A VARIATIONAL METHOD FOR TRIGONOMETRIC POLYNOMIALS ${ }^{1}$

BY
R. P. Boas, JR.

1. Introduction

Let $f(x)$ be a trigonometric polynomial. We consider a linear functional \mathfrak{L} defined by

$$
\mathscr{L}(f)=\sum_{\nu=1}^{m} \sum_{j=0}^{n_{\nu}} \alpha_{\nu}^{(j)} f^{(j)}\left(x_{\nu}\right)
$$

where x_{ν}, α_{ν} are given real numbers, $0 \leqq x_{\nu}<2 \pi$, with the x_{ν} all different. We suppose that $\alpha_{\nu}^{\left(n_{\nu}\right)} \neq 0$ and that $n_{\nu}>0$ for at least one ν. We call

$$
l=n_{1}+\cdots+n_{m}+m
$$

the order of \mathfrak{L}; thus $f^{\prime}(a)-f^{\prime}(-a)$ is a functional of order 4. We are interested in the maximum of $|\mathfrak{L}(f)|$ when f runs through the class of trigonometric polynomials of type n which satisfy $|f(x)| \leqq 1$ for real x. (It is convenient to say that a trigonometric polynomial is of type n if it is of degree at most n; a trigonometric polynomial of type n is an entire function of exponential type n.) In looking for this maximum it is enough to consider the subclass J_{n} whose members are in addition real for real x. For, if θ is real, we have $e^{i \theta} f(z)=f_{1}(z)+f_{2}(z)$, where f_{1} and f_{2} are elements of J_{n}. Since $\mathscr{L}\left(e^{i \theta} f\right)=e^{i \theta} \mathcal{L}(f)$, we can choose θ so that $\mathscr{L}\left(e^{i \theta} f\right)=|\mathscr{L}(f)|$, and so $\mathfrak{L}\left(f_{1}\right)=|\mathscr{L}(f)|$. Hence the maximum of $|\mathfrak{L}(f)|$ is attained, if at all, for an f in \mathfrak{J}_{n}, and indeed for one for which $\mathcal{L}(f)>0$.

When $\mathscr{L}(f)=f^{\prime}(a)$, we have S. Bernstein's theorem that $\left|f^{\prime}(a)\right| \leqq n$ when $\left|f^{\prime}(x)\right| \leqq 1$ for all x. Here the bound for $|\mathscr{L}(f)|$ is the same no matter which point a is selected; this is no longer true in the general case.

Bernstein's theorem on trigonometric polynomials is a special case of his theorem on entire functions of exponential type: if $f(z)$ is an entire function of exponential type τ (which we may suppose is real for real x), and $|f(x)| \leqq 1$ for all real x, then $\left|f^{\prime}(x)\right| \leqq \tau$ for all real x. This does not happen for more general functionals \mathfrak{L}. In fact, Schaeffer and I [1] found that the maximum of $|\mathscr{L}(f)|$ in this class \mathscr{F}_{τ} of entire functions is not, in general, attained for a trigonometric polynomial f. However, methods similar to those used in [1] still work for the class J_{n}. The general result is stated in §3 below; in $\S 4$ it is applied to the special functional $\lambda n^{2} f(0)+f^{\prime \prime}(0)$. As corollaries, we obtain two theorems for ordinary polynomials. Further applications will be given elsewhere.

The problem of maximizing the functional $f^{\prime}(a)-f^{\prime}(-a)$ is equivalent to the problem of maximizing $p_{n}^{\prime}(x)$ for a given x on $(-1,1)$ when the poly-

[^0]nomial $p_{n}(x)$, of degree n, satisfies $\left|p_{n}(x)\right| \leqq 1$ throughout ($-1,1$). (Bernstein's well-known inequality $\left|p_{n}^{\prime}(x)\right| \leqq n\left(1-x^{2}\right)^{-1 / 2}$ is not sharp except at the points $x=\cos \left(k+\frac{1}{2}\right) \pi / n$.) This problem was solved by A. Markov [2] by other methods; this is the paper in which he also showed that $\left|p_{n}^{\prime}(x)\right| \leqq n^{2}$ throughout ($-1,1$). The latter result is well known, but the former seems to have been completely forgotten.

2. Lemmas

We require a series of lemmas on the element of J_{n} which maximizes $|\mathscr{L}(f)|$.
Lemma 1. For a given functional \mathcal{L}, if $n \geqq[l / 2]$, the maximum $M=\sup |\mathcal{L}(f)|, f \in J_{n}$, is finite, positive, and attained.

