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1. Introduction

For two-point boundary problem, which in vector form my be written

y’ A (x)y -k B(x)y, a <= x <- b,
(1.1)

My(a) --k- Ny(b) O,

Bliss [1] introduced the concept of "self-adjointness under nonsingulr
transformation z T(x)y," and considered in detail a special class of such
problems, termed "definitely self-udjoint." This class of problems includes
the so-called accessory boundary problem for a nonsingular simple integral
problem of the calculus of variations involving no differential equations s
restraints, but includes the accessory problem for variational problem of
Lagrange or Bolz type only in cse very strong normulity conditions hold.
In 1938 Bliss [2] gave new definition of definite self-adjointness with the
involved normality assumption considerably weaker thn in the original
definition, so that the class of problems definitely self-adjoint according to
this modified definition does include the ccessory system for Lugrnge or
Bolz type problem which is normal, but not necessarily normal on the inter-
val of the minimizing urc.

In both the original and modified definitions of Bliss the definiteness prop-
erty of the system is possessed by the mtrix S(x) T*(x)B(x). Subse-
quently Reid [7] considered a boundary problem (1.1) satisfying the conditions
of Bliss [2] uside from the definiteness condition, und with this hypothesis
replaced by suitable condition of definiteness on the functional

f’ y*T*(x) [y’ A (x)y]dx; extension of the results to systems with complex

coefficients ws lso discussed by Reid [7; Section 12]. At boub the sume
time, E. HSlder [5] treated real system (1.1) with B(x) of constant rank on
a <= x <= b, und sutisfying the hypotheses of Bliss [2], with the exception of the
normality condition; through the consideration of related canonical system
of twice the dimension of (1.1), HSlder reduced the determination of normal
solutions for this problem to the solution of a pir of adjoint vector integral
equations, nd thus obtained results on the existence of normal proper vlues
and ssocited expansions in terms of the normal proper solutions of (1.l).
The initial ctivity of the uuthor in the direction of the present pper was

an analysis of the various conditions stisfied by systems (1.1) which are self-
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adioint and definite in the sense of either Bliss [2] or Reid [7]. Results of
this nature were presented to the American M:athematical Society on two
occasions (see Reid [8, 9]), although in neither instance were the results sub-
mitted for publication. The present paper presents extensions and moderni-
zation of this earlier work of the author. Instead of dealing with a system
(1.1) in which the differential equation is solved for the derivative vector
function y’(x), we shall consider a system of the more general form

(1.2)
(x)y’ + Ao(x)y ),B(x)y,

My(a) + Ny(b) O,

a<=x<=b,

with Al(x) nonsingular on ab’a <= x <= b, since for systems (1.2) the results
have certain niceties of character not present for the restricted case (1.1).
In terms of a nonsingular transformation

(1.3) z(x) T(x)y(x), a <- x <- b,

the conditions for (1.2) corresponding to those of Bliss [2] are as follows:
(i) (1.2) is equivalent to its adjoint under (1.3);
(ii) S(x) T*(x)B(x) is hermitian on ab;
(iii) S(x) is nonnegative definite on ab;
(iv) if Aly’ + Aoy O, My(a) + Ny(b) O, and By =- O, then

y 0 on ab.
For (1.2) the conditions corresponding to those of Reid [7] are the above con-
ditions (i), (ii), (iv), while (iii) is replaced by the condition that

y’y’T* [At + Ao y]dx > 0

for arbitrary y(x) satisfying My(a) + Ny(b) O, By O, and for which there
is an associated vector function g(x) such that A y’ + A0 y Bg.

Section 2 is strictly prefatory to the subsequent study of the paper, and
Section 3 is concerned with the basic theorems on the equivalence of two
general systems of the form (1.2) under a nonsingular linear transformation.
Section 4 is an analysis of condition (i) for problems (1.2), while Section 5
deals with systems (1.2) that satisfy (i) and (ii). In particular, the results
of Section 5 culminate in Theorem 5.3, to the effect that whenever (1.2)
satisfies condition (i) with a transformation (1.3), then there is a second trans-
formation z Tl(X)y with which (1.2) satisfies both conditions (i) and (ii),
the matrix A*T1 is skew-hermitian on ab, and the corresponding equivalent
system T[[A y’ Ao y] ,T’By, My(a) Ny(b) 0 is self-adjoint in
the classical Lagrange sense; moreover, if (1.2) satisfies with (1.3) conditions
(i) and (ii), then there is a real constant lc such that T[B ==- l1 T*B on ab.

Section 6 is devoted to an analysis of the normality condition (iv) for prob-
lems (1.2). The principal result of this section is Theorem 6.2, which shows
that if (1.2) satisfies (i) with the transformation (1.3), but condition (iv)
does not hold, then for any associated transformation z T(x) satisfying
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the conditions of Theorem 5.3 described above there is a second system of the
form (1.2) which is "equivalent" to the original system, and such that the
second system with the transformation z Tl(x)y satisfies conditions (i),
(ii) and (iv).

Finally, for systems (1.2) satisfying conditions (i), (ii) with a transforma-
tion (1.3) there is discussed in Section 7 a condition of definiteness that in-
cludes as special cases the above condition (iii) and the modification of this
condition used by Reid [7]. In particular, a problem that is definite in the
sense of Section 7 and satisfies the normality condition (iv) is equivalent to
an integral equation of the type considered by Zimmerberg [15]; also, the
equivalent integral equation for such a problem is a special case of sym-
metrizable transformations considered by Reid [10] and Zaanen [12, 13, 14].
Known results for such definite and normal problems, together with the re-
sult of Theorem 6.2, provide immediate results for a problem (1.2) that is
definite but not normal. In particular, this method of treating abnormal
problems seems decidedly simpler than the procedure employed by HSlder
[5].
Matrix notation is used throughout the present paper. The symbol E

is used for the n X n identity matrix, while 0 is used indiscriminately for the
zero matrix of any dimensions; the conjugate transpose of a matrix M is
denoted by M*. Matrices of one column are termed vectors, and the inner
product z*y of two n-dimensional vectors y, z is denoted by (y, z). The sym-
bol C’ will signify the class of matrices of arbitrary dimensions with elements
which are continuously differentiable functions of the real variable x on the
considered interval ab. Moreover, if y(x), z(x) are n-dimensional vector
functions such that (y(x), z(x)) is integrable on ab, we shall write (y, z} for
the integral (y(x), z(x)) dx.

