 f(z)

Now since 1 f has 2] imaginary zeros in a period strip, it has 4m 2]

real zeros in a period. These are of even multiplicity, and so occur at at most
2m ] distinct points. If ]c is even, Lemm 4 contradicts Lemma 3 unless
m ]/2 > n [//2], i.e. ]c/2 < m n + [//2]. If ]c is odd, the same thing
happens unless m ]c/2 + 1/2 > n [//2], which leads to the same conclusion.

If R and S in (3.3) have zeros (necessarily imaginary) in common, we can
divide them out and obtain (3.1) with a new R and S of degree q <
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The remaining assertion of Theorem i is that there is only one extremal func-
tion f, other than a constant, if n is large enough. Suppose that there are two
nonconstant extremal functions fl and f. Then f3 1/2(fl f2) is also an
extremal function, and at any real point where f3 takes one of the values
=t=l, fl and f. take the same value (since neither exceeds 1 in absolute value).
Consider g 1/2(fl f2), an element of 5, which has double zeros at the real
points where f -4-1. Let f have degree m, which we know exceeds
n [//2]; then 1 f has 4m 2k real zeros in a period, and hence g has
at least this many. On the other hand, g is at most of degree n and so has at
most 2n real zeros in u period. Hence 4m 2k __< 2n, or k/2 >= m n/2.
However, we know that/c/2 < m n [//2]. Combining these inequalities,
we obtain n < 2[//2] q- 1. Hence a nonconstant extremal function must be
unique if n >= 2[//2] q- 1.

4. A functional of order 3
When the order of the functional is 2, an extremal function, even in the

larger class ff, is of the form sin(nz q- c), and the problem of identifying it is
trivial.
The next case to consider is 3. In this case, if n -> 1, a nonconstant

extremal function is of degree n, and it is unique if n => 3. Since
[k/2] < [3/2] 1, we have/c 0 or 1.
We now consider the functional

z(f) + f"(o),

which was studied in [1] for f e fin. It was shown in [1] that when }, =< -the maximum of (.f) for f e : is furnished by =t=cos nz, and so this function
also maximizes 3(f) in 5. If > 1/2, the maximum of (f) cannot be provided
by =t=cos nz, since a3(1) > a3(=l=cos nz). If- < X < 1/2, 3(-cos nz) > 3(1).
Hence we have to consider solutions of (3.1) with q 1 and decide whether
the maximum of 2(f) for these exceeds },n 3(1) if }, >= 1/2, and whether it
exceeds (1 ,)n (-cos nz) if 1/2 < < 1/2.

THEOREM 2. Let 2(f) n:f(O) q- f’(O). If n > 1, the largest value of
(f) Ifor f e n i8 furnished by -+-cos nz if <-_ 1/2 -q- 1/(6n) and by a function

of the form
(4.1) -t-cos{n COS--I (o) COS Z + O) 1)}, 0 < co < 1,

if X > - q- 1/(6n). In the second case, the maximum of 2(f) is the maximum
for O < 0 < r of hn cos nO 1/2n cot1/20 sin nO I. For n 1, the maxi-
mum is furnished by cos nz if h <= 1/2 and by -+-1 if X >= 1/2.

(Thus when 1/2 there are two distinct extreml functions in 31 .)
If f(z) is an extremal function for 3, so is f(-z); for n => 3 the extremal

function is unique if not constant, and so it must be even. Again,
if f(z) f(--z) and f is an extremal function, [f(z) + f(-z)] is an even ex-
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treml function in ny cse. Hence to determine the mximum of 2() we
need consider only even extreml functions f.
We require the following lemm.

LEMMA 6. Under the hypotheses of Theorem 1, if f is a nonconstan extremal
function and is either even or odd, and tc 1, then f’(0) f’() 0, and 1
vanishes at one of the points O, and not at the other.

