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1. Introduction

In the present paper an axiomatic characterization of homotopy groups
will be given. The possibility of such a characterization was conjectured
by S. Eilenberg and N. E. Steenrod in [1]. Another such axiomatization,
which is essentially different from the present one, is due to J-P. Serre, J.
W. Milnor [6], M. Kuranishi [5] and S. T. Hu [2]. The main difference
is that we do not postulate thut "ro is the set of the components". Nones-
sential is the fact that we consider only absolute groups. The results will
be stated in terms of c.s.s, complexes. Free use will be made of the defini-
tions and results of [3], [4], and [7].

In an appendix we discuss the influence of the first two axioms (homo-
topy and exactness) on rl(K(Z, 1)), which plays a role similar to that of
the coefficient group in homology theory.

2. The main result
Let $ be the category of c.s.s, complexes with base point ([3], 2), and let

& be the subcategory of the c.s.s, complexes which are of the weak homotopy
type of a countable c.s.s, complex ([4], 6). We shall define the notion of a
theory of homotopy groups on a subcategory $’ and state uniqueness
theorems for theories of homotopy groups on the categories & and $.

Let 9 be the category of groups, and let 9, be the subcategory of the count-
able groups. All groups will be written multiplicatively. A group con-
sisting of one element will be denoted by 1.

DEFINITION 1. /k theory of homotopy groups {r, 0} on a subcategory
$’ c $ is a collection which contains for every integer n > 0

(a) a functor rn:$’ -- 9,
(b) a function 0n+l which assigns to every fibre sequence F q E P B in

$’ ([3], 3) a homomorphism O+l(q, p):r+l(B) -- r(F) satisfying the nat-
urality condition"

If commutativity holds in the diagram

F q---E P B

F’ q’ P’E’ B’
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where both horizontal sequences are fibre sequences, then the following
diagram is also commutative

m+l(B) O,+(q, p) .,(F)

r+(U’)
O,+x(q’, p’) v(F’).

Unless stated otherwise the functions i and 0i are required to satisfy the
following four axioms:

AxioM I. If f:K -- L is a weak homotopy equivalence, then

’n(f) r,(K) "-’->

is an isomorphism for all n.

AxioM II. If F q- E 2_) B is a fibre sequence, then the sequence

r,(F) n(q)) r,(E) r,(p) r,(B) O(q,... P)) (E) r(p), r(B)

is exact. If F is connected, then l(p) is onto.

AXIOM III. If K v K. is the union of K and Ks (with the base points
identified) and if k:K -- K1 v K. are the embedding maps (i 1, 2), then
vl(K v K2) is the free product of (K1) and v(K) under the maps

Axiom IV. "’n(K) 1 for some K and n.

Clearly the usual homotopy groups and boundary homomorphisms of a
fibre sequence satisfy the above axioms. That this theory of homotopy
groups is essentially the only one possible on $o (the category of c.s.s, com-
plexes which are of the weak homotopy type of a countable c.s.s, complex)
is an immediate consequence of the following uniqueness theorem.

THEOREM 1. Let {vi, 0} and {, i} be theories of homotopy groups on
the category $c. Then there exist unique natural equivalences

hn:r "- (n 1, 2,

such that for every fibre sequence F q--> E P- B commutativity holds in the dia-
gram

(1)

",+I(B)
O,+(q, p) ,(F)

hn+l(B) lh,(F)
,+(B)

’+(q’ p) ’,(F).

The proof of Theorem 1 will be given in 4. In this proof an important
role will be played by the following group-theoretical lemma.
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LEMMA 1. Let I:c -- be the inclusion functor, and let M:c - be a

functor such that
(a) M preserves short exact sequences, i.e. if a sequence

IA s-A_B t_Cl
is exact, hen so is he sequence

1 M(A) M(S)M(B) M(t) M(C) 1,

(b) M preserves (wo-fold) free products, i.e. if B is he free product of
A (i 1, 2) under he maps a:A B, hen M(B) is he free product
of M(A) under he maps M(a):M(A) M(B).

Then either here exists exactly one natural equivalence m:I M, or M(A) 1
for all A e .
The proof will be given in 5.
It should be noted that the usual theory of homotopy groups on the whole

category $ satisfies the following axiom which is stronger than Axiom III.

AXIOM III’. If Q is any set, K, e $ for all a e Q, if L is the union of all
K, (with the base points identified) and if k,:K, L is the embedding
map for all a e Q, then r(L) is the free product of the groups (K,) under
the maps l(k,) :I(K,) I(L).

It then follows immediately from the following uniqueness theorem that
the usual theory of homotopy groups is essentially the only theory of homo-
topy groups on the whole category $ satisfying Axiom III’.

