
REMARKS ON QUASI-FROBENIUS RINGS

BY
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The theory of Frobenius or quasi-Frobenius rings has, from the start, been
connected with the idea of "duality". But in most papers on that theory,
by "duality" one understands, either the lattice-theoretic duality [1], [10],
or, when the ring A under consideration is an algebra over a commutative
ring K, the duality of K-modules [3], [8]. Actually, it seems to me that the
kind of duality which is most closely related to these questions is the duality
of A-modules; and I propose to show in this paper how very elementary con-
siderations of duality theory can simplify and unify many known results on
quasi-Frobenius rings, and give new characterizations for these rings.

2. Modules with perfect duality
By a ring I will always understand an associative ring A having a unit ele-

ment 1; all A-modules are supposed to be uaitary. The elementary theory of
duality [2, 4] associates to each left (right) A-module E its dual E*, which is
a right (left) A-module; further, to every submodule M of E (resp. E*) is
associated its orthogonal M, which is a submodule of E* (resp. E); one has the
trivial relations"

(i) MNimpliesN M, (M+N) MnN;
(ii) MMoo M M.

In addition, the theory defines
(iii) natural homomorphism E -- E**;
(iv) a natural isomorphism (ELM)* M;
(v) a natural monomorphism E*/M --+ M*,

M being an arbitrary submodule of E; moreover,
(vi) if E is a direct sum M1 + -k M, E* is naturally identified to

the direct sum M M* (M being identified by (iv) to the ortho-
gonal of .i M.).

Finally, if A8 (resp. As) is A considered as left (resp. right) A-module,
(vii) (As)* As, (As)* A,

Received November 14, 1957.
Added in proof. After this paper was written, Professor A. Rosenberg kindly drew

my attention to the following paper which I had overlooked:
K. MORIT_ AND H. TACHIKAW-, Character modules, submodules of a free module, and

quasi-Frobenius rings, Math. Zeit., vol. 65 (1956), pp. 414-428.
In that paper, the authors study the quasi-Frobenius rings from the point of view

of duality of A-modules, and prove a slightly weaker version of result (3.4) below (they
assume that the duals of simple A-modules are simple), by essentially the same argu-
ments as nine.
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and for a left ideal (resp. a right ideal r) of A, (resp. r) is the right an-
nihilator r(1) (resp. the left annihilator l(r)).

In the "best" cases, e.g. for finite-dimensional vector spaces, we have in
addition-

(A) E -- E** is an isomorphism;
(B) E*/M--- M* is an isomorphism for any submodule M E;
(C) MOO M for any submodule M c E;
(D) (M n N)= M+ N for any pair of submodules, M, N of E.
We are therefore led to evaluate the "perfection" of modules with respect to

duality theory by the extent to which these four properties are satisfied. This
leads to a variety of problems, of which we only mention the two following
ones:

(I) Let us say that a given module E has perfect duality if properties (A),
(B), (C), and (D) hold for E and for its dual E*. Find all modules with per-
fect duality.

(II) Let be a category of A-modules, such that every submodule and
every quotient module of a module of a is still in a, and in addition the
dual of any module of belongs to . Find all categories a consisting of
modules with perfect duality.
We will only be concerned with a special case of problem (II). But before

we go into the details, it may be worthwhile to observe that there are logical
connections between properties (A), (B), (C), and (D), and also (when (A)
holds) between these properties and the corresponding ones for E*, which we
write (B*), (C*), and (D*). To begin with:

(2.1) Condition (B) implies condition (D).

This has been proved by Ikeda-Nakayama [13, p. 16], when E
and their proof extends at once to the general case: if xre (M n N),
the mapping x - y-- (x, x} is a well defined linear form on M -[- N
(x e M, y e N); hence by assumption there is y e E* such that (x -[- y, y}
(x,x} for xeM and yeN; if we take x= 0, we obtain yeN and y 0
yields x yr M0; hence x e M + N, Q.E.D.