By Bernstein's theorem M is finite; it is attained because J_{n}, a collection of trigonometric polynomials of bounded type, is sequentially compact. To show that M is positive we have to exhibit an element f of J_{n} such that $\mathcal{L}(f) \neq 0$. (This is impossible without some restriction on n since, for example, $f^{\prime \prime \prime}(a)+f^{\prime}(a)=0$ for all a and all elements of $\left.J_{1}.\right) \quad$ To do this we appeal to the following simple lemma which will be used several times.

Lemma 2. If x_{1} and x_{2} are real points, not congruent $\bmod 2 \pi$, there is an element g of J_{1}, not identically zero, such that $g\left(x_{1}\right)=g\left(x_{2}\right)=0$. There is also an element g of J_{1} with a double zero at x_{1}.

For the first part put
$2 g(x)=2 \sin \frac{1}{2}\left(x-x_{1}\right) \sin \frac{1}{2}\left(x-x_{2}\right)=\cos \frac{1}{2}\left(x_{1}-x_{2}\right)-\cos \left(x-\frac{1}{2}\left(x_{1}+x_{2}\right)\right) ;$
for the second part put $2 g(x)=1-\cos \left(x-x_{1}\right)$.
We now complete the proof of Lemma 1. We have some $n_{\nu}>0$; for definiteness suppose that $n_{1}>0$. Then by taking products of functions g from Lemma 2 we can obtain a real trigonometric polynomial g such that $g^{(k)}\left(x_{\nu}\right)=0$ for $\nu=2, \cdots, m$ and $k=0,1, \cdots, n_{\nu}$, and for $\nu=1, \quad k=0,1, \cdots, n_{1}-1$; while $g^{\left(n_{1}\right)}\left(x_{1}\right) \neq 0$. Since this g has $l-1$ zeros in a period, we require $\frac{1}{2}(l-1)$ functions from Lemma 2 if $l-1$ is even, $\frac{1}{2} l$ if $l-1$ is odd, so that g is at worst of degree $[l / 2]$; and $\mathscr{L}(g) \neq 0$.

Lemma 3. Let f be an element of \mathfrak{J}_{n}, not a constant, maximizing $L(f)$, with $n \geqq[l / 2]$. Then $|f(x)|=1$ for some real x; and if $F \in J_{n}$ and F has a zero at each of the different points in a period where $f(x)= \pm 1$, then $\mathcal{L}(F)=0$.

The first statement is immediate since if $|f(x)|<1$ we can choose $b>1$ so that $b f(x)$ takes one of the values ± 1 and still belongs to J_{n}, while $\mathcal{L}(f)$ is increased.

We begin the proof of the second statement by showing that if $F(z)$ is any element of J_{n} and

$$
\begin{equation*}
\sup _{x}|f(x)+\varepsilon F(x)|=1+o(\varepsilon), \quad \varepsilon \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where ε is real, then $\mathcal{L}(F)=0$. Let $0<\rho<1$. According to (2.1), if $|\varepsilon|<\varepsilon_{0}(\rho)$, the function

$$
\psi_{\varepsilon}(z)=\frac{f(z)+\varepsilon F(z)}{1+|\varepsilon| \rho}
$$

belongs to J_{n}. If $\mathscr{L}(F) \neq 0$, then

$$
\mathscr{L}\left(\psi_{\varepsilon}\right)=(1+|\varepsilon| \rho)^{-1}\{\mathcal{L}(f)+\varepsilon \mathcal{L}(F)\}
$$

Choose ρ so that $\rho \mathscr{L}(f)<|\mathscr{L}(F)|$, then ε so that $|\varepsilon|<\varepsilon_{0}(\rho)$ and so that $\varepsilon \mathcal{L}(F)>0$. We then have $\mathcal{L}\left(\psi_{\varepsilon}\right)>\mathscr{L}(f)$, contradicting the maximizing property assumed for f. Hence $\mathcal{L}(F)=0$.

Now suppose that F has a zero at each of the distinct points in $[0,2 \pi)$ where $f(x)= \pm 1$. Let λ be one of these points. Then there is an interval I with center at λ such that

$$
|f(x)| \leqq 1-h(x-\lambda)^{2 \mu}
$$

in I, where $h>0$ and μ is a positive integer. Since $F(\lambda)=0$, Bernstein's theorem shows that

$$
|F(x)|=\left|\int_{\lambda}^{x} F^{\prime}(t) d t\right| \leqq n|x-\lambda|
$$

and so

$$
|f(x)+\varepsilon F(x)| \leqq 1-h(x-\lambda)^{2 \mu}+\varepsilon n|x-\lambda|
$$

in I. The maximum of the right-hand side does not exceed $1+B \varepsilon^{1+1 /(2 \mu-1)}$, where B depends only on h, τ and μ. Thus $|f(x)+\varepsilon F(x)| \leqq 1+o(\varepsilon)$ in the intervals I, while $|f(x)+\varepsilon F(x)| \leqq 1$ for small ε when x is in the rest of $[0,2 \pi)$. This establishes (2.1) and so $\mathcal{L}(F)=0$.