THEOREM 2. Let {, Oi} and {, } be theories of homotopy groups on
the category $ satisfying Axiom III’. Then there exist unique natural equiva-
lences h: (n 1, 2, such that for every fibre sequence

F q_E P__B

commutativity holds in diagram (1).

The proof of Theorem 2 is similar to thut of Theorem 1 (see 4). The
following lemma has to be used instead of Lemma 1.

LEMMA 2. Let I -- 9 be the identity functor and let M --+ 9 be a func-
tor such that

(a) M preserves short exact sequences,
(b) M preserves all free products, i.e. if Q is any set, A, e 9 for all a Q,

and if B is the free product of the groups A, under the maps a,:A, -- B,then M(B) is the free product of the groups M(A,) under the maps
i(a,) :i(A,) -, M(B).
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Then either there exists exactly one natural equivalence m:I --> M, or M(A) 1
for all A .
The proof of Lemma 2 is similar to that of Lemma 1 (see 5).

3. An axiomatization which includes 0
It is possible to give an axiomatization of the homotopy groups which

includes v0. This can be done as follows"
Let be the category of sets with a distinguished element 1. A set con-

sisting of one element will also be denoted by 1. A theory of homotopy
groups l, 0} on a subcategory S’ c $ then contains in addition to the func-
tions n and 0n+l (n > 0)

(a) a functor r0:$’ -- ,(b) a function 01 which assigns to every fibre sequence F --.q E P-- B a
function 01(q, p):I(B) -- 0(F) such that 01(q, p)l 1, and satisfying the
obvious naturality condition.
Axioms I, III, and IV need not be changed, but Axiom II has to be re-

placed by

Axiom II’. If F q- E--P B is a fibre sequence, then the sequence

- n(F)
n(q) rn(E) rn(p)....) rn(B) On(q, p) o(P) o(B) -- 1

is exact in the sense that always "the image of one map" "the kernel of
the next map".

Clearly the usual theory of homotopy groups satisfies Axiom II’. That
this theory of homotopy groups is essentially the only one possible on the
category $c is a consequence of the following uniqueness theorem.

THEOREM 3. Let {, Oi} and I, } be theories of homotopy groups on
the category which satisfy Axiom II’. Then there exist unique natural equiv-
alences hn:, - rn (n O, 1, 2, such that for every fibre sequence

F q_E P__PB

and integer n > 0 commutativity holds in diagram (1), while for n 0 the
diagram (1) is either always commutative or always anticommutative, i.e. for
every element e ()

(ho(F) o 01(q, p)) (5(q, p) o h(B))-.
The proof will be given in 6.

4. Proof of Theorem

It clearly suffices to prove Theorem 1 only for the case that {, 0} is the
usual theory of homotopy groups on $.
The proof consists of three parts. We first show, using only Axioms I
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and II, that n(K) 1 for certain n and K (Propositions 1-5) and that
n(K) I(L) for all n and K and suitable L (Proposition 6). Then we
define a functor M: --, and prove, using again only Axioms I nd II,
that it preserves short exact sequences (Proposition 7) and, using Axioms I,
II, nd III, that it preserves (two-fold) free products (Proposition 8). Only
at the last stage we need Axiom IV (in the proof of Proposition 9) in order
to be able to define the natural equiwlences h:r .
PROPOSITION 1. Le P be a c.s.s, complex wih one simplex in every dimen-

sion. Then (P) 1 for all n.

Proof. Let i:P P be the identity map. Then

i8 fibre equenee. eee ppliion of Axiom H yield8 he desired result.

PROPOSITION 2. Let K be contractible. Then (K) I for all n.

Proof. This follows immediately from Proposition 1 and Axiom I.

PaOeOSITION 3. Let K be connected, and let (K) 1. Then

(K) 1.

Proof. Because K is connected there exists (see [4]) a fibre sequence

G(K) E(K) g

such that E(K) is contractible. Application of Proposition 2 and Axiom II
then yields that (K) 1.

PROpOSITiON 4. Let be a c.s.s, complex with two simplices in every di-
mension. Then S) 1 for n > O.

Proof. Let e be the base point and let r be the other 0-simplex.
Define mapsp:X S,t: X andq:S X by

p(, ) p(, ) , p(, ) p(, )

t(, ) t(, ) t(, ) ,
q() (, ).

Application of iom II and Proposition 1 to the fibre map

P S X S S

yields that (t) is an isomorphism for all n > 0. As the composition

S q S X S S

is the identity map, it follows that #(q) is also an isomorphism. Clearly
(p) is onto for all n. Hence application of iom II to the fibre sequence
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S q S X S P S

yields that n(S) 1 for all n > 0.