2. Adjoint boundary problems
In the following it will be assumed that the elements of the n n matrices

A0(x), A(x), B(x) are complex-valued functions of the real variable x on a
given compact interval ab’a <= x <= b, with Ao(x), B(x) continuous,
B(x) 0, and Al(x) nonsingular and of class C’ on this interval. The
elements of the n X n matrices M, N are supposed to be complex-valued, with
the n 2n matrix 11 M N ]1 of rank n. For brevity, the considered two-point
boundary problem (1.2) is written as

(2.1) L[y] B(x)y, s[y] My(a) - Ny(b) O,

where L[y] denotes the formal vector differential operator A(x)y’ - Ao(x)y.
If a complex number is such that (2.1) has nonidentically vanishing solutions
y(x), then h is termed a proper value of (2.1), and any such y(x) is a correspond-
ing proper solution; the dimension i(h) of the linear space of all solutions y(x)
of (2.1) for a proper value h is called the index of as a proper value.
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If L*[z] denotes the formal Lagrange adjoint differential operator

A z - A z A z’ -b A A z
then

(2.2) (L[y], z) (y, L*[z]) =- (A1 y, z)’ for y, z C’,
andconsequently a vector function z(x) e C’ is such that

(2.3) (L[y], z) (y, L*[z]) 0,

for all y(x) e C’ satisfying s[y] O, if and only if t[z] =- P*z(a) - Q*z(b) O,
where P, Q are n X n matrices with the n X 2n matrix P* Q* of rank n
and

(2.4) MA-I(a)P- NA-[I(b)Q O.

Moreover, if M1, N1, P1, Q are n X n matrices such that

]IP P M N -A(a) 0
(2.5)

Q Q MI N 0 A(b)

then the linear forms s[y], t[z], s[y] M y(a)- N y(b), and t[z]
Pz(a) - Qz(b) satisfy the algebraic identity

(2.6) (sly], t[z]) + (sl[y], t[z]) --- (A(b)y(b), z(b)) (A(a)y(a), z(a)).

For a given boundary problem (2.1) the corresponding adjoint boundary
problem is

(2.7) L*[z] XB*(x)z, t[z] =-- P*z(a) q- Q*z(b) O.

If the index of a proper value X for (2.7) is denoted by i*(X), then relations
(2.2), (2.6) imply the following result.

LEMMA 2.1. A constant o is a proper value for (2.1) if and only if o is a
proper value for (2.7); moreover, i(ho) i*(,0).

For brevity, we shall write L[y; ] for L[y]- XB(x)y, and L*[z; ),] for
L*[z] XB*(x)z. If X 0 is not a proper value for (2.1), then for arbi-
trary continuous vector functions g(x) the nonhomogeneous differential sys-
tem

(2.8) L[y 0] g(x) s[y] O,

has a unique solution given by

(2.9) y(x) G(x, t; Xo)g(t) dr, a <= x <= b,

where G(x, t; )o) is the Green’s matrix for the incompatible homogeneous
system

(2.10) L[y; ho] 0, s[y] 0;
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for an explicit determination of the Green’s matrix the reader is referred to
Bliss [1; Section 5]. The following lemma is a ready consequence of Lemma
2.1 and the fact that (2.3) holds for arbitrary y(x), z(x) e C’ satisfying s[y] 0,
t[z] o.
LEMMA 2.2. If X 0 is not a proper value for (2.1), and G(x, t; o) is the

Green’s matrix for (2.10), then G*(t, x; o) is the Green’s matrix for (2.7) with
o.

In view of the above definitions and discussion the following lemma is im-
mediate.

LEMMA 2.3. If U(x), V(x) are n X n matrices which are nonsingular and of
class C’ on ab, while Co, cl are constants with cl O, then for the boundary prob-
lem

(2.11) L0[y; X] U(x)L[Vy; Co + cl ] 0, s0[y] s[Vy] O,

the adjoint is given by

(2.12) L*o[z; ] V*(x)L*[U*z; C0 + h] 0, t0[z] t[U*z] O.

A value o is a proper value for (2.11) of index l if and only ifX Co + ct o
is a proper value for (2.1) of index It; moreover, if o is not a proper value
for (2.11), then the Green’s matrix Go(X, t; o) of (2.11) for o is given by
V-l(x)G(x, t; Co + cl Xo)U-(t), where G(x, t; ) denotes the Green’s matrix

for (2.1).

3. Equivalent boundary problems

Consider a second boundary problem

L[u; X] A(x)u + Ao(X)U XB(x)u O,
(3.1)

s[u] Mu(a) + Nu(b) O,
of the general form (2.1), with the coefficient matrices A(x), A(x), B(x),
M, N satisfying the same conditions as prescribed above for the correspond-
ing matrices of (2.1). Following the terminology of Bliss [1, 2], the system
(2.1) is said to be equivalent to (3.1) under the transformation

(3.2) u(x) H(x)y(x), a <= x <= b,

provided H(x) is a nonsingular matrix of class C’ on ab such that for arbitrary
values a vector function y(x) satisfies the differential equation or boundary
condition of (2.1) if and only if the corresponding u(x) of (3.2) satisfies the
respective differential equation or boundary condition of (3.1). If (2.1) is
equivalent to (3.1) under the transformation (3.2), then clearly a constant
is a proper value for (2.1) of index lc if and only if X is a proper value for (3.1)
of the same index. Now the condition that L[y; ] 0 if and only if
L[Hy; X] 0 is readily seen to be equivalent to the identity

(3.3) L[Hy; ] A(x)H(x)A-(x)L[y; ], a <= x <= b,
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for all values and arbitrary y(x) Ct, while the condition that s[y] 0 if
and only if s[Hy] 0 is equivalent to the existence of a nonsingular con-
stant matrix K such that

(3.4) MH(a) KM, NH(D) KN.