Lemma 4. Given a set of $2 r \leqq 2 n-2[l / 2]$ distinct real points λ in $[0,2 \pi)$, there is an element g of J_{n} such that $g(\lambda)=0$ for each λ and $\mathscr{L}(g) \neq 0$.

Let g_{1} be a real trigonometric polynomial of degree at most r with zeros precisely at the λ which are not in $\left\{x_{\nu}\right\}$; if the number of such λ is odd, let g_{1} have also a zero at some point which is neither a λ nor an x_{ν}. As in the proof of Lemma 1, let g_{2} be a real trigonometric polynomial of degree [l/2] with $g_{2}^{(k)}\left(x_{\nu}\right)=0$ for $\nu=2, \cdots, m$ and $k=0,1, \cdots, n_{\nu}$, and for $\nu=1$, $k=0,1, \cdots, n_{1}-1$, while $g_{2}^{\left(n_{1}\right)}\left(x_{1}\right) \neq 0$. Then $g_{3}=g_{1} g_{2}$ is of degree at most $r+[l / 2] \leqq n$ and $g_{3}(\lambda)=0$ for every λ; also $g_{3}^{(k)}\left(x_{\nu}\right)=0$ for $\nu=2, \cdots, m ; k=0,1, \cdots, n_{\nu} ; \nu=1, k=0,1, \cdots, n_{1}-1$; and

$$
g_{3}^{\left(n_{1}\right)}\left(x_{1}\right)=g_{2}^{\left(n_{1}\right)}\left(x_{1}\right) g_{1}\left(x_{1}\right) \neq 0
$$

Finally, $g=\varepsilon g_{3}$ belongs to J_{n} if ε is a sufficiently small positive number.
Lemma 5. If f is not a constant and is an extremal function for $\&$ in J_{n}, where $n \geqq[l / 2]$, then f is of degree greater than $n-[l / 2]$.

Suppose that f is of degree $m \leqq n-[l / 2]$. Let λ_{j} be the points in [0, 2π) where $f(x)= \pm 1$ (each counted once), and suppose for definiteness that $n_{1}>0$. Then $f^{\prime}(x)$ vanishes at each λ_{j}. By Lemma 4 there is an element g of J_{n} vanishing at each λ_{j} and with $\mathcal{L}(g) \neq 0$; but this contradicts Lemma 3.

3. The main theorem

We are now in a position to establish the following theorem.
Theorem 1. Let $n \geqq[l / 2]$. An extremal element f of \mathfrak{J}_{n} for \mathfrak{L} is either constant, or a trigonometric polynomial whose degree is $m>n-[l / 2]$. If f is not a constant, $1-f^{2}$ has at most $2 k$ imaginary zeros in a period strip, where $k / 2<m-n+[l / 2]$, and f satisfies a differential equation

$$
\begin{equation*}
\frac{f^{\prime}(z)^{2}}{1-f(z)^{2}}=R(z) / S(z) \tag{3.1}
\end{equation*}
$$

where $R(z)$ and $S(z)$ are real trigonometric polynomials of degree $q \leqq k ; S(z)$ has the form

$$
\begin{equation*}
S(z)=\prod_{j=1}^{k} P\left(b_{j}, z\right) \tag{3.2}
\end{equation*}
$$

where $P(b, z)=\cosh \Im(b)-\cos (z-\Re(b))=2 \sin \frac{1}{2}(z-\bar{b}) \sin \frac{1}{2}(z-b)$, and the b_{j} are not real; $R(z)$ has zeros of even multiplicities not occurring at any b_{j}.

