
A NOTE ON ALGEBRAIC GEOMETRY OVER GROUND RINGS
The invariance of Hilbert characteristic functions under

the specialization process

We know the following two results on the invariance of Hilbert characteristic
functions of projective varieties or positive divisors on a projective variety
under the specialization process"

(1) J. Igusa has shown in [2] that normal varieties in an algebraic family
have the same Hilbert characteristic function.

(2) T. Matsusaka has shown in [4] that the virtual arithmetic genera of
algebraically equivalent divisors on a nonsingular variety are the same, which
implies that all members of an algebraic family of positive divisors on a non-
singular variety have the same Hilbert characteristic function.
On the other hand the notion and the theory of the specialization were

generalized by G. Shimura, [9], to the reduction of algebraic varieties and
cycles on an algebraic variety with respect to an arbitrary discrete valuation
ring in the ground field. The idea of taking a discrete valuation ring, with
respect to which varieties or cycles on a variety are specialized, is not only
imperative in the case of ’reduction modulo p’ but is also helpful in the equi-
characteristic case, or the case ot ’specialization over a field’ in the algebraic
geometry over a fixed universal domain. When we want to discuss the local
properties of the specialization of a given projective variety V and V-cycles
with respect to a discrete valuation ring v in a ground field l, it is convenient
to assume that v is a discrete valuation ring of rank i which satisfies the finite-
ness condition for integral extensions, and in fact we suffer no loss of general-
ity in this paper by doing so. Furthermore it will be convenient to fix
generic point, P, of V over ]c and to take a model of the function field ](P)
over the ground ring v having V as its underlying projective variety, i.e., the set
of the specialization rings of all specializations of P over v as well as over
This model will be denoted by [V]. The general theory of algebraic models
over Dedekind domains was established by M. Nagata, [6].

In this paper we shall study some local properties of the specialization

Received November 29, 1956.
The Hilbert characteristic function of positive divisor on projective variety will

be defined in Prt II. As for the relation between the Hilbert characteristic function
nd the virtual rithemetic genus of positive divisor on projective vriety we refer
to [11], Prt III (10, 11).

-The finiteness condition for integral extensions is sid to be stisfied by ring v if
every integral extension of v’ of v is finite v-module whenever the field of quotients of v’
is finite lgebric extension of that of v. (See the introduction of [6].)
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process; more precisely we shall observe how the prime ideal of the ground
ring v behaves in the. specialization rings of the model [V] (Part I). In those
terms we shall give a necessary and sufficient condition for a projective variety
(or a positive divisor on a proiective variety) and its specialization to have
the same Hilbert characteristic function (Part II, Theorems 3 and 4). Those
theorems will include results (1) and (2) above. All of our results will be
applicable to reduction modulo p, and result (2) will be generalized in the
sense that the simultaneously specialized ambient variety may have singu-
larities outside the specialized positive divisors.

Patti

First of all we fix an arbitrary universal domain K. Let lc0 be a field in K,
and let v0 be a local ground ring in lc0, that is, either leo itself or a discrete valua-
tion ring of rank 1 which satisfies the finiteness condition. For convenience
we consider the residue field 0 of Vo as a field in another universal domain
in the ease Vo lc0, o is simply an isomorphic image of lc0. Let
(z) (zl, zm) be a set of elements in K and (4) (1, m) a set
of elements in K. We say that (4) is a specialization of (z) over Vo and denote

it by (x) (4) if for every F(X) F(X, ..., X,) in v0[X] such that F(x) 0
we have/P() 0 where/(X) denotes the residue class of F(X) in 0[X]. We
denote by [(x) (4)] the specialization ring of (x) (), that is,

{G(x)/F(x)IG(X) v0[X], F(X) v0[X] and () 0}.