Let f be a nonconstant extremal function, either even or odd. If/ 1,
the function 1 f has, in u period strip, a single pair of coniugate imaginary
zeros, and f’(z) has a single pair of zeros which are not real zeros of 1
Since these zeros are also zeros of f’(z), there must in fact be a single zero of
f’(z) of multiplicity 2. Since f’ is even, this zero can only be at 0 or (other-
wise its symmetric point with respect to 0 would be another zero of f’ which
is not a real zero of 1 f). On the other hand, the zeros of f (since it is
even or odd) occur in symmetric pirs except perhaps for zeros at 0 or
Since one of these points is a simple zero of f’ and f’ has an even number of
zeros in a period, there must be an odd number of zeros besides the one at
0 or , hence one at the other of these points. Since there is only one zero of
f’ which is not at a real zero of 1 f,2, we must have 1 f2 0 at 0 or at
but not at both of these points.
We now return to extremal functions for 2(f). If k 1 and f is an even

extremal function, 1 f has (in a period strip) a single pair of conjugate
imaginary zeros. Since 1 f2 is even, these zeros must have real part either
0 or . Hence we may take S(z) in (3.1) as c +/- cosz, where c > 1. By
Lemma 6, f’(z) must hve zero t 0 or r (but not both) which is not a zero
of 1 f. Now if f(0) 1, f"(0) -_< 0andso(f) -<_ hn. Ilk >__ 1/2, then,
2(f) =< (1), so either f is not an extremal function, or f makes (f) no larger
than (1), in which case we do not need to consider f any further.
If h <: 1/2, 2(f) < n < (1 )n 2(-cos nz),sofisnotanextremal
function. If f(0) -1, (f) -hn + f"(0), and since If"(0) < n by
Bernstein’s theorem (since If"(0) 1 only for :t:cos nz), we have
(f) < n2(1 ), and again f is not an extremal function. Hence f(0) d: 1,
while f’(0) 0. Hence we may take R(z) A(1 cos z), where A is real.
Thus we have

f’(w) A (1 cos w)
l f(w):} (c +/- cos w)2"

Integrating this, we find

(4.2) f(z)--cos(A " (1-cos w)’ B}(c+/-cos-d+
Consideration of the behavior of the two sides as z --, oo through pure imagi-
nary values shows that the - sign can be excluded and that A n. The
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integral can be evaluated in terms of elementary functions:

(1 cos
(c cos

12cosw-- c+ 1
dw --cos-

c+l

Thus we have

f(z) cs {n cs-12 cs z c +
+ 1 + B

{ 2cosz-- c+ 1}cos n cos- cos B1
c+l

sin In cos_l 2 cos z c + 1. sin B1.
c+1

Now cos nO is a polynomial in cos O, so the first term on the right is a poly-
nomial in cos z. On the other hand, sin nO is of the form sin 0 P(cos O), where
P is a polynomial. Since sin(cos-1 t) +/-(1 t2) 1/2, we have

cos_ 2 cos z c -f- 1} )-1
c -4- 1

+/-2(c -t- 1 {(c cos z)(1 -f- cos z)}

and this has branch points at the zeros of c cos z. Hence f(z) cannot be
an entire function, and so not a trigonometric polynomial, unless sin B 0.
Thus we finally obtain

(4.3) f(z) +/-COS{n COS-I(0. COS Z -" (.0 1)}, 2/(c + 1),

as the form of an extremal function which is neither +/-cos nz nor a constant.
Calculating (f) for (4.3), we find

+/-(f) hn cos nO 1/2n cot 1/20 sin nO,

where cos 0 2 1, 0 < 0 < r. Since every 0 in this range corresponds
to some , our problem is reduced to the question of whether

x __> 1/2;(4.4) [kn COS nO 1/2n cot 1/20 sin nO > [(1 X)n2, ] < h < 1/2
for some 0 in 0 < 0 < r: for a given h, if (4.4) holds for some 0, the extremal
function for this value of X is given by (4.3), and the maximum of (f) is ob-
tainable by calculating the maximum of the left-hand side of (4.4).
For X >= 1/2, (4.4) holds if there is a 0 for which either

(4.5) --cot 1/20 sin nO > 2(1 cos nO)hn
or

(4.6) cot 1/20 sin nO > 2(1 + cos nO)),n.

Both (4.5) and (4.6) fail when n 1; hence an extremal function for n 1 is
never of the form (4.3), and the last statement of Theorem 2 follows.