If $n \geqq 2[l / 2]+1$, the extremal function, if not constant, is unique.
That $m>n-[l / 2]$ is the content of Lemma 5. The imaginary zeros of $1-f^{2}$ (if any) occur in conjugate pairs. Let them be b_{j}, \bar{b}_{j}, with $0 \leqq \Re\left(b_{j}\right)<2 \pi, \quad j=1,2, \cdots, k$. Defining $S(z)$ as in (3.2), we see that

$$
Q(z)=\left\{1-f(z)^{2}\right\} / S(z)
$$

is entire, and hence is a real trigonometric polynomial of degree $2 m-k$. Now $Q(z)$ has only real zeros, at the same points and with the same multiplicities as the real zeros of $1-f^{2}$; and $f^{\prime}(z)^{2}$ has at least these real zeros. Hence $f^{\prime}(z)^{2} / Q(z)=R(z)$ is a real trigonometric polynomial of degree k, and its zeros are those zeros of $f^{\prime}(z)^{2}$ which are not real zeros of $1-f^{2}$; these (if there are any) are of even multiplicity and (if imaginary) occur in conjugate pairs. We thus have

$$
\begin{equation*}
\frac{f^{\prime}(z)^{2}}{1-f(z)^{2}}=R(z) / S(z) \tag{3.3}
\end{equation*}
$$

Now since $1-f^{2}$ has $2 k$ imaginary zeros in a period strip, it has $4 m-2 k$ real zeros in a period. These are of even multiplicity, and so occur at at most $2 m-k$ distinct points. If k is even, Lemma 4 contradicts Lemma 3 unless $m-k / 2>n-[l / 2]$, i.e. $k / 2<m-n+[l / 2]$. If k is odd, the same thing happens unless $m-k / 2+\frac{1}{2}>n-[l / 2]$, which leads to the same conclusion.

If R and S in (3.3) have zeros (necessarily imaginary) in common, we can divide them out and obtain (3.1) with a new R and S of degree $q<k$.

The remaining assertion of Theorem 1 is that there is only one extremal function f, other than a constant, if n is large enough. Suppose that there are two nonconstant extremal functions f_{1} and f_{2}. Then $f_{3}=\frac{1}{2}\left(f_{1}+f_{2}\right)$ is also an extremal function, and at any real point where f_{3} takes one of the values $\pm 1, f_{1}$ and f_{2} take the same value (since neither exceeds 1 in absolute value). Consider $g=\frac{1}{2}\left(f_{1}-f_{2}\right)$, an element of J_{n}, which has double zeros at the real points where $f_{3}= \pm 1$. Let f_{3} have degree m, which we know exceeds $n-[l / 2]$; then $1-f_{3}^{2}$ has $4 m-2 k$ real zeros in a period, and hence g has at least this many. On the other hand, g is at most of degree n and so has at most $2 n$ real zeros in a period. Hence $4 m-2 k \leqq 2 n$, or $k / 2 \geqq m-n / 2$. However, we know that $k / 2<m-n+[l / 2]$. Combining these inequalities, we obtain $n<2[l / 2]+1$. Hence a nonconstant extremal function must be unique if $n \geqq 2[l / 2]+1$.

4. A functional of order 3

When the order of the functional $\&$ is 2 , an extremal function, even in the larger class \mathfrak{F}_{n}, is of the form $\sin (n z+c)$, and the problem of identifying it is trivial.

The next case to consider is $l=3$. In this case, if $n \geqq 1$, a nonconstant extremal function is of degree n, and it is unique if $n \geqq 3$. Since $[k / 2]<[3 / 2]=1$, we have $k=0$ or 1 .

We now consider the functional

$$
\mathcal{L}(f)=\lambda n^{2} f(0)+f^{\prime \prime}(0)
$$

which was studied in [1] for $f \epsilon \mathfrak{F}_{n}$. It was shown in [1] that when $\lambda \leqq \frac{1}{3}$ the maximum of $\mathcal{L}(f)$ for $f \in \mathcal{F}_{n}$ is furnished by $\pm \cos n z$, and so this function also maximizes $\mathscr{L}(f)$ in J_{n}. If $\lambda>\frac{1}{2}$, the maximum of $\mathscr{L}(f)$ cannot be provided by $\pm \cos n z$, since $\mathscr{L}(1)>\mathscr{L}(\pm \cos n z)$. If $\frac{1}{3}<\lambda<\frac{1}{2}, \mathscr{L}(-\cos n z)>\mathscr{L}(1)$. Hence we have to consider solutions of (3.1) with $q=1$ and decide whether the maximum of $\mathscr{L}(f)$ for these exceeds $\lambda n^{2}=\mathscr{L}(1)$ if $\lambda \geqq \frac{1}{2}$, and whether it exceeds $(1-\lambda) n^{2}=\mathscr{L}(-\cos n z)$ if $\frac{1}{3}<\lambda<\frac{1}{2}$.