Throughout this paper we shall fix two projective n-spaces S and Nn over
the universal domains K and respectively. Let Z be a positive Sn-cycle
and 2 a positive Nn-cycle. If Z and 2 have the same dimension and the same
degree and if the Chow point C(2) of 2 is a specialization of the Chow point
C(Z) of Z over v0, we say that 2 is a specialization of Z over v0 and denote

this by Z 2. Let k be an extension of k0, that is, a field in K which is
finitely generated over k0, such that Z is k-rational. Then we always have
a local ground ring v in k which is an extension of v0 and over which the same
2 is a specialization of Z. The residue field of v will be considered as an
extension of 0(C(2)) in :. To construct such an extension v of v0 we may
adopt, for instance, the following method" we may assume that C(Z)
(1, Yi ,’’" Yt), C(2) (1, 1 ,’’’, t), and (1, YI, "’", yt) V_%o (1, 1, t).
Let fi, "’", f8 be generators of the ideal of those elements in v0[y] which

are specialized into zero over (y)v__% (). By choosing a suitable index i,

(fi/f, fi/fi) has a (finite) specialization in R: over (y) (), that is, fi is
a nonunit in vo[y, f/fd where (y, f/f) denotes (yl ,’", yt, fl/fi ,’.’, f/f).

See footnote 2.
See [3] and [9].
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Since Z is/-rtional, k0(y) is contained in . If ]c # ]0(y), we take finite
number of elements in k, say (z) (z, z), which generate over k(y)
such that f is still nonunit in v0[y, f/f, z]. Let R be the derived normM
ring of v0[y, f/f, z], nd let p be one of the minimM prime ideMs of fi R.
It follows from Theorem 3, [6], that v R is locM ground ring (stisfying
the finiteness condition). Since p contMns M1 f’s, v is n extension of v0 in

k, nd we hve Z

LEMMA 1. Let v be a local ground ring in a field . Let Z be a -rational

positive S-cycle and 2 an %cycle such that Z 2. Then the point set [2 of
2 coincides with {#e np p for some Re Z] }.

This lemma is true for an arbitrary valuation ring v in k such that Z is

k-rational and Z 2. In [9] it was introduced as definition of specialization
and verified in an implicit way, and it is not hard to give a proof directly by
means of Chow forms associated to the cycles.

LEMMA 2. Let Z be a k-prime rational Sn-cycle and P a generic point of Z
over . Let 2’ be a O-prime rational -cycle which is a component of the special-
ization 2 of Z over a local ground ring v in , and let ’ be a generic point of
over . Then is O-rational, and the coecient of 2’ in the expression of as a
linear combination of -prime rational -cycles is equal to the multiplicity

e(p) of the primary ideal p, where [(P) (’)] and p is the prime ideal
ofv.

Proof. Let 2" be the locus of ’ over the algebraic closure of . Let
be the coefficient of 2" in the expression of 2 as a linear combination of abso-
lutely irreducible S-cycles. We want to prove [O(P’), ] e(p) where
[(’), ], denotes the order of inseparability of (’) over . This will ob-
viously suffice to prove Lemma 2.
We first consider the case when Z has no multiple component, that is, when

k(P) is separably generated over k. We may assume P (1, x, x)
and#’ (1,,...,). Letu (1 j n, 0 i r),r dimZ, be
independent variables over k(P). Put u 1 (0 < i < r)
Similarly let -u (1 j n, 0 i r) be independent variables over

-0and put u j=i -ju(0 i r). Denote [(u, x) (, )] by and

[(u) ()] by , where

(u) (u’0 =<j =< n, 0 =< i =< r) and ()= (’0=<j=<n, 0=< i =< r).

Since the hyperplanes =0 -u Y 0 (0 i r) meetin2 at only one
point ’, is integral over . Hence is a finite -module by the corollary



358 HEISUKE HIRONAKA

to Theorem 2, [6]. Therefore, applying the extension formula (Theorem 2,
[7]) to the overring of , we have

[(P’, )’O()]e(p) [lc(P, u)’k(u)]e(p).

