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1. Introduction

The numerical solution of Poisson’s equation in two dimensions hs, with
the dvent of large-scle computers, ttrcted gret del of interest in recent
years. Most of the literature concerns itself with the convergence of the
finite difference equation approximation [1] or with itertive methods of p-
proching the numerical solution [2], lthough some discussion hs been given
by Hymen [3] on the exact solutions of Poisson’s difference equation.

This pper presents a practical method for directly obtaining the exact
solution of the usual difference equation that pproximtes the solution of
Poisson’s equation. The method, s developed here, pplies to problems
defined on rectangle or rectangular strip, nd therefore lso to problems
defined on regions which my be conformlly mpped onto rectangle or
rectangular strip. It consists of the following procedure: (a) deriving an
expression for the exact discrete Green’s function stisfying the required
boundary conditions, (b) evaluating this function numerically, nd (c) ap-
plying this function to obtain the desired solution of the difference equation.

This method is currently being used on the IBM 704 computer to obtain
the solutions of certain time dependent vector field problems. These prob-
lems require the solution of two-dimensional Poisson’s equation t ech
time step.

In general, the use of the Green’s function method is most dvntgeous
when mny solutions of the difference equation re required with the sme
boundary conditions, but with different inhomogeneous prts. A specific d-
wntge of the Green’s function method, as compared with itemtive methods,
is that a definite high degree of ccurcy of the solution of the difference
equation is obtained in predetermined sequence of rithmetic operations.
An dditionl dvntge is that the method my be employed to obtain the
solution in only that portion of the total region for which it is desired. On
the other hnd, in mny cses, prticulrly those problems for which modest
accuracy suffices, the itertive methods will yield n pproximte solution
fter fewer total number of rithmetic operations.
The Green’s function is the inverse of mtrix whose elements are given by

the coefficients of the difference equation nd the boundary conditions, nd
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the method could be derived and applied in matrix language without mention
of the concept of a Green’s function. However, the use of the Green’s
function concept and the consequent manipulation of difference operators in
analogy with the methods of partial differential equations seems to greatly
simplify the derivation and exposition of the method. In particular, it leads
naturally to the full exploitation of the special properties of the system of
difference equations. Practically, the use of a matrix inversion routine, such
as one based on the method of yon Neumann and Goldstine [4], would use
much more computer time, as indicated in Section 7, and result in a much
greater round-off error than the numerical evaluation of the expressions
derived in this paper, as demonstrated in Section 5.
In Section 2, a brief discussion is given of the origin of the discrete prob-

lems solved in Section 4. A general mathematical description of the discrete
Green’s function method and its relation to matrix methods is given in Section
3. In Section 4, the Green’s functions are derived for two particular sets of
boundary conditions. An expression for an upper bound of the round-off
error in the numerical evaluation of a Green’s function is given in Section 5.
This is then shown to be of much lower order than the upper bound obtained
by yon Neumann and Goldstine [4] for the error in the inversion of a general
matrix by an elimination method. An extension of the method to include the
problems in which the solution achieves an arbitrary function on the boundary
is derived in Section 6. In Section 7, there is presented a refinement of the
method which reduces the number of necessary arithmetic operations, and
which allows the use of different lattice spacings in the various portions of
the region.

2. Origin of the discrete problems
The work reported here arose from the necessity of obtaining the solution

of a two-dimensional set of vector field equations defined over an annular
region. The solution of the vector equations is derivable from the solution
of Poisson’s equation in the given region, und the resultant problem is further
simplified by a conformal mapping of the annular region onto a rectangular
strip with periodicity along the strip. That is, the problem was reduced
to the solution of

(2.1) -f-.-yy (x, y) f(x, y),

with the periodic condition

(2.2) (x, Y -k y) (x, y)

in the region 0 < x < X.