Condition (D) implies neither (B) nor (C), even when (A) also holds: a
trivial counterexample is provided by taking E A8, A being a commutative
domain of integrity other than a field (for instance a principal ideal ring).
I do not know if (C) implies (D) or not.

In the theory of quasi-Frobenius rings, examples turn up showing that
(C) does not imply (B) (even when (D) also holds) [Ii, p. 48]. Ikeda-Naka-
yama [13, p. 16] have shown that for E As, (B) implies (C*) when A is
noetherian. But it is possible to give examples of commutative rings where
(B) holds but not (C) it is not hard to see that we obtain such a ring by tak-
ing an infinite product (= "complete direct sum") of fields.

Properties (B) and (C) (hence also (D)) may hold without (A) being valid,
as the example of infinite-dimensional vector spaces shows.
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A well-known [4, Theorem 4.5] and fairly obvious result (by (i) and (ii)) is:

(2.2) If both conditions (C) and (C*) are satisfied, so is (D) (and (D*)).

We have seen above that (B) and (B*) may be both satisfied, but neither
(C) nor (C*). The major unsolved problem in this connection is whether
both conditions (C) and (C*) (under the assumption that (A) holds) imply
perfect duality.

(2.3) (a) If (B*) and (C) are satisfied, then (A) holds for every quotient
module of E.

(b) If (A) holds for every quotient module of E, then (C) is satisfied; if in
addition (C*) is satisfied, then so is (B*).

(c) I (A) holds for every quotient module of E and every quotient module
of E*, then E has perfect duality.

(a) follows at once from the definitions and from (iv). Conversely it is
readily verified that the natural homomorphism of ElM into (ELM)** is the
natural homomorphism E/M-- ElM; in case (b), the assumption thus
implies Moo M and (M)* E/M; if in addition (C*) holds, then any sub-
module of E* has the form M, and (B*) is satisfied. The conclusion of (c)
is then obvious.
The converse of (2.3.c) follows from the definitions, and in addition (A)

holds for all submodules of E and E*; but this last condition by itself implies
none of the others, as the example E A,, A a principal ideal ring, shows
again.

Finally, let us consider the following condition (see [7, p. 455] and [3, p. 14]):

(N) For any pair of submodules M, N of E such that N M and N M
the dual (M/N)* is not reduced to O.

Then

(2.4) Conditions (B) and (N) imply (C).

Let M be a submodule of E. Its dual is then identified to E*/M by (B);
so is the dual of M. But in E*/M, considered as the dual of M, the ortho-
gonal submodule of M is M/M {0}; hence the dual of M/M is reduced
to 0; condition (N) then implies that Moo M.

3. Finitely generated modules with perfect duality
For ny ring A, there are lways A-modules which do not hve perfect dual-

ity, for instance the direct sum of infinitely many copies of A,. This leads
us to consider the category (](A) offinitely generated A-modules (left or right);
to be a category in the sense introduced in 2, one has of course to suppose
that A is both left and right noetherian. Then any module of ((A) is iso-
morphic to a quotient A/R (or A/R) and therefore its dual is isomorphic
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to the submodule R of A (resp. A) and hence belongs also to (A).
The main result of this section is then:

(3.1) In order that all the modules in s(A) have perfect duality, it is neces-
sary and sucient that A be a quasi-Frobenius ring.

The necessity is of course obvious, by applying (C) to A8 and As. Most
of the sufficiency part of the theorem is known: that conditions (C) and (C*)
hold is substantially the Hall-Nakayama theorem ([4, Theorem 5.2] and [9,
Theorem 12]); and (B) has been proved for the case E A8 by Ikeda and
Nakayama ([6], [13]). We will not use any of these theorems, but give
very elementary proof which needs no structure theory, and which starts
from very much weaker assumptions than the properties (C) and (C*) for
E=A.