Since lc(P) is separably generated over t, [t(P, u), /(u)] is equal to one.
(/5,, ) is purely inseparable over () and [(/5,, ).()][(%), ], [(/5,).],.
Moreover we can prove that 9 is the ring of quotients of

[u’l =<j-< n, 0 =< i =< r]

with respect to the prime ideal generated by the maximal ideal of , hence
that we have e(p) e(p).
Thus we obtain

(a) [(P’)’O] e(p) [()’], e(pg).

Let U (0 _-< j _-< n, 0 =< i _-< r) be independent variables over I(P), and denote

[(U) v_ ()] by . Similarly let (0 =< j _-< n, 0 _-< i =< r) be independent

variables over O(P’), and denote [() v_ ()] by . Obviously /p
Let F be the Chow form associated to Z, whose coeificients may be chosen

from v and not all from p. Obviously /F 9. Therefore we have
e(p) e((p, F)) e(F) where the residue class F of F modulo p is the
Chow form associated to 2. It is easily verified that [()’], e(:) is equal
to t. The equality (a) implies the lemma.
Next we consider the case when Z has multiple components. The multi-

plicity is equal to [k(P)’k],. Let h be a purely inseparable extension of k
such that h(P) is separably generated over h. The extension of v in h is
unique. We denote this extension by w, and its prime ideal by q. Put

[(x) w_ (4)] . By the above results we have [()’], e(q) t/p
where p" [](P)’/c], and is the residue field of w. We have to prove
[()’], e(q) [()’], e(p)/p. Since h is purely inseparable over ],
:2 is integral over and therefore u finite -module. We can apply the
extension formula to the overring :5 of and obtain

(b) [():O()]e(p) [h(x):k(x)]e(p).

Let qrw pw and s [’]. Then we have e(p) re(q) and

[() :()] s[():],/[():],.
Therefore the left hand side of (b) is equal to

[() ],e(q)
[():],

On the other hnd the right hand side of (b) is equal to

[h: k] e(p) sr e(p).
[(x) :], p
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Thus (b) implies the required equality

[(2)’], e(q) [()’], e(p(C))/p,
nd the proof is completed.
Let V be variety in S, that is, a positive Sn-cycle with no multiple com-

ponents. Assume that V is k-rational and let v be a local ground ring in/.
We denote by I(V) the homogeneous ideal of V in v[Y] v[Yo, Y1, Y];
the homogeneous ideal I(V) of V in lc[Y] is equM to L(V)I[Y], and we hve
I(V) v[Y] L(V). Put v[Y]/L(V) v[y] where each yi is the residue
class of Y and the same notation v is used for the residue ring of v. (The
natural homomorphism restricted to v is an isomorphism.) Let (R) be the
total ring of quotients of v[y]. Let be u prime ideal in v[y] which is homoge-
neous and does not contain all y (0 =< i _-< n). The ring of quotients v[y]
can be imbedded isomorphically in (R). Namely let n, , and ut be the
prime ideals of zero in v[y]. We may assume that there exists a certain index
j such that u if nd only if i _<- j. Then there exists system of idem-
potent elements in (R), e, e, e, such that ee. 0 for i j, e e
and that (e, , et) for 1 =< i _-< t. The kernel of the homo-
morphism of v[y] onto the subring v[y](el + e. -- + e) of (R) is equal to
l= u, so that the total ring of quotients of v[y] coincides with
(el -t- e. -t- -t- e-).
Those elements in v[y] which are homogeneous and of degree zero form

subring of v[y], hence, a subring of (R). We denote this subring of (R) by .
We denote by [V] the set of the subrings of which are obtained as above.
Now we establish some notation and give a lemma which will be useful later
on. Assume y0 e . We use the same notation y0 for its image in v[y].
Then yo is a unit in v[y] and does not satisfy any algebraic relation with coeffi-
cients in. We denote by (y0) the ring of quotients of [y0] with respect
to the prime ideal generated by the maximal ideal of . Let 9.I be an arbi-
trary homogeneous ideal in v[y] such that ?I