In view of these remarks, and Theorem 4.1 of Reid [6], we have the following
result.

THEOREM 3.1. The boundary problem (2.1) is equivalent to (3.1) under the
transformation (3.2) if and only if H(x) is a nonsingular matrix of class C’
satisfying

AH’ -q- AoH AIHA-iAo O, BH AHA’IB O,
(3.5)

a<x<b

(3.6) MH(a)A-I(a)P NH(b)A-(b)Q O,

where P, Q are n X n matrices with the n X 2n matrix P* Q* of ranlc n and
satisfying (2.4). Moreover, the general solution H(x) of the matrix dierential
equation of (3.5) is H(x) U(x)CY-l(x), where U(x), Y(x) are nonsingular
solutions of the respective matrix differential equations

L[Y; 0] A1 Y’ + A0 Y 0, L[U; 0] AU’ + AoU O,

and C is an arbitrary n X n constant matrix; in particular, if H(x) is a solution

of this matrix differential equation that is nonsingular for some value Xo on ab,
then H(x) is nonsingular throughout ab.

The following theorem is an immediate consequence of the linearity in H
of the conditions (3.5), (3.6), and the fact that (2.1) is equivalent to (3.1)
under (3.2) if and only if (3.1) is equivalent to (2.1) under the transformation
y(x) H-l(x)u(x).

TEOnE 3.2. If (2.1) is equivalent to (3.1) under each of the transformations
u H,(x)y, (o 1, 2), and c, c are constants such that

U(x) c Hi(x) - c U(x)

is nonsingular for some value xo on ab, then H(x) is nonsingular throughout ab,
and (2.1) is equivalent to (3.1) under the transformation u H(x)y. More-
over, if (2.1) is equivalent to (3.1) under each of the transformations u H(x)y,
( 1, 2, 3), then (2.1) is equivalent to (3.1) under the transformation

u Ha(x)I (x)Hl(x)y.

THEOnE 3.3. If (2.1) is equivalent to (3.1) under the transformation (3.2),
and is not a proper value of these differential systems, then the Green’s matrices
G(x, t; ) and G(x, t; ) of (2.1) and (3.1), respectively, satisfy the relation

(3.7) U(x)G(x, t; )Al(t) - G(x, t; )A(t)H(t), a <= x, <-_ b, x t.
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The relation (3.7) is a ready consequence of the identity (3.3) and the defin-
itive solvability property of the Green’s matrix.

4. Problems (2.1) which are equivalent to their adjoints
As a special case of Theorem 3.1 we have the following result on the equiva-

lence of (2.1) to its adjoint (2.7) under a transformation

(4.1) z(x) T(x)y(x), a <-_ x <= b.

THEOREM 4.1. The boundary problem (2.1) is equivalent to its adjoint (2.7)
under the transformation (4.1) if and only if T(x) is a nonsingular matrix of
class C satisfying

(A*T)’ ATA-IAo- AT O, ATA-IB - B*T O,
(4.2)

a<=x<=b,

(4.3) P*T(a)A-l(a)P- Q*T(b)A-[I(b)Q O,

where P, Q are n X n matrices with the n X 2n matrix P* Q* of ran n and
satisfying (2.4). Moreover, the general solution of the matrix differential equation
of (4.2)is T(x) A*-(x)Y*-(x)CY-(x), where Y(x) is a nonsingular solu-
tion of L[Y; 0] 0.

Now if T ToCx) is a nonsingular matrix of class C’ satisfying (4.2),
(4.3), it may be verified readily that T A*l-l(x)T*o(x)A(x) is also a non-
singular matrix of class C’ satisfying (4.2), (4.3), so that by Theorem 3.2 we
have the following result.

COROLLARY. If (2.1) is equivalent to (2.7) under (4.1), then (2.1) is also
equivalent to (2.7) under the transformation
(4.4) z(x) T(x)y(x), a <= x <= b,

where Tl(x) is any matrix of the form
(4.5) T(x) c T(x) - c2 At-(x)T*(z)AJ(z),
with cl c constants such that T(x) is nonsingular for some Xo on ab.

It is to be remarked that (4.3) holds if and only if

(4.3’) MT-(a)A-(a)M* NT-(b)A-I(b)N* O,

a form of the condition that has been used frequently for problems of the
special form (1.1) (see, for example, Bliss [1,2], or Reid [6]).
As an immediate consequence of the definition of equivalence of a problem

(2.1) and its adjoint, one has the following result.

THEOREM 4.2. If U(x), V(x) are n X n nonsingular matrices of class C’
on ab, while Co, c are real constants with cl O, then (2.1) is equivalent to its
adjoint (2.7) under the transformation (4.1) if and only if (2.11) is equivalent
to its adjoint (2.12) under the transformation z U*-(x)T(x)V(x)y.
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Now if (2.1) is equivalent to (3.1) under the transformation (3.2), it fol-
lows from the identity (3.3) that (3.1) is of the form (2.11) with

U-- A HA-[1, V- H-, y u,

and hence the following result is a corollary to the above theorem.