A procedure alternate to performing the conformal mapping is to difference the
original Poisson’s equation in polar coordinates over a lattice of points determined by
the corners of curvilinear squares. The resulting difference equation would be identical
to that found by the procedure pursued in the text.
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Two distinct problems were considered, corresponding to the boundary
conditions at x 0, X: (a) the solution is constant on the boundaries with
one of the constants determined by an integral condition on the normal
derivative over one boundary, that is,

(2.3) q(0, y) 0, (X, y) C,

where C is determined by the condition

(2.3a) x ,(x, y) dy 0;

and (b) the normal derivative in the x direction vanishes on the boundaries,
that is,

(2.4) 0 0
0 e(x, Y) q(x, y) 0,

thus defining the solution, (x, y), only to within an additive constant.
For convenience, the central difference operator, A, is defined as

(2.5)

The solution of the differential equation (2.1) is approximated at discrete
points by the solution of the difference equation

(2.6) +
The discrete points are given by x kh, y lh, where h is the lattice spacing,
and k, are integers. The physical boundaries of the strip were taken at
k 1/2, k K + 1/2. The boundary conditions then become, for equation
(2.2), the periodic condition

(2.7) k,+L ek,.

Equations (2:3) and (2.3a), for case (a) become

(2.8) 0, + , 0, , + +, C,
with C determined by

0;

and equation (2.4), for case (b),

(2.9) el, 0, K+I, eK, 0.

In the following sections, the Green’s functions are derived for these two
problems.

3. Outline of the discrete Green’s function method
The prtil difference equation (2.6) may be solved by direct nlogy with
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the method of the Green’s function in partial differential equations. A
discrete Green’s function, Gk,;k,.,, is defined to satisfy the difference equation

(3.1)

where i is the Kronecker delta. The function G,;,,, is then completely
determined by the requirement that it satisfy the same boundary conditions
as are satisfied by the desired solution. The Green’s function, thus defined,
yields the desired solution, k,, by

The function G,;k,,, may be expressed as a linear combination of a com-
plete orthonormal set of the eigenfunctions of the operator ( W A). That
is, if .;,m is defined to satisfy: (a) the difference equation

(3.3) (A + A .,m)/,;, 0,

where j, m are. indices labeling the distinct eigenfunctions; (b) the orthonor-
mality condition

which implies

and (c) the appropriate boundary conditions; then the Green’s function is
given by

(3.4) 1 *

It is highly desirable to perform analytically at least one of the sums
occurring in the expression for the Green’s function, equation (3.4), in order
to avoid the accumulation of large round-off errors in the numerical evalua-
tion. Two lemmas are derived in the appendix that are useful for that pur-
pose, and these are applied in the next section.

If a complete set of boundary conditions is combined with the difference
equations (3.1), the result may be considered as the KL dimensional matrix
equation

(3.5) DG I,

where the matrix D is formed from the coefficients of the difference equations
as modified by the boundary conditions; the matrix G is formed from the ele-
ments of the Green’s function, and I is the unit matrix. The method outlined
above for obtaining G, stated in matrix language, is equivalent to determining
the orthogonal similarity transformation formed from the eigenvectors of D,
which diagonalizes D. The inverse of this transformation operating upon
the inverse of the diagonal form of D yields the Green’s function as in equa-
tion (3.4). The necessary manipulations of the matrix D may be done by
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operations with submatrices of D. This decomposition of D into submatrices
corresponds to the separation of variables of the difference equation (3.1)
which is used in the next section. The determination of the eigenvectors of
the triply diagonal submatrices of D is equivalent to the solution of the one-
dimensional difference equations obtained by the separation of variables in
the next section. Thus, the solution of the difference equation may be ob-
tained by purely matrix methods. However, it seems clear that the language
adopted in this paper leads more easily and directly to the final result.

4. Evaluation of the Green’s functions

In further analogy with the solution of partial differential equations, the
difference equation for the eigenfunctions, (3.3), may be solved by the sepa-
ration of Variables, that is, under the assumption

(4.1) kk,z;’.m Xk,m Yz,

The eigenfunctions are obtained from the solutions of

(4.2) (A m)X,m 0, (5 --.)Yz,-= 0,
where

The orthonormal set of solutions satisfying equations (4.2) and the boundary
conditions (2.7) and (2.8), with C set equal to zero, are given by

X,m (2/K)1/ sin (rm/K)(k 1/2), ra 1, 2, K 1,
(4.4) Xk, (l/K)1]2 sin r(/ 1/2),

Y,. (l/L)112 exp (2rilj/i), j O, 1,..., L 1,
with the eigenvalues

(4.5) ),,m 2 cos 2rj/L - 2 cos rm/K 4.