Theorem 2. Let $\mathfrak{L}(f)=\lambda n^{2} f(0)+f^{\prime \prime}(0)$. If $n>1$, the largest value of $|\mathfrak{L}(f)|$ for $f \in \mathcal{J}_{n}$ is furnished by $\pm \cos n z$ if $\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right)$ and by a function of the form

$$
\begin{equation*}
\pm \cos \left\{n \cos ^{-1}(\omega \cos z+\omega-1)\right\}, \quad 0<\omega<1 \tag{4.1}
\end{equation*}
$$

if $\lambda>\frac{1}{3}+1 /\left(6 n^{2}\right)$. In the second case, the maximum of $|\mathscr{L}(f)|$ is the maximum for $0<\theta<\pi$ of $\left|\lambda n^{2} \cos n \theta-\frac{1}{2} n \cot \frac{1}{2} \theta \sin n \theta\right|$. For $n=1$, the maximum is furnished by $\pm \cos n z$ if $\lambda \leqq \frac{1}{2}$ and by ± 1 if $\lambda \geqq \frac{1}{2}$.
(Thus when $\lambda=\frac{1}{2}$ there are two distinct extremal functions in J_{1}.)
If $f(z)$ is an extremal function for \mathscr{L}, so is $f(-z)$; for $n \geqq 3$ the extremal function is unique if not constant, and so it must be even. Again, if $f(z) \neq f(-z)$ and f is an extremal function, $\frac{1}{2}[f(z)+f(-z)]$ is an even ex-
tremal function in any case. Hence to determine the maximum of $\mathscr{L}(f)$ we need consider only even extremal functions f.

We require the following lemma.
Lemma 6. Under the hypotheses of Theorem 1 , if f is a nonconstant extremal function and is either even or odd, and $k=1$, then $f^{\prime}(0)=f^{\prime}(\pi)=0$, and $1-f^{2}$ vanishes at one of the points $0, \pi$ and not at the other.

Let f be a nonconstant extremal function, either even or odd. If $k=1$, the function $1-f^{2}$ has, in a period strip, a single pair of conjugate imaginary zeros, and $f^{\prime}(z)^{2}$ has a single pair of zeros which are not real zeros of $1-f^{2}$. Since these zeros are also zeros of $f^{\prime}(z)$, there must in fact be a single zero of $f^{\prime}(z)^{2}$ of multiplicity 2. Since $f^{\prime 2}$ is even, this zero can only be at 0 or π (otherwise its symmetric point with respect to 0 would be another zero of $f^{\prime 2}$ which is not a real zero of $1-f^{2}$). On the other hand, the zeros of f^{\prime} (since it is even or odd) occur in symmetric pairs except perhaps for zeros at 0 or π. Since one of these points is a simple zero of f^{\prime} and f^{\prime} has an even number of zeros in a period, there must be an odd number of zeros besides the one at 0 or π, hence one at the other of these points. Since there is only one zero of f^{\prime} which is not at a real zero of $1-f^{\prime 2}$, we must have $1-f^{2}=0$ at 0 or at π but not at both of these points.

We now return to extremal functions for $\mathcal{L}(f)$. If $k=1$ and f is an even extremal function, $1-f^{2}$ has (in a period strip) a single pair of conjugate imaginary zeros. Since $1-f^{2}$ is even, these zeros must have real part either 0 or π. Hence we may take $S(z)$ in (3.1) as $c \pm \cos z$, where $c>1$. By Lemma $6, f^{\prime}(z)$ must have a zero at 0 or π (but not both) which is not a zero of $1-f^{2}$. Now if $f(0)=1, f^{\prime \prime}(0) \leqq 0$ and so $\mathcal{L}(f) \leqq \lambda n^{2}$. If $\lambda \geqq \frac{1}{2}$, then, $\mathscr{L}(f) \leqq \mathscr{L}(1)$, so either f is not an extremal function, or f makes $\mathcal{L}(f)$ no larger than $\mathcal{L}(1)$, in which case we do not need to consider f any further. If $\lambda<\frac{1}{2}, \mathscr{L}(f)<\lambda n^{2}<(1-\lambda) n^{2}=\mathscr{L}(-\cos n z)$, so f is not an extremal function. If $f(0)=-1, \mathfrak{L}(f)=-\lambda n^{2}+f^{\prime \prime}(0)$, and since $\left|f^{\prime \prime}(0)\right|<n^{2}$ by Bernstein's theorem (since $\left|f^{\prime \prime}(0)\right|=1$ only for $\pm \cos n z$), we have $\mathscr{L}(f)<n^{2}(1-\lambda)$, and again f is not an extremal function. Hence $f(0) \neq \pm 1$, while $f^{\prime}(0)=0$. Hence we may take $R(z)=A^{2}(1-\cos z)$, where A is real. Thus we have

$$
\frac{f^{\prime}(w)}{\left\{1-f(w)^{2}\right\}}=A \frac{(1-\cos w)^{1 / 2}}{(c \pm \cos w)^{1 / 2}}
$$