COnOLL.RY. If (2.1) is equivalent to (3.1) under the transformation (3.2),
and (2.1) is equivalent to its adjoint under (4.1), then (3.1) is equivalent to its
adjoint under the transformation

v A.-1(x)H.-(x)A (x) T(x)H-(x)u.

THEOREM 4.3. If (2.1) is equivalent to its adjoint (2.7) under the trans-
formation (4.1), then

(i) o is a proper value for (2.1) if and only if o is a proper value for (2.7),
and o is a proper value for (2.1); moreover,

(ii) if is not a proper value for (2.1), then

T(x)G(x, t; )A(t) - G*(t, x; )A()T(t) O, a

(iii) if y(x), y.(x) are proper solutions of (2.1) corresponding to respective
proper values with . then

(T*Byl, y.) O, (T*L[y], y2) O.

Conclusion (i) follows from Lemma 2.1 and the definition of equivalence
of (2.1) with (2.7), while (ii) is a direct consequence of Lemma 2.2 and Theo-
rem 3.3. In order to establish (iii), it is to be noted that

I(T*By, y) (T*L[y], y2) (L[yl], Ty.);

as s[y] O, t[Ty.] 0, L*[Ty] . B*Ty., and (2.3) holds for arbitrary
y(x), z(x) e C’ satisfying s[y] 0, t[z] O, it then follows that

(T*By, y.} (L[y], Ty}- (y, L*[Ty.]}

(yl, B*Ty} X(T*By,

and (T’Bye, y.} 0 whenever }, .. The final statement of (iii) then
follows from the relation (T*L[y], y) M(T*By, y}.

5. Symmetrizable boundary problems
A boundary problem (2.1) is said to be symmetrizable under a transforma-

tion (4.1) if (2.1) is equivalent to its djoint (2.7) under this transformution,
and the associated matrix S(x) T*(x)B(x) is hermitian on ab. If (2.1) is
symmetrizable under (4.1), then it follows from Theorem 4.1 and its corollary
that (2.1) is also symmetrizable under the transformation (4.4) with

T(x) A*-(x)T*(x)A(x),

and T(x)B(x) -T*(x)B(x) on ab. Now whenever (2.1) is equivalent to
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its adjoint under (4.1), the second relation of (4.2) implies that

T*B B*T (T* + A* TA-{1)B.
As T A- T*A is of constant rank on ab in view of Theorem 4.1 and
its corollary, and B(x) 0 on ab, if (2.1) is symmetrizable under (4.1) then
T A- T*A is singular throughout ab, and the constant rank of this
matrix does not exceed n q, where q is the maximum rank of B(x) on this
interval. Moreover, the above relation implies that (2.1) is symmetrizable
under (4.1) whenever (2.1) is equivalent to its adioint (2.7) under this trans-
formation and AT is skew-hermitian, (i.e., AT --(AT)*), on ab.

THEOREM 5.1. If (2.1) is symmetrizable under a transformation (4.1),
then

(i) for k not a proper value of (2.1) the matrix

KI(x, t; ) S(x)G(x, t; )B(t)

is such that K(x, t; X) K* (t, x; ) for a <= x, <= b, x t;

(ii) if A denotes the linear space of vector functions y(x)e C’ satisfying
s[y] O, L[y] B(x)g(x) with g(x) continuous on ab, then for arbitrary real
constants c, c2 the functional L[y; cl, c2 T] - T*(x)(c L[y] - c B(x)y) is
hermitian on A in the sense that

(5.1) (n[yl ;c, c2 T], y) (y, n[y c, c. T]) for y, Y2 e A.

Whenever (2.1) is symmetrizable under (4.1), it follows from the second
relation of (4.2) and the hermitian character of S T*B that

A TA-B B*T S;

consequently for not a proper value of (2.1) it follows from (ii) of Theorem
4.3 that

KI(x, t; ) B*(x)T(x)G(x, t; k)B(t)

-B*(x)G*(t, x; )A(t)T(t)A-(t)B(t)

B*(x)G*(t, x; )S(t) K(t, x; )

for a =< x, =< b, x t, thus establishing conclusion (i). Now whenever
(2.1) is equivalent to (2.7) under (4.1), relation (3.3) implies that

L*[Ty] A TA-iL[y]

for arbitrary y(x)e C’. If (2.1) is symmetrizable under (4.1) and y e A
with L[y2] Bg, then from the second relation of (4.2) and the hermitian
character of S(x) we conclude that

L*[Ty.] ATAt Bg. B*Tg. T*Bg2-- T*L[y].
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Consequently, if yl, y e A, then

(L[yl o c. T], y2} cl(L[y], Ty2} + c.(Sy y:}

c(yl, L*[Ty2]} + c(y, Sy}

c(y, T*L[y:]) + c(yl, Sy2)

(y, L[y ;cl, c. T]),

thus establishing conclusion (ii).
An important instance of symmetrizable problems is the case of problems

(2.1) that are self-adjoint in the classical Lagrange sense; that is,

L[y; ] L*[y; ]

for all complex values , and arbitrary y(x) e C’, while s[y] 0 if and only
if t[y] O. In terms of the coefficient matrices of (2.1) the conditions of
self-adj ointness are

(5.2) A -A, B B*, A’ Ao- A, a <-_ x <-_ b,

(5.3) MA*-l(a)M* NA*-(b)N* O.

Whenever we refer to self-adjoint problems we shM1 mean self-adjointness in
this classical sense. The following two theorems present the basic relations
between the class of symmetrizable problems (2.1) nd self-adioint problems.

THEOREM 5.2. If (2.1) is symmetrizable under a transformation (4.1) for
which the matrix A(x)T(x) is skew-hermitian on ab, then the boundary prob-
lem T*(x)L[y; )] O, sly] 0 is self-adjoint. Moreover, if there exist non-
singular matrices U(x), V(x) e C’ such that for some real constants Co, c 0
the problem (2.11) is self-adjoint, then T(x)--U*(x)V-l(x) is such that
A(x)T(x) is skew-hermitian on ab, and (2.1) is symmetrizable under the cor-
responding transformation (4.1).