We now suppose that n _>_ 2. Inequality (4.6) is equivalent to
cot 1/20 tan 1/2n0 > 2hn, which is certainly satisfied when 0 is slightly less than
/n. Hence for h >- 1/2 and n > 1 the maximum of (f) is attained for a func-
tion (4.3), and its value is the maximum of the left-hand side of (4.4).
When 1/2 < h < 1/2, (4.4)states that

(4.7) ]n cos n0 1/2 cot 1/20 sin n01 > (1 )n.

As 0 -- 0 we have

hn cos n0- 1/2 cot 1/20 sin n0 n(}, 1) + 0{(- 1/2},)n + n} + 0(04),
so that (4.7) holds if }, > 1/2 + 1/(6n2).
To complete the proof of Theorem 2 we now show that -cos nz is an ex-

tremal function when 1/2 < ) -< 1/2 - 1/(6n2). We have to show that, when
}, is in this interval, and 0

(4.8) ]n cos nO 1/2 cot 1/20 sin n01 < (1 )n.

We shall consider separately the intervals (i)
3r/(2n), (iii)0 < 0 < r/n.

In (i), the left-hund side of (4.8) is at most

1/2 cot(-r/n)

and this is less than (1 h)n since h _-< 1/2 A- 1/(6n) _-< - (n _-> 2).
In (ii), cos n0 and sin nO are both negative, so the absolute value on the

left of (4.8) is at most the larger of 1/2 cot 1/2r/n, ,n. Now hn < (1 h)n
since < 1/2;and 1/2 cot 1/2’/n
n/3 < n(1 ), which in turn follows from

In (iii), we have to show that

(4.9) n cos n0 1/2 cot 1/20 sin n0 < (1 )n

and that

(4.10) 1/2 cot 1/20 sin nO- ,n cos nO < (1 )n.

Since sin n0 > 0, we can rewrite (4.9) and (4.10) in the form

),n cot 1/2nO 1/2 cot 1/20 < n csc nt,

hn tan 1/2nO + 1/2 cot 1/20 < n csc n0.

Now the second of these implies the first. In fact, is enough to show that

},n cot 1/2n0 1/2 cot 1/20 < hn tan 1/2n0 + 1/2 cot 1/20,
i.e.

or

n(cot 1/2n0 tan 1/2n0) < cot 1/20,

cot nO < 1/2 cot 1/20.
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This holds for < ’/n since k < 1 and x cot x decreases in 0 < x < r.
it is enough to establish (4.11), or equivalently that

Hence

n tan 1/2nO < n csc n 1/2 cot 1/2.

Since ), =< - W 1/(6n), it is enough to show that

(4.12) (1/2 + 1/(6n)) n tan 1/2n0 < n csc nO.

Now the Laurent expansions of all the functions in (4.12) (about 0 0) are
valid in 0 < 0 < r/n, and we have (for n >= 2)

( + 1/(6n))n tan 1/2nO -nO + -O + ( + 1/(6n))n An--n2

A B_< n 0 + 0 + ] A nO-, 2(2" 1)
(2n)!

(the B’s are Bernoulli numbers, the significant thing for our purposes being
that they are positive). We also have

n csc n0 cot e O-n o + o + c + +(0),

where

(the coefficients in the expansion of cse z), nd +(0) > 0 (+ is the "tail" of
the expansion of -+ cot +0). Hence (4.12) is implied by

n2 n2

and hence by ]A < C, i.e. (2 1) < 2- 1, which is true for n 2.
The point 0 pluys no special role in Theorem 2 since f(z W a) e 5 when

f(z) 5. Hence we can replace 0 by any other point in Theorem 2. Apply-
ing the more general result to p(cos 0) and to p(eO), we obtain the f41owing
corollaries.

Conoav 1. If p(z) is a polynomial of degree u > 1 and p(z) 1
for--1 < x < 1, then

Xn p(x) xp(x) + (1 xpx
does not exceed (1 h)n if + 1/(6n), and does not exceed the maximum
g In cos nO n cot O sin no ], 0 < e < , if x > + 1/(6n).

The particular cases x 0, x 1 are of interest.

COROLLARY 2. If pn(Z) is a polynomial of degree n > 1 and p,(z) <= 1
hn p,(z) zp (z) (z) does notforlzl < 1, then

,,
z p, exceed the bounds given

in Corollary 1 when z < 1.
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