Integrating this, we find

$$
\begin{equation*}
f(z)=\cos \left\{A \int_{0}^{z} \frac{(1-\cos w)^{1 / 2}}{(c \pm \cos w)^{1 / 2}} d w+B\right\} \tag{4.2}
\end{equation*}
$$

Consideration of the behavior of the two sides as $z \rightarrow \infty$ through pure imaginary values shows that the + sign can be excluded and that $A= \pm n$. The
integral can be evaluated in terms of elementary functions:

$$
\int \frac{(1-\cos w)^{1 / 2}}{(c-\cos w)^{1 / 2}} d w=-\cos ^{-1} \frac{2 \cos w-c+1}{c+1}
$$

Thus we have

$$
\begin{aligned}
f(z)= & \cos \left\{n \cos ^{-1} \frac{2 \cos z-c+1}{c+1}+B_{1}\right\} \\
= & \cos \left\{n \cos ^{-1} \frac{2 \cos z-c+1}{c+1}\right\} \cos B_{1} \\
& -\sin \left\{n \cos ^{-1} \frac{2 \cos z-c+1}{c+1}\right\} \sin B_{1}
\end{aligned}
$$

Now $\cos n \theta$ is a polynomial in $\cos \theta$, so the first term on the right is a polynomial in $\cos z$. On the other hand, $\sin n \theta$ is of the form $\sin \theta P(\cos \theta)$, where P is a polynomial. Since $\sin \left(\cos ^{-1} t\right)= \pm\left(1-t^{2}\right)^{1 / 2}$, we have

$$
\sin \left\{\cos ^{-1} \frac{2 \cos z-c+1}{c+1}\right\}= \pm 2(c+1)^{-1}\{(c-\cos z)(1+\cos z)\}^{1 / 2}
$$

and this has branch points at the zeros of $c-\cos z$. Hence $f(z)$ cannot be an entire function, and so not a trigonometric polynomial, unless $\sin B_{1}=0$. Thus we finally obtain

$$
\begin{equation*}
f(z)= \pm \cos \left\{n \cos ^{-1}(\omega \cos z+\omega-1)\right\}, \quad \omega=2 /(c+1) \tag{4.3}
\end{equation*}
$$

as the form of an extremal function which is neither $\pm \cos n z$ nor a constant.
Calculating $£(f)$ for (4.3), we find

$$
\pm \mathscr{L}(f)=\lambda n^{2} \cos n \theta-\frac{1}{2} n \cot \frac{1}{2} \theta \sin n \theta
$$

where $\cos \theta=2 \omega-1,0<\theta<\pi$. Since every θ in this range corresponds to some ω, our problem is reduced to the question of whether

$$
\left|\lambda n^{2} \cos n \theta-\frac{1}{2} n \cot \frac{1}{2} \theta \sin n \theta\right|> \begin{cases}\lambda n^{2}, & \lambda \geqq \frac{1}{2} \tag{4.4}\\ (1-\lambda) n^{2}, & \frac{1}{3}<\lambda<\frac{1}{2}\end{cases}
$$

for some θ in $0<\theta<\pi$: for a given λ, if (4.4) holds for some θ, the extremal function for this value of λ is given by (4.3), and the maximum of $\mathcal{L}(f)$ is obtainable by calculating the maximum of the left-hand side of (4.4).

For $\lambda \geqq \frac{1}{2}$, (4.4) holds if there is a θ for which either

$$
\begin{equation*}
-\cot \frac{1}{2} \theta \sin n \theta>2(1-\cos n \theta) \lambda n \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\cot \frac{1}{2} \theta \sin n \theta>2(1+\cos n \theta) \lambda n \tag{4.6}
\end{equation*}
$$

Both (4.5) and (4.6) fail when $n=1$; hence an extremal function for $n=1$ is never of the form (4.3), and the last statement of Theorem 2 follows.

We now suppose that $n \geqq 2$. Inequality (4.6) is equivalent to $\cot \frac{1}{2} \theta \tan \frac{1}{2} n \theta>2 \lambda n$, which is certainly satisfied when θ is slightly less than π / n. Hence for $\lambda \geqq \frac{1}{2}$ and $n>1$ the maximum of $\mathcal{L}(f)$ is attained for a function (4.3), and its value is the maximum of the left-hand side of (4.4).