If (2.1) is symmetrizable under (4.1) with A’T skew-hermitian on ab,
then the relation A*T + T*AI 0, together with (4.2) and (4.3’), imply
conditions (5.2), (5.3) for the boundary problem T*(x)L[y; ] O, s[y] 0;
that is, with U(x) T*(x), V(x) E, Co 0, c 1 the problem (2.11)
is self-adi oint.
On the other hand, if U(x), V(x) are nonsingular matrices of class C’ such

that (2.11) with real constants Co, c 0 is self-ad]oint, the conditions (5.2),
(5.3) for this problem (2.11) are equivalent to

(5.4) UA1 V V*A* U*, UBV V*B*U*,

(5.5) V(UA1 V) U(A + Ao V) (V*’A + V*A)U*,
(5.6) MV(a)U*-I(a)A-(a)M* NV(b)U*-I(b)A-I(b)N* O.

Now the matrix T(x) U*(x)V-(x) is nonsingular and of class C’ on ab,
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and conditions (5.4) imply that A’T is skew-hermitian and T*B is hermitian
on ab; in particular, the second relation of (4.2) holds for this T(x). In
turn, the differential equation (5.5) and the skew-hermitian character of
A*T imply that T(x) satisfies the differential equation of (4.2). Finally,
(5.6) is the condition (4.3’) for T U*V-1, thus completing the proof that
(2.1) is symmetrizable under (4.1) with T(x) U*(x)V-l(x).
THEOREM 5.3. If (2.1) is equivalent to its adjoint (2.7) under the trans-

formation (4.1), then there exists a nonsingular Tl(x) of the form (4.5) with
AT1 skew-hermitian on ab, and such that (2.1) is symmetrizable under the
corresponding transformation (4.4), and the boundary problem

(5.7) T’ (x)L[y )] O, s[y] O,

is selfoadjoint; moreover, if (2.1) is symmetrizable under (4.1), then for each
such Tl(x) there is a corresponding nonzero real constant l1 satisfying TB
kl T*B on ab.

If (2.1) is equivalent to (2.7) under (4.1), then the matrix Tl(X) of (4.5)
is such that Tl(a) is nonsingular for

c (1 + i tan )/2, c. (--1-itan

with 0 (2k W 1)7/2, (/ 0, :t:1, ...), and e not a proper value of the
matrix T*(a)AI(a)T-I(a)A*-1(a); by the Corollary to Theorem 4.1 we have
that (2.1) is equivalent to (2.7) under the corresponding transformation
(4.4). For this Tl(x) the matrix A* T is equal to- sec O(eio A* T e- T’A1),

and is therefore skew-hermitian on ab, so that by the comments of the first
paragraph of this section the problem (2.1) is symmetrizable under the corre-
sponding transformation (4.4); moreover, in view of Theorem 5.2 the corre-
sponding problem (5.7) is self-adjoint.
Now if (2.1) is symmetrizable under (4.1), and Tl(x) is any matrix of the

form (4.5) with T1 nonsingular and AT1 skew-hermitian on ab, then T*B
and TB are hermitian on ab. Moreover, by the second relation of (4.2)
we have

TB 1 T*B + 2 ATA-IB 1 T*B B*T (5,1 )T*B,

and since B 0 on ab, it follows that 51 . is a nonzero real constant kl.
In view of Theorem 5.3, for a system (2.1) that is equivalent to its ad-

joint under a transformation (4.1), the general results on the distribution
and properties of proper values and solutions are the same as such results
for a problem (2.1) that is self-adjoint. It isto be noted that without further
hypotheses these results are essentially limited to those of Theorem 4.3.
Indeed, for an arbitrary boundary problem (2.1) and its adjoint (2.7) let
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w(x) (we(x)), (fl 1,..., 2n), with

w,(x) y,(x), w,+,(x) z,(x), (a 1,-.., n),

and consider the corresponding boundary problem in w(x) defined by

L*[z; X] 0, t[z] O,
(5.8)

L[y; k] 0, s[y] O.

If for arbitrary n X n matrices M1, M. we denote by (M1 Ms) the 2n X 2n
matrix

0

M. 0
then (5.8) is of the form

(-A AI)w’ + (A*o AI Ao)w h(B*;B)w,

(P*; M)w(a) + (Q*; N)w(b) O,

and it may be verified readily that (5.8) is self-adjoint. Clearly is a proper
value for (5.8) if and only if h is a proper value for either (2.1) or (2.7), and
the index of ) as a proper value of (5.8) is equal to i(h) + i*(h).

It is to be remarked that if the coefficient matrices of (2.1) are all real-
valued, and (2.1) is equivalent to its acljoint (2.7) under a transformation
(4.1) with T(x) real-valued on ab, then in general the matrix T(x) of Theo-
rem 5.3 may not be chosen real-valued. For typographical simplicity in
the presentation of an example to illustrate this possibility, let E, J, K
denote the 2 ) 2 constant matrices

]11 0 0 1 [[0E= J= K=
0 1 -1 0 1 0

and for arbitrary 2 X 2 matrices M, M., let M - M. denote the direct
sum 4 4 matrix

M 0

o
In order that the boundary problem

(5.9) y’ X(O - J)y, (E - E)y(a) + (K - (-E))y(b) 0

be equivalent to its adjoint under a transformation (4.1), it follows from
condition (4.2) that the 4 X 4 matrix T(x) must be a constant matrix of the
form R R2 with R. of the form e E -t- e J, and condition (4.3’) implies
that R is of the form e3 E e4 K. A corresponding T(x) satisfying the
conditions of Theorem 5.3 is rhea a nonsingular matrix of the form

Tl(x) i(d3 E - d4 K) (idl E - d J)
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with dl, d., d3, d4 real constants, and clearly there is no such T(x) that is
real-valued. In particular, (5.9) is symmetrizable under (4.1) with

T(x) E 4 J,

and for the determination of T(x) as in the proof of Theorem 5.3 the choice
0 r/4 leads to the corresponding skew-hermitian matrix Tl(x) iE - J.