The Green’s function is obtained by substitution of equations (4.4) and (4.5)
into equation (3.4). The sum over j in the resultant expression may be per-
formed with the aid of Lemma I (cf. Appendix I), and the final expression
for the Green’s function is

GO, 2 fg-,- sin
m- (1 1/2);"’ , \m S_,(r,.) --(4.6)

mr 1)+, }sin - (/c’ 1/2) + (-- S_,(r)

where

(4.7) Sn(r,,)
r(L/-’) - r(L/2--n)

(a 4}/’rm/ rm-L/)’
and

rm 1/2(am + (a 4)); am 4- 2 cos (rm/K).
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In order to obtain the Green’s function, G,;k,,, satisfying the sum con-
dition (2.8a), as well as conditions (2.7) and (2.8), a solution of the homo-
geneous difference equation is added to G.;k,,, That is,

(4.8) G,;k ,1, Gk,;,,,-t- Ak," ( 1/2),

where Ak, is determined, by substitution of (4.8) into the sum condition, to be

(4.9) A, (1/KL)(K ’ -+- 1/2),

which completes the derivation of the Green’s function for case (a).
The difference equation for the Green’s function, equation (3.1), has no

nontrivial solutions which satisfy the conditions of case (b)" (2.7) and (2.9).
Correspondingly, solutions of Poisson’s difference equation exist only when
,fk, 0. These are the result of a condition exactly analogous to the
integral condition for continuous variables"

(4.10) + q(x, y) dx dy q(x, y).n dl,

where A is a two-dimensional region, is the unit normal to the boundary
of A, and dl is the line increment along the boundary. The discrete analogy
to (4.10) is a sum condition on any function, k,, of two discrete variables"

(4.11) s (h -t- A), (Normal differences of ,z on the boundary
of S),

where S is any set of points in the region.
Taking the region S to be the rectangle (1 =<]c=<K, 1 =< l=<L), the

boundary condition (2.9) and the periodic condition (2.7) state that the
right-hand side of (4.11) vanishes for the desired solution , of Poisson’s
equation, and hence also for the appropriate Green’s function G,;,,,. The
difference equation for the Green’s function, equation (3.1), must therefore
be modified so that the sum of the inhomogenous part over the region vanishes.
That is, equation (3.1) becomes

(4.12) (A + A)G,;,,, &, ti,- 1/KL.

In the same manner as before, the eigenfunctions are obtained as

Xk,m (2/K)1/ cos (.m/K)(]c 1/2), m 1, 2, K l,

(4.13) Z,0 (l/K)1/

Y, (l/L)/: exp (2ilj/L), j O, 1, L 1,

with the eigenfunctions given by the same expression, equation (4.5), as
before, but with the range of the index m from 0 to (K 1), thus yielding a
zero eigenvalue. The Green’s function G,;,,, is derived from these func-
tions using the same expression, equation (3.4), except that the term including
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the zero eigenvalue is omitted.
forming the sum over j, is

The resultant Green’s function, after per-

G, 2 S_,(r,) cos (k 1/2) cos (/’ 1/2) + _,;,,, -- -(4.14)
(L- 1)(L + 1) n(L- 1) n(n- 1)

n 12L 2L 2L

where S(r,) and rm are as previously defined.