____
3. Then we denote 9.lv[y] n

by 9.1. The following lemma can be easily verified.

bEMMA 3. (Y0) v[y] and I(y0) .Iv[y], where (yo) denotes
the ideal in v(yo) generated by ?l and v[Y] the ideal in v[Y] generated by

Moreover we note that the local ring (C) can be obtained as the ring of quo-
tients of v[y/yo] v[yl/yo, y2/yo,’" yn/yo] with respect to the prime ideal
v[y] n v[y/yo], where the same notation yi is used for its image in v[y].
Such a local ring obtained as a ring of quotients of a finitely generated ring
over v will be called a spot over the ground ring v.
Let C be a/c-prime rational Sn-cycle which is contained in V. In the case

that Iv(C)/Iv(V) we shall use either (C)c or to denote the ring .
In this way those spots of [V]v in which the prime ideal of v is a unit corre-
spond in a one-to-one way to the k-prime rational Sn-cycles which are con-
tained in V.



360 HEISUKE HIRONAKA

We denote by [V]k the set of spots each of which is obtained as a subring of
the total ring of quotients of k[y] k[Y]/Ik(V) by taking all homogeneous
elements of degree 0 in k[y] for some homogeneous prime ideal

[V]k is the subset of [V]v which consists of all spots of [V]v in which the prime
ideal of v is a unit.

Let bea variety in such that VV- IF. Wedenote by I() thehomoge-
neous ideal of in v[Y], that is, the ideal in v[Y] generated by all forms F(Y)
whose residue classes R(Y) belong to the ideal I() in 0[Y]. Obviously
I() p[Y] and I()/p[Y] I(I?). We define [I?] in the same way as
we did [V]k. (Note that is 0-rational by Lemma 1.)

Let (?’ be a 0-prime rational n-cycle which is contained in . We shall
use the notation, for when I(’)/I,(V). In this way the 0-prime
rational n-cycles which are contained in I correspond in a one-to-one way
to those spots of [V], ia which the prime ideal of v is a nonunit.

LEMMA 4. Let be a spot which has no zero-divisors. Let be a nonunit

of . Suppose that
(1) r has only one minimal prime ideal m and rm is the maximal ideal

of (C)
(2) /m is a normal local ring.

Then m , and is normal itself.

Proof. Put (C)’ m n [1/r]. Since (C)’ is contained in (C)n for all mini-
real prime ideals in (C), (C)’ is integrally dependent on (C). There-
fore ’ is a finite -module by the corollary to Theorem 2, [6].
Let m’ be a minimal prime ideal of (C). We have (C)’, (C) by
(1). Since r-lm (C)’, ’[1/r] a [1/] (C)’, we conclude that
m’ r(C)’ and (C)’/(C)’ (C)/m. On the other hand (C)’ (C)[l/r], and hence
there exists an integer e _>- 0 such that (C)’

___
(C). Let e be the smallest

integer with this property. We want to prove e 0, that is, (C)’ (C). Sup-
pose e > 0. ’/(C)’ (C)/m implies (C)’ r(C)’ - (C). Therefore -(C)’
r + - (C), which contradicts the minimality of the integer e. Thus
(C)’ and m r(C). Now let be the derived normal ring of . Then

is a finite (C)-module and, by the above results,/ (C)/(C). There-
fore we conclude by Azumaya’s lemma (see 6, [5]).

We say that V (resp. V) is k-normal (resp. O-normal) if every spot of [V]
(resp. []) is normal. We say that V (resp. ) is k-nonsingular (resp.
O-nonsingular) if every spot of [V] (resp. [17"]) is regular. A regular spot over
a ground ring v in/c is said to be v-unramified regular if either it contains/c or
it has a regular system of parameters which includes a prime element of v.