6. Normality and abnormality for problems (2.1)
For the problem (2.1) let A0,0 denote the linear space of vector functions

y(x) which are solutions of L[y] 0 and satisfy s[y] 0, B(x)y(x) =- 0
on ab. The symbol A0,*0 will signify the corresponding linear space for the
adioint problem (2.7), that is, *A0.0 is the totality of vector functions z(x)
satisfying L*[z] O, t[z] O, B*(x)z(x) =- 0 on ab. If A0,0 is zero-dimen-
sional, the problem (2.1) is said to be normal, or to have abnormality of order
zero, whereas if dim A0,0 r > 0, the problem (2.1) is said to be abnormal,
with order of abnormality r, and a vector function y(x) of A0.0 with y(x) 0
on ab is termed an abnormal solution of (2.1). If dim A0,0 r > 0, then
clearly all complex numbers X are proper values for (2.1) with i(h) >= r; in
case i(h) > r the integer i,) i() r is termed the normal index of h as
a proper value for (2.1), and a proper solution y(x) with B(x)y(x) 0 is
called a normal proper solution. Correspondingly, if dim * r*A0,0 > 0, a
proper value h of (2.7) wih i*(h)> r* is said o have normal index
,(h) i*(h) r*.

Let A0 denote the linear space of vector functions y(x) satisfying L[y] O,
B(x)y(x) =--- 0 on ab; similarly, h0* will signify the linear space of vector func-
tions z(x) satisfying L*[z] O, B*(x)z(x) =- 0 on ab. As A0 D A0,0, if A0 is
zero-dimensional, then A0,0 is zero-dimensional also, and (2.1) is normal. Now
(2.4) implies that a vector function y(x) satisfies s[y] 0 if and only if there
is a constant vector $ such that y(a) A-(a)P, y(b) -A-(b)Q . Con-
sequently, if dim A0 p > 0, and /is an n X p matrix whose column vectors
form a basis for A0, then dim A0,0 r 0 is equivalent to the condition
that the (n A- p) X 2n matrix

p* Q*

n* (a)A* (a) -n*(b)A’ (b)
is of rank n -4- p r.

If A1 denotes the linear space of vector functions y(x) satisfying L[y]
B(x)g(x) with some continuous vector function g(x), then from (2.2) we
have that z*(x)A(x)y(x) is constant on ab whenever y(x) A, z(x)e A*o,
and consequently

(6.1) z*(a)Al(a)y(a) z*(b)A(b)y(b) O, for y(x) e A z(x) e A*o
In particular, the boundary condition (6.1) holds for y(x) any proper solution
of (2.).
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It is to be emphasized that in general dim h0,0 dim h0,*o, and dim A0
dim Ao*. For example, for the particular system (2.1) given by

(6.2)
y’l },yl, yl(0) + yl(1) 0,

y. kxyl y(O) y2(1) O,

we have dim A0,0 dim Ao 1, and a basis for A0.0 is provided by the vector
(x) -= (,(x)), (a 1, 2), with l(x) 0, .(x) 1; indeed, for (6.2) each
complex number is a proper value with i(},) 1, in(X) 0. On the other
hand, the system adjoint to (6.2) is

--Ztl X(Zl + XZ2), gl(0) -t- z(1) 0,

--z 0, z(0) z(1) 0,

with dim .4o* 0 and i*(},) 1 i*(X) for all complex ..
If (2.1) is equivalent to its adjoint (2.7) under a transformation (4.1),

however, then dim A0 dim A0*, and dim A0,0 dim A0*.o indeed, for
such a problem it follows from the second relation of (4.2) that y(x) belongs
to A0 or A0,0 if and only if z(x) T(x)y(x) belongs to the respective Ao* or

Ao.o. In particular, if (2.1) is equivalent to (2.7) under (4.1), and
dim Ao,o dim Ao*,o r > 0, then for v(x) an n X r matrix whose column
vectors form a basis for A0,o, the matrix (x) T(x)(x) is such that its
column vectors form a basis for Ao.o, and the (n + r) X 2n matrix

M N

*(a)A(a) *(D)A(b)

is of rank n. Moreover, if a is an n X r matrix such that

*(a)A(a) a*M, -*(b)A(b) a*N,

and r is an n X (n r) matrix of rank n r such that z*r 0, then the
boundary conditions s[y] 0 are equivalent to

-*s[y] O,

z*s[y] *(a)Al(a)y(a) *(b)A(b)y(b) O.

Consequently, if 0, are n X r matrices such that the r X r matrix

O*v(a) 4)*(b) is nonsingular, the boundary problem

L[y; ] O,

(6.3) r*s[y] 0,

O*y(a) + *y(b) O,

is a normal problem. Moreover, since (6.1) implies that a*s[y] 0 for any
proper solution of (2.1), the problem (6.3) is "equivalent" to (2.1) in the
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sense that if y(x) is a proper solution of (6.3) for a value },, then y(x) is a
normal solution of (2.1) for this value h, while if y(x) is a solution of (2.1)
there is a unique r-dimensional constant vector p such that y(x) - v(x)p is a
solution of (6.3). Clearly h is a proper value for (6.3) of index/ if and only
if h is a proper value for (2.1) with normal index i.(h) equal to
The central result of this section is given in the following theorem.