5. Effect of round-off error in the numerical evaluation of a Green’s
function

This section consists of an analysis of the effect of round-off error for the
digital computer evaluation of a Green’s function assuming a reasonable
arithmetic procedure. The upper bound derived for this error is then com-
pared with that obtained by yon Neumann and Goldstine for the inversion
of a general matrix by an elimination method [4]. An estimate of the range
of magnitude of the elements of the Green’s function is made to determine the
expected relative error of the computed elements.
The analysis is done only for the Green’s function G,;k,,, of equations

(4.6) and (4.7). The formulas for Green’s functions satisfying other bound-
ary conditions differ only by the addition of a small number of terms whose
contribution to the total round-off error is negligible. It is assumed that the
integer L is greater than or equal to K. In the alternative case, K > L, the
analytic sum using the lemmas of Appendix I could be performed over the
index m instead of j, thus reversing the roles of K and L in the error analysis.
The error analysis of this section applies t.o computations by a floating-point

machine or a set of floating-point subroutines. In the course of the analysis,
it is convenient to distinguish between generated and propagated errors in the
result of an arithmetic operation. Generated error refers to truncation and
round-off error committed in the operation referred to; that is, it is the error
in the result of an operation if the numbers operated upon are assumed exact.
Propagated error refers to that part of the error in the result of an operation
which arises from the errors in the numbers operated upon. This separation
of total error into two parts is expressed by the equation

(5.1a) F(x, y) F(, ) IF(x, y) F(2, )] + [F(, ) F(, )],

where the barred quantities are the truncated digital approximations to the
unbarred quantities, and the function F(x, y) represents the arithmetic opera-
tion. The two expressions in square brackets represent respectively the

Dr. H. H. Goldstine has pointed out to the authors that the condition, . . 0,
may be imposed on the solution in case (b). This condition determines the solution com-
pletely and suppresses the zero eigenvalue, since its corresponding eigenfunction does
not satisfy the new condition.
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propagated and generated errors.
may be approximated by

xOF(5.1b) R[F(x, y)]

In terms of relative errors, this equation

R(x) + OF R(y) + ,
where R[F], R(x) stand for upper bounds for the relative errors in F and x
respectively, and is an upper bound for the generated relative error in
F(x, y). In the case of the floating-point operations of the IBM: 704, it can
be shown that the value of t 2-6 may be taken when F(x, y) represents
one of the elementary arithmetic operations of division, multiplication, addi-
tion, or subtraction. The generalization for this value of the generated error
is i fV’+1, where equals the radix used and s, the number of digits carried
in the fraction part of the floating-point number. An expression similar to
(5.1b) is also used in the analysis to evaluate error bounds for the case of a
function of one variable which is computed by a machine subroutine. Another
relation used is that for the upper bound on the absolute error in a computed
sum of N numbers:

(5.2)

where E(x) stands for an upper bound on the absolute error in x. To simplify
the language of this section, the term "error" will be used instead of "an
upper bound for the error".
The absolute error, E(G), of any element, Gk.;k,.,, of the Green’s function

is given by

(5.3) E(G) <= glt_,= T,n q- .,= E(Tm) <= (g --t- Rr)m T I,
where

G, any element of the Green’s function T,,
E(T,) is absolute error in each term, Tin,
Rr is upper bound for relative error of T for all m.

The upper bound Rr is obtained explicitly by summing the relative errors
in each factor of T. This bound is derived in detail in Appendix II by
considering the steps of the computation. The result, equation (II.9), is

(5.4) Rr (12L q- 42)&

An upper bound for the sum ’T is obtained by noting that

(5.5) 2 1 rq-1

In the case of subtraction of almost equal numbers of like sign but unequal exponents,
the 704 arrives at a result whose generated relative error is only 2- by saving and taking
account of the extra digit shifted off in the process of making the exponents of the two
numbers equal. In such a case, the total error will be much larger than this if there
exists any error in the numbers subtracted. This larger error is, of course, contributed
by the propagated error.
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Application of the inequality (II.7) yields the result:

(5.6) (r -t- 1)/(r- 1) < 2,

where L >= K has been assumed. The expression (II.3) indicates that

(5.7) (a- 4)1/ > 4sin(-m/2K) >= 4m/K, forl =< m =< K.

The final result is

(5.8) -_1 Tm < _= 1/m < 1 + In g.