When $\frac{1}{3}<\lambda<\frac{1}{2}$, (4.4) states that

$$
\begin{equation*}
\left|\lambda n \cos n \theta-\frac{1}{2} \cot \frac{1}{2} \theta \sin n \theta\right|>(1-\lambda) n . \tag{4.7}
\end{equation*}
$$

As $\theta \rightarrow 0$ we have
$\lambda n \cos n \theta-\frac{1}{2} \cot \frac{1}{2} \theta \sin n \theta=n(\lambda-1)+\theta^{2}\left\{\left(\frac{1}{6}-\frac{1}{2} \lambda\right) n^{3}+\frac{1}{12} n\right\}+O\left(\theta^{4}\right)$, so that (4.7) holds if $\lambda>\frac{1}{3}+1 /\left(6 n^{2}\right)$.

To complete the proof of Theorem 2 we now show that $-\cos n z$ is an extremal function when $\frac{1}{3}<\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right)$. We have to show that, when λ is in this interval, and $0<\theta<\pi$,

$$
\begin{equation*}
\left|\lambda n \cos n \theta-\frac{1}{2} \cot \frac{1}{2} \theta \sin n \theta\right|<(1-\lambda) n . \tag{4.8}
\end{equation*}
$$

We shall consider separately the intervals (i) $\theta \geqq 3 \pi /(2 n)$, (ii) $\pi / n \leqq \theta<$ $3 \pi /(2 n)$, (iii) $0<\theta<\pi / n$.

In (i), the left-hand side of (4.8) is at most

$$
\frac{1}{2} \cot \left(\frac{3}{4} \pi / n\right)+\lambda n \leqq 2 n /(3 \pi)+\lambda n=n\left(\frac{2}{3} \pi^{-1}+\lambda\right)
$$

and this is less than $(1-\lambda) n$ since $\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right) \leqq \frac{3}{8} \quad(n \geqq 2)$.
In (ii), $\cos n \theta$ and $\sin n \theta$ are both negative, so the absolute value on the left of (4.8) is at most the larger of $\frac{1}{2} \cot \frac{1}{2} \pi / n, \lambda n$. Now $\lambda n<(1-\lambda) n$ since $\lambda<\frac{1}{2}$; and $\frac{1}{2} \cot \frac{1}{2} \pi / n<(1-\lambda) n$ follows from $\frac{1}{2} \cot \frac{1}{2} \pi / n<n / \pi<$ $n / 3<n(1-\lambda)$, which in turn follows from $\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right)<\frac{3}{8}$.

In (iii), we have to show that

$$
\begin{equation*}
\lambda n \cos n \theta-\frac{1}{2} \cot \frac{1}{2} \theta \sin n \theta<(1-\lambda) n \tag{4.9}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{1}{2} \cot \frac{1}{2} \theta \sin n \theta-\lambda n \cos n \theta<(1-\lambda) n . \tag{4.10}
\end{equation*}
$$

Since $\sin n \theta>0$, we can rewrite (4.9) and (4.10) in the form

$$
\begin{align*}
& \lambda n \cot \frac{1}{2} n \theta-\frac{1}{2} \cot \frac{1}{2} \theta<n \csc n \theta, \\
& \lambda n \tan \frac{1}{2} n \theta+\frac{1}{2} \cot \frac{1}{2} \theta<n \csc n \theta . \tag{4.11}
\end{align*}
$$

Now the second of these implies the first. In fact, is enough to show that

$$
\lambda n \cot \frac{1}{2} n \theta-\frac{1}{2} \cot \frac{1}{2} \theta<\lambda n \tan \frac{1}{2} n \theta+\frac{1}{2} \cot \frac{1}{2} \theta
$$

i.e.

$$
\lambda n\left(\cot \frac{1}{2} n \theta-\tan \frac{1}{2} n \theta\right)<\cot \frac{1}{2} \theta
$$

or

$$
\lambda n \cot n \theta<\frac{1}{2} \cot \frac{1}{2} \theta .
$$

This holds for $\theta<\pi / n$ since $\lambda<1$ and $x \cot x$ decreases in $0<x<\pi$. Hence it is enough to establish (4.11), or equivalently that

$$
\lambda n \tan \frac{1}{2} n \theta<n \csc n \theta-\frac{1}{2} \cot \frac{1}{2} \theta .
$$