PROPOSITION 5. Let A e 9c. Then n(K(A, 1)) 1 for n > 1.

Proof. There exists (see [7]) a fibre sequence

K(A, O) q E p K(A, 1),

where E is contractible. Hence by Axiom II and Proposition 2

(q, p)’(K(A, 1) - _I(K(A, 0))

is an isomorphism for n > 1. Now consider the fibre sequence

P -- K(A O)
a S

where a(a) r for every 0-simplex a e K(A, 0) different from the base point.
Then it follows from Axiom II and Propositions 1 and 4 that

_I(K(A, 0)) 1

forn > 1. Hence alson(K(A, 1)) lforn > 1.

Let K be a connected c.s.s, complex. Then there exists (see [3]) a fibre
sequence

G(K)
s

E(K)., ,)K,

where E(K) is contractible and G(K) satisfies the extension condition.
For every K and n > 0 consider the fibre sequence

K. qn P 1)K K(I(Kn),
where

(a) K1 is the subcomplex of Ex K consisting of the simplices of which
all 0-dimensional faces are of the base point,

(b) K’, is the subcomplex of K consisting of the simplices of which all
1-dimensional faces are of the base point (it is simply connected),

(c) g+l G(K),
(d) q" Kr. -- K is the inclusion map,
(e) p is the canonical map p’Kn -- K(I(Kn), 1) (see [7]).

The complexes K+I and Kr are connected by a fibre sequence

K+I. t K’ s)E() )K,

where E(K.) is contractible.
Let e"K’K ---+ ExK be the embedding map and denote by j" K1 --+ ExK

the inclusion map. Then

PROPOSITION 6. The maps l(p), (q-l), n(ql), 2(tn- 8n-1),
((tl, Sl), (j), and n(eK) (see Figure I) are isomorphisms.
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Proof. Because K’n is simply connected it follows from Axiom II and
Proposition 3 that l(pn) is an isomorphism, while Axiom II and Proposition
5 imply that 2(qn--1),’’’, n(qi) are isomorphisms.
The contractibility of E(K’n) together with Axiom II and Proposition 2

yield that 52(tn_l Sn-1), 5,(h sl) are isomorphisms.
The map j" K1 --* ExK may be factored

K1 jl K, j )ExK,

where K, is the component of ExK containing K1. In view of Axiom I,
n(jl) is an isomorphism. If K, Ex K, then define a map/"ExK -+ S
in such a manner that

K,J ;ExK-
/

)S

is a fibre sequence. (This clearly is possible in a unique way.) Proposition
4 and Axiom II then imply that (j) is also an isomorphism, and hence
(j) is an isomorphism.

It follows from Axiom I that n(eK) is an isomorphism.
This completes the proof of Proposition 6.

r(K’n_) 01(tn-,, 8n-1)
(K) e(K)

m(Trl(gn))
go(K(h(Kn),l)

l(tn-1, 8n-1) r(K_O

FGURE I

Let i" -+ denote the composite functor

K( 1) 1o- )9.
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)ROPOSITION 7.

Proof. Let

be an exact sequence.

The functor M:c ---* c3 preserves short exact sequences.

s
1-- A B C-- I

K(A, 1)

Then it is readily verified that

K(s, 1) K(t, 1))K(B, 1) K(C, 1)

is a fibre sequence, and because K(A, 1) is connected, it now follows from
Axiom II and Proposition 5 that the sequence

1 --, M(A) M(s) M(t))M(B)... )M(C) -, 1

is also exact.

PROPOSITION 8. The functor M:c --* preserves (two-fold) free products.

Proof. Let B be the free product of A (i 1, 2) Under the maps
ai:A-- B. Let ]ci:K(A, 1) -- K(A1, 1) v K(A., 1) be the embedding
maps and let j:K(A1, 1) v K(A., 1)-- K(B, 1) be the (unique)map such
that the following diagram is commutative.

K(AI 1). kl K(A, 1) v K(A:, 1) K(A, 1)

(Ka(K(a, 1) j

K(B, 1)

It is readily verified that r(j):r(K(AI, 1) v K(A., 1)) -- r(K(B, 1)) is
an isomorphism. Furthermore (K(B, 1)) 1 for i > 1 and it follows from
a lemma of J. H. C. Whitehead (see [9]) and the fact that

(K(Ax, 1)) (K(A2,1)) 1

fori > 1, that((K(A, 1) v K(A2, 1)) 1 fori > 1. Hence the map
j is a weak homotopy equivalence.