If we combine this result with that for Rr, equation (5.4), the error of an
element of the Green’s function becomes

(5.9) E(G) (ln K + 1)(K + 12L -t- 42)i.

The term K In K of (5.9) arises from the numerical sum over the index m.
The desirability of performing the sum over j analytically is indicated by the
fact that a double numerical sum over both m and j would result in an error
term of order KL In K.
The error bound derived by von Neumann and Goldstine for the inversion

of a general symmetric matrix with positive eigenvalues by a numerical
elimination method is

(5.10) BD I <- 14.24(X/#)nt-8,
where D is the given matrix; B, the numerically computed inverse; I, the
unit matrix; ),/#, the ratio of greatest to least eigenvalue of D; n, the dimen-
sion of D; ]BD I I, the upper bound of the matrix BD I, that is, its
largest eigenvalue; and t is as previously defined. For the matrix defined
by the difference equation, h/ can be determined from equation (4.5). To
highest order in K

(5.11) :,/.u sg/r.
Specializing the result of yon Neumann and Goldstine, equation (5.10), to tile
case treated here, with n KL, one obtains

(5.12) BD I EDI < 12K*L($/,

where E is an error matrix defined by B D-1 E.
The comparable result for the method of this paper may be obtained from

the error bound E(G), given by equation (5.9), and the relation

(5.13) lED <- Norm (ED) [Zin, j__--i (Zkn.=l E Dk)2] 1/2,
where E <- E(G) by definition of E(G), and ’= D 8 from the dif-
ference equation (3.1). The result is

(5.14)
ED <- 8nE(G)

8KL(12L + K)(ln K)i + terms of lower order in K, L.
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Comparison of the error bounds (5.14) and (5.12) demonstrates the expected
advantage gained by computing the inverse of D by the method of this paper.
The ratio of the two error estimates, i.e. of the order of K3/ln K, indicates
that there exists a range of values of K, L, and i for which the solution of
the problem would be impossible by the elimination method, but feasible by
use of the expressions for the Green’s functions derived in this paper. There
may well exist, however, other special numerical inversion methods which
take advantage of the sparseness or the special form of the matrix D, and
which also yield a smaller error.
To appreciate the practical importance of errors of magnitude, E(G), it is

necessary to compare them to the magnitudes of the elements of G,;k,,,.
The elements of greatest magnitude are those for which l’,/ 1’, that is,
the value of the solution at the source. An estimate for the magnitude of
these elements is given by the upper bound, (5.8) for m Tm I. The ele-
ments of least magnitude are those for k 1, k’ K, and I1 l’l L/2,
that is, those elements at points most distant from the source. In these
cases, the terms of the sum over m have alternating signs and rapidly de-
creasing magnitudes. The first term is then a fair estimate for the sum,
giving

(5.15) G,;:,_L/. ’/(4K sinh (L./2K)).
By comparing (5.8), the magnitude of the larger elements, with the value

for E(G), (5.9) gives the result that the relative error in these elements is of
order L. The relative error in the smallest elements of G are of order
LK sinh (L-/2K), which may be very large if the ratio L/K is large. How-
ever, if the Green’s function is applied to the solution of a problem having
sources distributed throughout the domain of solution, the contribution of
these very small elements will be unimportant. In our cases (a) and (b), the
additional terms added to the Green’s function to satisfy the boundary condi-
tions make higher order contributions to the smaller elements which have the
effect of reducing the order of their relative errors.

6. Arbitrary function as a boundary condition

The Green’s function method is extended here to include those cases in
which the solution must attain some arbitrary set of values on the boundary.
A function, Hk,;p,q, is defined where the indices p and q specify only boundary
points. This function satisfies Laplace’s difference equation within a rec-
tangular region bounded by the lines E 0, K and 0, L, and vanishes at
all boundary points but one,/c p, and q, where it has the value unity.
That is,

(6.1) (A -f- A)H,l;p,q 0

for , on the boundary: H,;p,q ti ti. Then the solution of Poisson’s
difference equation, ,, is given by

(6.2) k,
,., G,;,,, f,,, + .q He,;,q ,q,
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where G,;k,,, is the discrete Green’s function which vanishes on the bound-
aries, fk,,, is the inhomogeneous term of Poisson’s difference equation, and
,q is the value of the solution desired at the boundary points p, q. The

function H,;,q may be obtained as a linear combination of the solutions
,; of Laplace’s difference equation which vanish on three of the boundaries.
For example, for p K, and q any value between 0 and L, the appropriate
solutions are

(6.3) ,;j sin (rl/L)j sinh/./,

where t is determined by

cosh f 2 cos (/L)j.