THEOREM 6.1. If (2.1) is an abnormal problem that is equivalent to its ad-
joint (2.7) under a transformation (4.1) for which A*(x)T(x) is slcew-hermitian
on ab, then there exists an equivalent normal problem (6.3) that is equivalent
o its adjoint under the same transformation (4.1).

As (2.1) is equivalent to (2.7) under (4.1), it follows from (4.3’) that the
.coefficient matrices of the adjoint boundary conditions may be chosen as
P T*-(a)M*, Q T*-(b)N*. In the following argument it will be
understood that P, Q are so chosen, and that M, N, P, Q are n X n
matrices satisfying (2.5); in particular, we have

(6.4) -M A-(a)T*-(a)M* - N A-I(b)T*-(b)N* E.

As above, v(x) will denote an n X r matrix whose column vectors form a
basis for A0.0, and will signify an n X r matrix such that

,(a) T-I(a)A*-I(a)M*a, v(b) T-I(b)A-(b)N*a,
while r is an n X (n r) matrix of rank n r such that a*r 0. For
R the n X n matrix defined as

(6.5) R -1/2[M1 T-(a)A-(a)M-N T-i(b)A-I(b)N],

it will be shown that whenever A(x)T(x) is skew-hermitian on ab, the
boundary problem

L[y; ),] O,

(6.6) r’sly] 0,

a*(s[y] Rs[y]) O,

is a normal problem equivalent to (2.1), and (6.6) is equivalent to its adjoint
under the same transformation (4.1). Indeed, relation (6.4) and the skew-
hermitian character of T-(x)A*-(x) imply that the r X r matrix

a*(M T-I(a)A-I(a)M* NI T-(b)A*-l(b)N*)o-
is the nonsingular matrix a’a, thus establishing the normality of (6.6).
Moreover, the skew-hermitian character of A*(x)T(x) implies that the con-

stant matrix R of (6.5) is skew-hermitian, and by direct computation it may
be verified that the coefficient matrices of the boundary conditions of (6.6)
satisfy (4.3r) with the given T(x), thus proving that (6.6) is equivalent to
its adjoint under the same transformation (4.1).
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The above proof of Theorem 6.1 is a direct generalization of the method
that has been used in the case of the accessory minimum problem for ab-
normal problems of Bolza type to determine an equivalent normal problem
of similar type (see Hestenes [4; Section 3], and Bliss [3; Section 81]).

Finally, as a corollary to the combined results of Theorems 5.3 and 6.1 we
have the following theorem.

THEOREM 6.2. If (2.1) is an abnormal problem which is equivalent to its
adjoint under a transformation (4.1), then for an associated transformation
(4.4) with matrix Tl(x) satisfying the conditions of Theorem 5.3 there is
an equivalent normal problem

(6.7) L[y; ] O, s0[y] 0,

that is symmetrizable under (4.4), and the system

(6.8) T* (x)L[y; ] O, s0[y] 0,

is self-adjoint; moreover, if the original problem (2.1) is symmetrizable under
(4.1), then for each such Tl(x) there is a nonzero real constant kl such that

T(x)B(x) kl T*(x)B(x)
on ab.

7. Definite boundary problems
If (2.1) is symmetrizable under a transformation (4.1), and h denotes the

linear space of vector functions satisfying s[y] O, L[y] B(x)g(x) with
g(x) continuous on ab, then for arbitrary real constants c, c. the formal
operator L[y; cl, c.; T) ==- T*(x)(cl L[y] q- c. B(x)y) is hermitian on A in
the sense of (5.1); in particular,

(7.1) I[y; cl c. T] (L[y; c c2 T], y}

is real-valued for y e A. We shall say that the problem (2.1) is definite
[cl, c; T] whenever (2.1) is symmetrizable under (4.1), and for the corre-
sponding T(x) and suitable real constants Cl, c2 the functional (7.1) is posi-
tive for all y(x) e A with B(x)y(x) 0 on ab. It is to be noted that this
condition of definiteness is satisfied vacuously in case B(x)y(x) 0 for all
y(x) A; an example of such a problem is the self-adjoint system

-y2 ),y, y(0) 0,

y 0, y.(1) 0.

For symmetrizable problems (2.1) the condition of definiteness corre-
sponding to that considered by Bliss [1, 2] for problems with real coefficients
is the nonnegative definiteness of the hermitian matrix S(x) T*(x)B(x) on
ab; such systems clearly satisfy the above condition of definiteness [cl, c. T]
with c 0, c. 1. If definiteness [c, c. T] holds with c 0, then there
is no essential additional restriction in supposing that the problem is definite
[1, 0; T], as such is attainable through replacing ), by X c/c in (2.1), and
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the possible substitution of -T or A’-IT*A1 for T. In this connection it
is to be noted that if (2.1) is symmetrizable under (4.1), then by the second
relation of (4.2) we have

L[y; cl c. --T] -L[y; cl c T] L[y; o, c A’[-T*A1]
for y(x) e A. A problem that is normal and definite [0, 1; T] may be treated
by methods similar to those of Bliss [2], while a problem that is normal and
definite [1, 0; T] may be handled by the corresponding method of Reid [7];
in this connection the reader is referred to the comments of Reid [7; Section
13].
Now if (2.1) is definite [c,, c T] and normal, we have {Sy, y} 0 for

all proper solutions of this problem, in view of the relation

(T*L[y], y} ,(Sy, y}

for a proper solution y(x) of (2.1) corresponding to a proper value h. From
conclusion (iii) of Theorem 4.3 it then follows that for such a problem (2.1)
all proper values are real, and therefore at most denumerably infinite in
number as they are the zeros of an entire function

k(h) det [MY(a; ) --k NY(b; },)],

where Y(x; >,) is a fundamental matrix of solutions of L[y; },] 0 with ele-
ments that are entire functions of for fixed x on ab. Moreover, by well-
known methods, (see, for example, Bliss [1, 2]), it may be established that
for such a problem (2.1) the index of each proper value is equal to its mul-
tiplicity as a zero of A(). If (2.1) is definite [c, c. T] and normal, then
for )0 a real number which is not a proper value it follows from conclusion
(i) of Theorem 5.1 that the kernel K(x, t) G(x, l; M)B(I) of the equivalent
integral equation

(7.2) y(x) (h- ho) J G(x, t; ho)B(t)y(t) dt, a <= x <__ b,

is such that the corresponding matrix Kl(x, t) S(x)K(x, t) satisfies

K(x,t) =-- K[(t,x), a <-_ x,t <= b, x# t.