In what follows, we suppose (unless the contrary is explicitly stated) that
A is a left and right artinian ring (i.e. satisfies both minimal conditions).
We consider the following conditions:

(cs) Every minimal left ideal in A satisfies I.
(ca) Every minimal right ideal in A satisfies r r.
(ms) The dual of any simple left A-module has length =< 1.
(ma) The dual of any simple right A-module has length -< 1.
We first observe that

(3.2) Condition (ca) implies condition

Indeed any simple left A-module is isomorphic to a quotient A/m, where
ra is a maximal left ideal; its dual is therefore isomorphic to m. If m had a
length >=_ 2, it would properly contain a minimal right ideal r; hence
r moo . m, and therefore r A, or r m; but as r r by assumption,
both conclusions contradict the definition of v; hence m has length =< 1.
In what follows, we will denote by (E) the length of a (left or right) A-

module E.

(3.3) Let A be an arbitrary left artinian ring, and suppose the dual or any
simple left A-module has length <= It. Then for any left A-module E of finite
length, (E*) <= to. (E).

The proof is by induction on n h(E), the result being true by assumption
for n 1. Let M be a nontrivial submodule of E; then ),(M) < n and
h(E/M) < n; hence by (iv) and the inductive assumption, },(M) =< kh(E/M),
and by (v) and the inductive assumption, h(E*/M) <= h(M*) <= /.(M);
hence (E*) (M) z7 (E*/M) <= l((E/M) - (M)) tc.(E).
Our strengthened version of (3.1) is then the following one:

(3.4) Consider (for a left and right artinian ring A) the three conditions
(ms), (ma), and

(e) the modules A and As have the same length.
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Then any two of these conditions imply the third and imply that the modules
in (A) have perfect duality.

If (m) and (m) are both satisfied, then it follows from (3.3) that

h(E*) _-< , (E)
for ny (left or right) module E in a](A); in prticulr h(A) h(A), i.e.
condition (e) holds.
Suppose then that (m) nd (e) re stisfied, nd consider n rbitmry left

A-module E of finite length; it is isomorphic to quotient A$/R. By (3.3)
nd (m) we have h(R) _-< h(A/R) nd h(A/R) <= h(R*) <- h(R); however
(A) (R) q- (A/R) <= (A/R) - (R) (A) (A), hence

X(E*) X(R) X(A/R) X(E).

If we apply this to any quotient module ElM of E, we get

(M) (E/M) (E) X(M),

and if we apply the same result to M, we have by (v) h(E*/M) <= h(M*)
h(M), and as h(E*) ),(E), this implies (E*/M) ,(M*) h(M);
hence M* E*/M, i.e. condition (B) is satisfied. On the other hand the
equality ),(E*)= h(E) shows that condition (N) of 2 is also satisfied;
hence by (2.4) condition (C) holds. In particular (cs) is satisfied, hence also
(md) by (3.2). But we can now exchange A8 and A in the previous argu-
ment; hence ,(E**) h(E*) (E); furthermore, (C) applied to the sub-
module 0 of E yields (E*) 0 }, and (E*) is the kernel of the natural map-
ping E-- E**; this mapping is thus injective, and the relation ,(E**)
(E) shows that E** E, which ends the proof.
As a corollary, we have immediately:

(3.5) For any module E in s(A), where A is a quasi-Frobenius ring, the
centralizers of E and E* are inverse isomorphic rings.

We have only to observe that as E** E, the transposition u --* tu is a
bijection of the centralizer of E onto the centralizer of E*. This generalizes
a result of Nakayama for simple A-modules [8, pp. 620-621].

4. Study of conditions (ms) and (N)
Using now much more structure theory and previous results of Nakayama

and Ikeda, we turn to the study of rings in which (ms) alone is satisfied. Our
goal is to prove that

(4.1) An algebra offinite rank which satisfies (ms) is a quasi-Frobenius ring.

We will reach this by a series of intermediate results, some of which have
independent interest (and in which we do not suppose that A is an algebra).
We denote by 9 the radical of A, by 9 (resp. ) the right (resp. left) socle of
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A, which, as is well known, is the left annihilator l() (resp. the right annihila-
tor r()).