THEOREM 1. Let V be a k-rational variety in S and a O-rational variety

in such that V v_ . Let ’ be a O-prime rational ’-cycle which is contained
in . Then
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(1) The ideal of in the spot (C), of [V]v, that is, (Iv()/Iv(V))(C),, always
coincides with the radical of p(C), where p is the prime ideal of v, and it is equal
to p, if and only ifp, has no imbedded prime ideals.

(2) If the spot of [V] which corresponds to C’ is normal, then the spot (C),

of [V]v is also normal, and p, is a prime ideal. If is O-normal, then every
spot of [V]v is normal, and in particular V is It-normal.

(3) If the spot of [] which corresponds to ’ is regular, then the spot ,
is v-unramified regular. If is O-nonsingular, then every spot of [V]v is v-un-

ramified regular, and in particular V is k-nonsingular.

Proof. (1) Let ’ (1 _-< i =< },) be the distinct O-prime rtionl components
of V.- Then Iv(V)- =lx I(Vi).-’ By Lemma 1, I(’)(1 -< i =< },) are also
the minimal prime ideals of (Iv(V), p)v[Y]. Take an arbitrary component of

containing (’, say I’1. Since the coefficient of in the expression of
is equal to one, there exists only one/c-prime rational component of V, say
V1, such that the specialization of V1 over v contains P, and, by Lemma 2,
p generates the maximal ideal of (C)u. (Observe that if P1 is a generic point

of V over/ and/’ a generic point of ; over, then , [p_v/;].) This
implies that p generates the maximal ideal in the ring of quotients of ,
with respect to ech minimal prime ideal of p-,, that is, with respect to every
prime ideal of (Iv()/Iv(V))-,). The assertions in (1) follow immediately.

(2) By (1) the spot of [] which corresponds to ’ coincides with (C),/n,
where m denotes the radical of p:c,. Since it is normal, m is necessarily a

prime ideal, and p generates the maximal ideal of the ring of quotients of, with respect to n. By Lemma 4, therefore, , is normal and p(C),
m. If is 0-normal, every spot of [V] which corresponds to a -prime rational
n-cycle is normal. But for every/c-prime rational Sn-cycle C which is con-
tained in V, the spot c of [V] is a ring of quotients of , of [V]v which
corresponds to a 0-prime rational component of the specialization of C over
v; hence, c is also normal. Therefore every spot of [V], is normal, and V
is/c-normal.

(3) By assumption ,/m is regular, hence, normal. By (2), m pc,.
Therefore, if the residue classes of elements u, u, .-., and u of (C), form a
regular system of parameters of ,/m, then a prime element of v and u,
u, .-., and u, form a regular system of parameters of rc,, i.e., 5, is v-un-
ramified regular. The last assertion can be proved in the same way as in
(2). We note that a ring of quotients of a regular local ring with respect to
a prime ideal is always regular, [8].

In this paper we need the factorization theorem in regular local rings, but
the uthor does not know any general proof of this theorem even in the case
of v-unramified regular spots. Here we shall give a proof of this theorem
under a certain restriction.

In the cse of equichrcteristic ground ring v every regular (not necessarily v-
unrmified spot over v is fctorizble. (See [1].)
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IEMMA 5. Let notations be the same as in Theorem 1. If C’ contains an
absolutely simple point o , then every minimal prime ideal in (C), is principal.

Proof. Let/5, be a generic point of ’ over . Let w be an extension of v
in an algebraic extension of / such that (/5,) is separably generated over
( the residue field of w). Let (" be the locus of/5, over . We write