For 5C the Hilbert space of vector functions of integrable square norm on

ab, the theory of the integral equation (7.2) is a special case of linear trans-
formations on 3C to 5C which are completely continuous and fully symmetriz-
able in the sense of Reid [10]; in this connection, see also Zaanen [12, 13, 14].
Indeed, if (2.1) is normal and definite [0, 1; T], then for any real X0 which is
not a proper value the kernel K(x, t) G(x, t; ,o)B(t) of (7.2) and the hermi-
tian matrix S(x) T*(x)B(x) are such that the transformations :/ g
and $ :s Sg on 5C to 5C with respective functional values

(7.3) lc(x) K(x, t)g(t) dt, s(x) S(x)g(x), a <= x <= b,
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are such that is completely continuous, fully symmetrizable by each of
the symmetric transformations S, (p 0, 1, ...), and $2 is nonnegative
symmetric; in particular, if S(x) is a nonnegative hermitian matrix on ab,
then is a nonnegative symmetric transformation.

If (2.1) is normal and definite [1, 0; T], then }, 0 is not a proper value
of (2.1), and for h0 0 the kernel K(x, t) G(x, t; O)B(t) and S(x)
T*(x)B(x) are such that for the corresponding transformations with respective
functional values (7.3) we have that is completely continuous and fully sym-
metrizable by each of the symmetric transformations $, (p 0, 1,...),
while $ is nonnegative symmetric.
For each of the normal definite problems described above, the general re-

sults of Reid [10] or Zaanen [12, 13, 14] provide for the respective integral
equations (7.2) results on the existence and extremizing properties of proper
values, integral expansions of Hilbert type, and convergence in the mean of
associated Fourier series expansions; by a slight additional argument one
may obtain results on the pointwise convergence of the Fourier series expan-
sions. In this connection it is to be commented that the integral equations
(7.2) equivalent to normal definite problems (2.1) involve transformations
which belong to a class of fully symmetrizable, completely continuous trans-
formations for which it is shown in Section 7 of Reid [10] that the spectral
theory may be developed without the use of the general solvability theorems
for completely continuous transformations. Moreover, the results of Reid
or Zaanen are still applicable to (7.2) whenever the above described condi-
tion of definiteness is weakened to the point of requiring (2.1) to be normal
and symmetrizable under a transformation (4.1), while for some real )0 not
a proper value the kernel K(x, t) G(x, t; ho)B(t) and S(x) T*(x)B(x)
are such that for the transformations specified by (7.3) there is a nonnega-
rive integer q for which q is a nonnegative symmetric transformation.
For a direct discussion of certain vector integral equations which include
the above equation (7.2) whenever (2.1) is normal and definite [0, 1; T] or
[1, 0; T], the reader is referred to Wilkins [11] and Zimmerberg [15].
Now suppose that the problem (2.1) is definite [c1, c2 T], but is abnormal.

Let Tl(x) be a matrix of the form (4.5) such that on ab the matrix A[TI is
skew-hermitian and T is nonsingular, and denote by A the linear class A
for a normal problem (6.7) that is equivalent to (2.1) and symmetrizable
under the corresponding transformation (4.4); that is, A consists of all
vector functions y(x) satisfying s0[y] 0, L[y] B(x)g(x) with g(x) con-
tinuous on ab. If y(x)e A then y(x)e A in view of (6.1), and by a direct
computation it follows readily that I[y; c, c2 T] I[y; c/k, c2/l T1],
where k is the nonzero real constant such that T[B l T*B on ab. More-
over, if y(x) e A, then there is an abnormal solution yo(x) of (2.1) such that
y(x) y(x) yo(x) A, and it may be verified directly that

I[yi cl/k c_/k T,.] I[y; cl c2; T].
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Consequently, the condition that the abnormal problem (2.1) be definite
[cl, c; T] is equivalent to the condition that the corresponding normal
problem (6.7) be definite [cl/l1, c2/kl; T]. Application of the above de-
scribed analysis to the normal definite problem (6.7) provides for the original
bnormal problem results on the existence and extremizing properties of
normal proper values, integral expansions of Hilbert type, and convergence
in the mean properties of ssociated Fourier expansions in terms of the nor-
mal proper solutions of (2.1).
For a real boundary problem (2.1) with B(x) of constant rank on ab, nd

which in the terminology of the present paper is symmetrizable under a
transformation (4.1) with T(x) real nd T*(x)B(x) nonnegative definite on
ab, E. HSlder [5] has obtained results on the existence nd extremizing prop-
erties of normal proper vlues, together with associated expansion theorems.
His method of treatment involves the consideration of related canonical
system of 2n linear differential equations and boundary conditions, for which
the determination of normal solutions is equiwlent to the solution of a pair
of adioint n-dimensional vector integral equations. As noted above, the
results of Section 6 on the existence of equivalent normal problems lead to
results for abnormal problems under conditions of definiteness much more
general than that treated by HSlder. Moreover, it is felt that even for the
prticular problem considered by HSlder the method of the present paper is
considerably simpler than that which he employed.
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