(4.2) The following properties are equivalent:
(a) Condition (N) holds for any left A-module of finite length.
(b) The dual of any simple left A-module is not reduced to O.
(c) () .
(d) For any simple left A-module M, there is a minimal left ideal in A iso-

morphic to M.

It is obvious that (a) implies (b). Conversely, if (b) is satisfied and E is
any left A-module of finite length, M a maximal submodule of E, then the
dual of ElM is not reduced to 0, hence M {0} by (iv), and afortiori
E* [0}. To prove that (c) implies (b), suppose (b) is not verified. Con-
sider the semisimple ring A/, which is the direct sum of minimal two-
sided ideals ak (1 =< /s r); denote by ak the inverse image of 8 in A; as a left
A-module, a/ is a direct sum of isomorphic simple A-modules, and any
simple left A-module is isomorphic to a simple submodule of one of the .
Our assumption implies by (vi) that the dual of one k is [0} hence (again by
(vi)), the dual of As/ is the direct sum of the -*ah for h /, and therefore

is orthogonal to (As/)*; however, by (iv), (A,/?)* is identified to
r(9), and hence a is contained in the left annihilator/(); in other words

(c) does not hold.
Conversely, suppose (b) is satisfied; then none of the -*ak is reduced to 0,

-$
and their direct sum is ; furthermore, if b hs ah, ak is identified (by
(vi)) to the right annihilator r(b,)c . Now suppose l() ; as l()
is a two-sided ideal, it would contain one of the a, and hence * would be in
the right annihilator of both a, and b, however, as A ak - b,, this im-
plies *- {0}, contrary to assumption.

It is almost immediate that (d) implies (b), for the annihilator of a mini-
mal left ideal cannot be equal to A; hence (by (v)) the dual of is not reduced
to 0, which proves (b). Conversely, there is in ak an idempotent u. such that
its class k mod is the unit element of the simple ring ,, and 1 --1 u,
moreover, uk is the foot of the left socle consisting of the sum of all minimal
left ideals isomorphic to a simple submodule of a condition (c) implies that
u /0} for any k, and therefore (c) implies (d).
We will denote by (N) any one of the four equivalent conditions of (4.2),

by (Na) the corresponding condition for right A-modules.

(4.3) The condition 9 implies (N).

Indeed, if condition (N) were not satisfied, the right annihilator of one of
the a would contain , hence also 9. However, we have a Auk, and
therefore r(ak) (1- u)A; hence would be contained in (1- u)A;
but the right ideal u A contains a minimal right ideal, and this brings a con-
tradiction.
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Observe that one of Nakayama’s examples [11, p. 49] shows that 9 c 9
is not a necessary condition for (Ns). On the other hand, it is easy to form
examples in which only one of the two conditions (Ns), (Nd) is satisfied" such
is the algebra A over a field K, having a basis consisting of the unit 1 and two
elements u, v, with u u, uv v, v vu 0 as multiplication table;
we have here Kv 9 , and Ku Kv; (N) is satisfied, but
r() 9 .

(4.4) Condition (m) implies , and both conditions (N) a (N).

Decompose A into direct sum of indecomposable right ideals e A
(1 k r, 1 i f() for ech ), the classes rood forming a system of
primitive orthogonal idempotents in A, and the e A which correspond to
the same value of being isomorphic to each other. It is clear that l(e)
contains the maximal left ideal A(1- e)W ; by condition (m,),

r(l(e )) e

has length 1; hence e is 0 or a minimal right ideal; therefore

9 .e
is a sum of minimal right ideals;in other words . This already implies
(N) by (4.3). Now consider a maximal right ideal in A; by (iv) and (N),
the left ideal u is not reduced to 0, hence contains minimal left ideal I.
As cannot be equal to A and contains , u; conditions (m) and (v)
then imply that the dual I* is isomorphic to A/u. However, there are r
nonisomorphic simple right A-modules A/; hence there are also r noniso-
morphic minimal left ideals in A, and by (4.2.d), this proves condition (N).

Conditions (N) nd (N) show that none of the feet u 9, u of the two
socles is reduced to 0; moreover it follows from the proof of (4.4) that each
u is contained in one of the feet of , which we will denote by u),
v being a permutation of the integers r; this implies of course u u).