(C) instead of (C), and instead of the spot g,, of [V]w. By Theorem 1 (3)
is w-unramified regular. Since the residue field of is separably generated

over , the completion * of is isomorphic to a formal power series over
a complete discrete valuation ring; hence, every minimal prime ideal in *is principal (Corollary to Theorem 2 [1]). The adherence of in * can be
identified with the completion * of (C). Then (C)* is a free (C)*-module of
finite type. In fact, let m be the maximal ideal of (C)*, and let wl, w2, -..,
any w be a set of elements of * such that their residue classes modulo m*
form a base of */m* as a vector space over (C)*/m. Then Wl W2, "’’, and
w generate * over*. Since, [*/’(C)*/m]e(m*) [*’(C)*]e(m)
[*’(C)*] where denotes the maximal ideal of *, we conclude that they
form a free base of (C)* as an (C)*-module.
Now let be an arbitrary minimal prime ideal of (C). We want to prove

that is principal. Since is principal, ~*(C) S (C) , is also princi-
pal, hence, unmixed of rank 1. Let us prove that * is unmixed of rank 1.
Suppose (C)* has a prime ideal of rank greater than 1. Then such a prime
ideal contains an element a e S, and there exists an element b* of * such that
b*e* but ab* ?*. b* = wi b with b e (C)*. Since the wi are
free, ab* ?* implies ab ?* for all i. This says that all b e *"a*(’a)(C)* (C)*. This contradicts the assumption that b*e (C)*. By
this we conclude that * is unmixed of rank 1, and therefore that * is
principal. Furthermore we can take a generator J of * out of , for, if

f* *, thenf f c’ withfe and c e * and each fi d’ f with
* *e Hence idc 1 Since is a local ring, some d must be a

unit in *, and then we may replace f by ft.. Again by means of the free base
of * over * we can prove that if f e and f* * then f(C)* *andf f* n (C) * n . This completes the proof.

Let Z be a positive/c-rational S-cycle which is contained in V and of dimen-
sion dim V 1. We say that Z is a (positive) V-divisor if every/c-prime
rational component of Z contains absolutely simple points of V. We define
and denote by I(Z, V) the ideal of (Z, V) in v[Y] in the following way: Let
Z ,Z whereZ are the distinct/c-prime rational components of Z. Let
/(, Z, V) denote the primary ideal of (I(Z), I(V)) belonging to the
prime ideal I(Z) for each i. Then I(Z, V) I,(, Z V).
The ideal I(Z, V) of (Z, V) in lc[Y] is defined in a similar way; we have

I(Z, V) I(Z, V)lc[Y] and I(Z, V)n v[Y] I(Z, V).

See [10].
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Let 2 be a positive n-cycle such that (Z, v)V-. (2, ?). Hereafterwe assume
that 2 is a positive -divisor. Then we define and denote by Iv(2, ) the
ideal of (2, ?) in v[Y] in the same way as Iv(Z, V), that is,

(z, 9) . (. z., 9)
-! -!

where Z. are the distinct S-prime rational components of 2, 2 3’" Z-
and Iv(3’ 2’j, ?) the primary ideal of (Iv(2})* Iv()) v[Y] belonging to
the prime ideal Iv(2.) for each j. It is easily verified that I(2, )/p[Y]
coincides with the ideal I(2, #) of (2, #) in 0[Y].

THEOREM 2. Let V be a lc-rational variety in S and a O-rational variety in
’. Let Z be a lc-rational positive V-divisor and 2 a positive -divisor such that

(Z, v) v-v- (2, ). Let ’ be a O-prime rational %cycle which is contained in 2.
Let us consider two ideals in the spot , of [V] as follows" one, denoted by I,

is the ideal of 2 in ,, that is, (I(2, )/Iv(V)),; and the other, denoted by, is the ideal which is generated by both the prime ideal p oJ v and the ideal of
Z in (C),, that is, (Iv(Z, V)/Iv(V))(C),.

Then I and 23 have the same minimal prime ideals and the same primary
ideals belonging to the minimal prime ideals, and I coincides with 23 if and only
if 5 has no imbedded prime ideals. Moreover if ’ contains absolutely simple
points of , then ?l coincides with 23.