The solution for U,l;v,q in terms of these functions, is given by

2 sin (-/L)qj sin (-/L)lj sinh ]
(6.4) H,l;:,q

j=l sinh . K
The solutions for the other three boundaries may be obtained by simple
changes of variables in equation (6.4).

7. Computational use of the Green’s function method

The direct application of the method requires the computation of at most
K2L numbers which constitute the complete Green’s function, and the perma-
nent storage of these on magnetic tape. As shown in Section 5, the round-off
error in this computation has been greatly reduced by performing analytically
one of the sums in the expression for the Green’s function. For example, the
Green’s functions, (4.6) and (4.14), for the case K 11, L 100, have been
evaluated on the IBM 704. These results satisfied the difference equation
for the Green’s function to seven of the eight decimal digits carried by the
machine. The symmetries of the boundary conditions, in general, reduce the
number of distinct values required to specify the Green’s function. The
Green’s functions (4.6) and (4.14) depend only on l’, k, td, as a result of
the periodic condition (2.7), and thus only KL/2 values are required. Thus,
the number of multiplications required to evaluate a complete Green’s func-
tion is of the order of K3L, since the three factors, S and the two sine func-
tions, occurring in each term of the Green’s function, may be computed
initially for all terms. Therefore, the largest number of multiplications
arises simply from the multiplication of these factors to form the terms of
the Green’s function. In the absence of the symmetries noted above, of the
order of K3L multiplications would be required. Both of these results may
be compared with the KL multiplications required by the straightforward
application of the matrix inversion method of yon Neumann and Goldstine
[4].
The sraighforward substitution of he Green’s function into equation (3.2)

o obtain he solution of Poisson’s difference equation would require KL
multiplications. I is apparent, however, ha one may save almos half of
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these operations by calculating the value of the solution only at alternate
lattice points from the Green’s function, and supplying the missing values
through direct use of the difference equation (2.6). A logical extension of
this procedure is the solution of a problem by a process of repeated binary
division of the region. Consider an N X N lattice. The first step consists
of using the Green’s function for the whole region to obtain the solution along
the line ] N/2. The original problem is now reduced to two independent
problems of half the size;i.e, rectangles N X N/2. The solution in each of
the new regions may be obtained by the use of the Green’s function appropri-
ate to the smaller regions together with the extension described in Section 6,
to take account of the arbitrary function along the boundary. This process
of dividing the regions may be repeated until the solution is obtained at all
desired points. An analysis of this procedure for an N X N problem, where
N is an integral power of two, shows that to highest order in N, only 3N
multiplications are required in contrast to the N multiplications required in
the straightforward application of the Green’s function method. This pro-
cedure would probably be resorted to only in extremely large problems, since
it has the obvious drawbacks of complicating the programming and requiring
the evaluation of a Green’s function for each of the successively smaller
regions. However, the principle of this procedure may be advantageously
applied to problems in which one desires either the solution in only a small
part of the total region, or the use of different lattice spacings in different
parts of the region.

Appendix
It is required to obtain the value of the sum

1 7’L-1 exp (2ri/L)jn(I.1) S Z .z-0 exp (2i/L)j - exp (-2i/i)j a’

where a is a real constant and a _-> 2.
This is accomplished by multiplying numerator and denominator by

exp (2ri/L)j and decomposing into partial fractions in terms of the factors
of the denominator. That is,

1Sn L(r+- r_)"
(I.2) L_I

)0 2i ( 1 1 )... exp--j(n - 1)
exp (2ri/L)j r+ exp (2ri/L)j r_

where r+/- 1/2(a :i: (a 4)2). Since r+ > exp (2vi/L)jl, each partial
fraction can be expanded in powers of {exp (2vi/L)jl/r+.