Proof of (4.1). Denote by d the dimension (over the field of scalars) of
the simple A-modules and . As each simple right A-module e
is contuined in u), it is isomorphic to ),; hence the dimension of
u is f()d(). 0n the other hand, u 9 u() is the direct sum of the
left submodules e(). (1 j f(v(lc))); these modules are isomorphic
(since the Ae(), are); hence none is 0, and each contains therefore a simple
lef A-module isomorphic to computing the dimensions of these modules,
we obtain the inequality

f(()) d f() d(),
or equivalently

d/f() d()/f(()).

As is a permutation, we must have equality. This implies that each
e is minimal left ideal; however, it follows from a theorem of Nakayam
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[11, p. 45, Theorem 1, where left and fight are exchanged] that an algebra
having that property is quasi-Frobeniusean.

I have not been able to decide whether, when A is not an algebra, condition
(ms) implies equality of the two socles, nor whether, when we assume both
(m.) and 9 9, condition (Cd) follows. Examples of Ikeda [5] show that a
ring may verify (co) without being a quasi-Frobenius ring.

5. A criterion for Frobenius rings

Following Nakayama [9, p. 8], we define for a simple (left or right) A-mod-
ule M the colength of M as the dimension of M considered as a vector space
over its centralizer (which is a sfield); then, for any A-module E of finite
length, we define the colength hr (E) as the sum of the colengths of the quotients
in a Jordan-HSlder sequence of E; it is then clear that for every submodule M
of E, ’(E) h’(E/M) + h’(M), and that },’(M) ’(E) if and only if
M E. With the help of these formal properties, similar to those of the
length, we can prove the following counterpart of criterion (3.4)"

(5.1) Consider the three conditions"
(mrs) For any simple left A-module M, )’(M*) <-_ h’(M).
(m) For any simple right A-module M, )(M*) <- k(M).
(e’) The modules A8 and Ad have the same colength.
Then any two of these conditions imply the third, and imply that A is a Fro-

benius ring and that )(E*) h’(E) for any A-module of finite length.

The first part of the proof consists in replacing by ), in the argument of
(3.4), up to the point where condition (C) is proved for any left A-module of
finite length. In particular (cs) holds, and then it follows from results of
Ikeda [5] that 9; the dual of the minimal left A-module 2: is then iden-
tified with ek 9, and hence is semisimple and sum of simple A-modules iso-
morphic to ().1 2:; but the colength of 2:kl, equal to that of 2:, is f(/c);
as the relation ’(E*) h’(E) is valid for any left A-module of finite length,
we have f(r(k)) -< f(/) by applying that relation to A. As is a permuta-
tion, this again implies that f(v(k)) f(/c) and that each e is a minimal
right ideal; in other words (ms) holds; as (m) also holds, A is a quasi-Fro-
benius ring, and the relation f(r(k)) f(l) shows that it is a Frobenius ring.
As (m) is then satisfied, the relation ’(E*) )’(E) holds for any right A-
module of finite length by the first part of the proof.

Similarly,

Actually Ikeda states the result without proof, but it is very easy to supply a simple
proof" if r is a minimal right ideal, r0 must be a maximal left ideal" otherwise, it would
be strictly contained in a maximal left ideal m, and by (3.2) and (4.4), m is a minimal
ight ideal contained in r00 r, hence equal to r; as moo m, we reach a contradiction.
Now any maximal left ideal in A contains one of the b, hence 00 is contained in
one of the feet u of , i.e. .
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(5.2) Let A be an algebra of finite ran over a field K. Consider the two
conditions"

(m:) For any simple left A-module M, dim (M*)=< dim (M).
(m) For any simple right A-module M, dim (M*) =< dim (M).
These two conditions are equivalent, and they imply that A is a Frobenius al-

gebra and that dim (E*) dim E for any A-module of finite length.

We suppress the proof, which is even simpler than that of (5.1), owing to
(4.1).
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