Proof. First let us consider the case when ’ contains absolutely simple
points of . By Theorem 1 (3) and Lemma 5, , is v-unramified regular
and factorizable. Therefore the prime ideal of Z in (C)5,, that is,

((Z)/(V))-,

is principal; let f be a generator of this ideal. Then it is proved easily that
the ideal of Z in (C)5,, that is, (/(Z, V)/Iv(V))(C),, is equal to (l-Lf)(C)5,.
Therefore the ideal is equal to (If, P)(C)’ and hence unmixed. Thus
we have proved that the last statement of the theorem follows from the first
one. Let us consider the case when ’ is a 0-prime rational component of 2.
We note that every component of 2 contains absolutely simple points of .
Some f in the above reasoning may be units in (C), ;in fact f is a unit in
(C)v, if and only if the specialization 2 of Z over v does not contain (. Here-
after we omit such f. By Lemma 2 the coefficient of (’ in the expression
of 2 is equal to the multiplicity e((p, f)5,/f ,) for each i. Therefore by
the associativity formula (Theorem 8, [7]) we have e((p, IIif*),) is equal
to the coefficient of (’ in the expression of 2. Let ,’ be this integer. Since
the ideal of V in (C)5, is generated by p (Theorem 1 (1)) and the maximal ideal
(Iv(’)/Iv(V))(C)5, is generated by two elements one of which belongs to p, we
can see that the ideal (I(,’’, ’)/Iv(V))(C)5, coincides with (p, If*)(C)5,.
Therefore it is easily verified that ?I and coincide for the 0-prime rational
component ’ of 2. This result shows that for general P in the theorem the
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two ideals [ and 3 have the same primary ideals belonging to the minimal
prime ideals of I, but the fact that 9.I and have the same minimal prime
ideals follows directly from Lemma 1. Thus the proof of the theorem is
completed.

Part II
In this prt we shll discuss wht condition should be imposed on the spots

of [V] in order that the variety V (resp. the V-divisor, Z) and the variety
l7 (resp. the l?-divisor, ) have the same Hilbert characteristic function.
The Hilbert characteristic function x(m) of V is a polynomial in m, whose

value for m sufficiently large is equal to dimdtc[Y]/I(V)],, where
[tc[Y]/I(V)], denotes the k-module of all homogeneous elements of degree m in
k[Y]/I(V). We can prove that

(1) x(m) dim[v[Y]/(I(V), p)v[Y]],,

for m sufficiently large. In fact the v-submodule L(V),,, of v[Y], is of finite
type and torsion free, hence, a free v-module. On the other hand, since
L(V)’p L(V) as is easily seen, v[Y]/L(V),, is also torsion free as well as
of finite type, and therefore it is a free v-module. By choosing a set of ele-
ments in v[Y],,, which forms a free base of v[Y],/L(V),,, modulo/(V) and
by joining them to a free base of/(V), we can make a free base of v[Y].
Let {M1, M2, M,, N1, N2, Nv} be such a free base of v[Y], where
{N, N,} is a free base of I(V),. Then it is easily verified that the set
{M1, M, ..-, M,} forms a free base of /c-module [lc[Y]/I(V)], modulo
I(V) and also of -module [v[Y]/(I(V), p)v[Y]], modulo (I(V), p)v[Y], and
the equality (1) follows.
On the other hand the Hilbert characteristic function xg(m) of V is equal

to dim[f)[Y]/I(f7)], for m sufficiently large, by definition. Therefore we
have
(2) xv(m) dim[v[Y]/L(fz)],
for m sufficiently large.

Next let us consider the case of the specialization (Z, V)v-.(, l?). The
Hilbert characteristic function of the positive V-divisor Z is defined and denoted
by xz.(m) as a polynomial in m whose values are equal to

dim[lc[Y]/I(Z, Y)]
for m sufficiently large, The same reasoning as that used in proving the
equalities (1) and (2) is applicable to verify the following equalities"

(1)* xz.(m) dim[v[Y]/(I(Z, V), p)v[Y]],

for m sufficiently large, and

(2)* x.(m) dim[v[Y]/I(,

for m sufficiently large.