Since $\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right)$, it is enough to show that

$$
\begin{equation*}
\left(\frac{1}{3}+1 /\left(6 n^{2}\right)\right) n \tan \frac{1}{2} n \theta<n \csc n \theta \tag{4.12}
\end{equation*}
$$

Now the Laurent expansions of all the functions in (4.12) (about $\theta=0$) are valid in $0<\theta<\pi / n$, and we have (for $n \geqq 2$)

$$
\begin{aligned}
\left(\frac{1}{3}+1 /\left(6 n^{2}\right)\right) n & \tan \frac{1}{2} n \theta=\frac{1}{6} n^{2} \theta+\frac{1}{12} \theta+\left(\frac{1}{3}+1 /\left(6 n^{2}\right)\right) n \sum_{n=2}^{\infty} A_{n} n^{2 n-1} \theta^{2 n-1} \\
& \leqq \frac{1}{6} n^{2} \theta+\frac{1}{12} \theta+\frac{3}{8} \sum_{n=2}^{\infty} A_{n} n^{2 n} \theta^{2 n-1}, \quad A_{n}=\frac{2\left(2^{2 n}-1\right)}{(2 n)!} B_{2 n-1}
\end{aligned}
$$

(the B 's are Bernoulli numbers, the significant thing for our purposes being that they are positive). We also have

$$
n \csc n \theta-\frac{1}{2} \cot \frac{1}{2} \theta=\frac{1}{6} n^{2} \theta+\frac{1}{12} \theta+\sum_{n=2}^{\infty} n^{2 n} C_{n} \theta^{2 n-1}+\phi(\theta)
$$

where

$$
c_{n}=2\left(2^{2 n-1}-1\right) B_{2 n-1} /(2 n)!
$$

(the coefficients in the expansion of csc x), and $\phi(\theta)>0$ (ϕ is the "tail" of the expansion of $-\frac{1}{2} \cot \frac{1}{2} \theta$). Hence (4.12) is implied by

$$
\frac{3}{8} \sum_{n=2}^{\infty} A_{n} n^{2 n} \theta^{2 n-1}<\sum_{n=2}^{\infty} n^{2 n} C_{n} \theta^{2 n-1}
$$

and hence by $\frac{3}{8} A_{n}<C_{n}$, i.e. $\frac{3}{8}\left(2^{2 n}-1\right)<2^{2 n-1}-1$, which is true for $n \geqq 2$.
The point 0 plays no special role in Theorem 2 since $f(z+a) \in J_{n}$ when $f(z) \in J_{n}$. Hence we can replace 0 by any other point in Theorem 2. Applying the more general result to $p_{n}(\cos \theta)$ and to $p_{n}\left(e^{i \theta}\right)$, we obtain the following corollaries.

Corollary 1. If $p_{n}(z)$ is a polynomial of degree $n>1$ and $\left|p_{n}(z)\right| \leqq 1$ for $-1<x<1$, then

$$
\left|\lambda n^{2} p_{n}(x)-x p_{n}^{\prime}(x)+\left(1-x^{2}\right) p_{n}^{\prime \prime}(x)\right|
$$

does not exceed $(1-\lambda) n^{2}$ if $\lambda \leqq \frac{1}{3}+1 /\left(6 n^{2}\right)$, and does not exceed the maximum of $\left|\lambda n^{2} \cos n \theta-\frac{1}{2} n \cot \frac{1}{2} \theta \sin n \theta\right|, 0<\theta<\pi$, if $\lambda>\frac{1}{3}+1 /\left(6 n^{2}\right)$.

The particular cases $x=0, x=1$ are of interest.
Corollary 2. If $p_{n}(z)$ is a polynomial of degree $n>1$ and $\left|p_{n}(z)\right| \leqq 1$ for $|z|<1$, then $\left|\lambda n^{2} p_{n}(z)-z p_{n}^{\prime}(z)-z^{2} p_{n}^{\prime \prime}(z)\right|$ does not exceed the bounds given in Corollary 1 when $|z|<1$.

References

1. R. P. Boas, Jr. and A. C. Schaeffer, Variational methods in entire functions, Amer. J. Math., vol. 79 (1957), pp. 857-884.
2. A. Markov, On a question of D. I. Mendelyeev's, Zapiski Imperatorskoǐ Akademii Nauk (St. Petersburg), vol. 62 (1890), pp. 1-24 (in Russian).

Northwestern University
Evanston, Illinois

[^0]: Received October 11, 1957 ; received in revised form December 3, 1957.
 ${ }^{1}$ Research supported by the National Science Foundation.