Inverting the order of summations, and making use of the fact that

2ri (OL if sNL, N=0,1,2...(I.3) exp js
..0 -L- if s NL,
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one obtains

(IA) S,- 1 1 r;r+,+ _t_ 1 _-r+,+

r+ r_ + ..1 r_ 1

By summing ghe geometric series and simplifying, ghe desired resul is ob-
gained"

LEMMA I.

1 r- r+"(I.5) S. (a 4)1/2 r/2
-_ rT

It is required to obtain the value of sum"

1 1 exp (2i/L)jn(I.6) a - exp (2ffL)j % exp (-2i/L)j 2"

The sum, a, is rewritten as

1
Lim( exp(2i/L)jn + ).(I.7)
0 k-0 exp (2i/L)j + exp (-2i/L)j 2

The first term in brackets is just S, with a 2 + , and may be evaluated
as above. The limit is then taken, with the result"

LEMMA II.

(L- 1)(L + 1) n(L- 1) n(n- 1)(I.8)
12L + 2 2

Appendix
It is desired to derive an upper bound for the relative error from round-off

in the computation of

2 1 r/-n + r m rm(II.1) T (a 4)/ ’r-
/ -’r--/

sin (2k 1) sin (2k’ 1),

where
a 4 2 cos (rm/K) 2 + 4 sin (m/2K),

r (a + (a 4)1/).
The derivation is done according to the assumptions of Section 5. The rela-
tive errors of each of the factors of T are derived and then summed to yield
the relative error in T.

(1) To compute the factors of the form sin (vI/2K), where I is an integer,
the integer J is found exactly, such that

-K J K and sin (J/2K) sin (I/2K).

From the arithmetic operations, the argument, J/2K, has relative error 3&
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Using the relation (5.1b), the sine then has relative error"

R (sin 1)(J/2lc)cos(rI/2]c)(II.2) - sin (I/2/c)
38 + Error in evaluation of sine

3+5 8,

where it is assumed that the numerical evaluation of the sine introduces a
relative error of 5&

(2) To compute the factor (a 4)-1/, the expression for a 4 is put
in the form

(II.3) a 4 16 sin (m/2K)(1 + sin (rm/2K)).

By applying (II.2),

and thus

and

R(sin (rm/2K)) 178,

R(a 4) 298,

(II.4) R((a 4)-:/) 1/2298 + 8 + 8 < 178,

where the evaluation of the square root contributes
L/2--n .L/2n// L/2(3) To compute the factor, r + r ir /), a is computed

with relative error
R(a) 198,

nd thus
R(r) 21.

The number r may be formed by t most 2 ln2 (L/2) multiplications, nd
thus

(II.5) R(r) (L/2)R(r,) + 2 ln (L/2)8 _-< llL&

From the expressions for a 4 it follows that

(a 4) > 4 sin (rm/2K) > 4/K for 1 -< m _<- K,
and hence that

(11.6)

For L >= K >__ 1,

(ii.)

therefore

(II.8)

rm> 1 + 2/K.

> 1 + L/K >= 2;

L/2--n .--L/2+n, / L/2 .--L/2,

R
\ r, r, / \rm rm I

< 4r
--L/2r,

L/2 16 L/2R(r, + 68 < (12L + 6)8,R(r, + 68 <-_

where we have used relation (5.1b). The quantity 68 occurring in equation
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(II.8) is generated by the elementary arithmetic operations required to form
512 _--L/2\ /t L/2 L/2\ L/2the factor (r -[- r )/(r r from r The subtraction to form the

denominator introduces a relative error less than 2 because of relation (II.7).
Summing the relative errors of the factors, and adding 3i for the multipli-

cations to form T, yield

(II.9) Rr (12L + 42)i.
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