This value is independent of k if V is k-rational.
This value is independent of k if both V and Z are k-rational.



ALGEBRAIC GEOMETRY OVER GROUND RINGS

These results arouse our interest in the relation between the two ideals
(Iv(V), p)v[Y] and Iv() in the former case, and that between (Iv(Z, V), p)v[Y]
and Iv(, ]?) in the latter case.
As for the former case Theorem 1 (2) implies that the two ideals

(I(V), p)v[Y] and I(l) have the same minimal prime ideals and that for
every minimal prime ideal I of them we have (I,,()/’I,,(V)) p, where
(C) is the spot of [V]v which corresponds to the prime ideal I/Iv(V) in
v[Y]/Iv(V). Therefore by means of Lemma 3 we have

Iv()v[Y] (Iv(V), p)v[Y],

and ve can express the general relation between the two ideals by writing

(Iv(V), p)v[Y] Iv(V) J

with u homogeneous ideM J in v[Y] every prime ideal of which is properly
imbedded in some of the prime ideals of Iv(V). The equalities (1) and (2)
imply that we huve x,(m) x(m) if nd only if [(Iv(V), p)v[Y]], Iv(?),
for m sufficiently large, or equivalently (as is easily verified) if and only if the
ideM J is irrelevant in the sense that J contuins all monomiMs in Y’s of suffi-
ciently large degree.

THEOREM 3. Varieties V in S and ff in -S such that vV-- ?, have the same
Hilbert characteristic function if and only if the prime ideal p of v generates an
unmixed ideal in every spot of [V]v. Moreover if is -normal, then V and ff
have the same Hilbert characlerislic function, and V is to-normal.

Proof. Put v[y] v[Y]/Iv(V), and let us take an arbitrary homogeneous
prime ideal in v[y] which does not contain all the y’s. Then, by means of
Lemma 3, p is unmixed if and only if pv[y] is unmixed. Therefore p
generates an unmixed ideal in every spot of [V] if and only if pv[y] is unmixed
for all such . It is now easily seen that the previous result implies the first
assertion of the theorem. The last half of the theorem follows directly from
Theorem 1 (2).
Now let us consider the latter case, that is, the case of the specialization

(Z, V) (2, ). Theorem 2 implies that the two ideals (Iv(Z, V), p)v[Y]
and Iv(2, ) have the same minimal prime ideals and that for every minimal
prime ideal I of them we have (Iv(2, )/I(V)) (Iv(Z, V)/I(V), p)),
where is the spot of [V]v which corresponds to the prime ideal I/Iv(V)
in v[Y]/Iv(V). Therefore by means of Lemma 3 we have

I(2, P)[Y], (I(z, V), p)v[Y]r,

and we have the general relation

(L(Z, V), p)v[Y] I(2, ) a J*

with a homogeneous ideal J* in v[Y] each of whose prime ideals is properly
imbedded in at least one of the prime ideals of Iv(2, if). The equalities
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(1)* and (2)* imply that we have xz, v(m) xg,v(m) if and only if the ideal
J* is irrelevant.

THEOREM 4. A positive V-divisor Z in S and a positive V-divisor Z in

S such that (Z, V) V-- (2, ), have the same characteristic function if and only
if the prime ideal p of v and the ideal of Z generate an unmixed ideal in every spot
of [V]. Moreover if 2 does not contain any singular point of (in the absolute
sense), then they have the same Hilbert characteristic function, and Z does not
contain any singular point of V.

Proof. The same reasoning as that used in the proof of Theorem 3 is
applicable to prove this theorem. Namely, for every homogeneous prime
ideal of v[y] which contains I(2, )/I(V) but does not contain all the y’s,
p and the ideal of Z generate an unmixed ideal in the spot of [V], if and
only if (I(Z, V)/I(V), p)v[y] is unmixed. Therefore the previous result
implies the first assertion of the theorem. The other assertions of the theorem
follow from Theorem 2 and Theorem 1 (3).
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