Application of the functor yields the commutative diagram

M(AI) (k) (K(A 1) v K(A:, I)) M(A2)
\
\
\

M(al)
\
\

M(B)

//
/

/
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By Axiom III (this is the only place where Axiom III is used)

I(K(A1,1) v K(A2,1))
is the free product of M(At) under the maps l(]ct), and by Axiom I, l(j) is
an isomorphism. Hence M(B) is the free product of M(At) under the maps
M(at).

PROPOSITION 9. There exists a unique natural equivalence m’I ---> M.

Proof. Suppose this is not the case. Then by Propositions 7 and 8 and
Lemma 1, M(A) 1 for all A e 9c, and in view of Proposition 6,this would
imply that n(K) 1 for all n and K. By Axiom IV however this is im-
possible.

We now define for every K e 8c and every integer n 0 an isomorphism
h,(K)’r(K) r,(K) as the composition of all the isomorphisms in Figure
I. Then it can readily be verified by "chasing diagram" that the functions
h are natural equivalences h" rn -* n such that for every fibre sequence
F-q E B commutativity holds in diagram (1) and that the uniqueness
of the natural equivalence m implies the uniqueness of the natural equiva-
lences an" rn -’-> n

This completes the proof of Theorem 1.

5. Proof of Lemma
The proof of Lemma 1 consists of two parts. First it is shown that M(Z)

is either infinite cyclic or trivial (Proposition 13), and then we prove that in
the first case there exists exactly one natural equivalence m’I M (Prop-
ositions 15 and 16), while in the other case M(A) 1 for all A
PROPOSITION 10. Let D be the direct sum of At (i 1, 2) under the maps

dr’At -- D. Then M(D) is the direct sum of M(At) under the maps M(d).

Proof. Let jr’At ---* At be the identity maps, and let pt’D ---. At be maps
such that in the diagram

1

A more straightforward proof of Lemma 1 will be given in a forthcoming paper in
Bol. Soc. Mat. Mexicana, On monoids and their dual.
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both sequences on the diagonal are exact. That D is the direct sum of A
under the maps di then is equivalent to the statement that the above diagram
is commutative. As application of the functor M yields a similar diagram,
it follows that M(D) is the direct sum of M(A) under the maps M(d).

PROPOSITION 11. If A is abelian, then so is M(A).

Proof. Let D be the direct sum of A with itself under the maps

That A is abelian then is equivalent to the statement that there exists a
map g:D -- A such that the following diagram is commutative

A

/dl
D q

where i’A - A is the identity map.
functor M yields a similar diagram.

A
By Proposition 10 application of the
Hence M(A) is also abelian.

PROPOSITION 12. Let A be abelian, and let B be the free product of A with
itself under the maps ai’A --, B (i 1, 2).. Let p’B -- A be the (unique)
map such that commutativity holds in the diagram

A

\\i
B, P A.

A

Then "kernel p" is the free group freely generated by the elements al(a).a.(a-1)
where a eA and a # 1.

The proof of Proposition 12 is straightforward.

PROPOSITION 13. Let Z be infinite cyclic; then M(Z) is infinite cyclic or
trivial.

Proof. Let Z2 be cyclic of order 2, let B be the free product of Z with
itself under the maps a:Z -- B (i 1, 2), and let p:B -- Z2 and j:Z -- B
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be the maps such that commutativity holds and the horizontal sequence is
exact in the diagram

Z2

/a/i
I--Z J )B P

Z2

where i’Z2 -- Z2 is the identity. In view of Proposition 12 such a map
j:Z -- B exists. Application of the functor M yields a similar diagram. As
M(B) is the free product of M(Z.) with itself under the maps M(a), and as
in view of Proposition 11 M(Z.) is abelian, it follows from Proposition 12
that M(Z) is free. However by Proposition 11, M(Z) is also abelian. Hence
M(Z) is either infinite cyclic or trivial.

Let F be the free product of Z with itself under the maps ai’Z -- F., and
let h:Z --. M(Z) be a map. Then there clearly exists a unique map

h"F ---> M(F)

such that commutativity holds in the diagram

a2Z al F Z

M(a)M(Z) M(al) M(F) M(Z).

PROPOSITION 14. Suppose M(Z) is infinite cyclic. Let Z be a generator,
and let a:Z --> F. be the map given by a al .a2 . Then there exists a
unique isomorphism h:Z -- M(Z) such that commutativity holds in the
diagram

a
Z F2

M(Z) M(a), M(F).

In the proof of Proposition 14 use will be made of the following lemm
(for a proof see [8]).
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LEMMA 3. Let w(a, ) be a reduced word in the free group on two generators
such that

w(, , w(

w(, w(, )) w(vo(, ), );

then either w(, ) a or w(, )

Proof of Proposition 14. Let f:Z -- M(Z) be an isomorphism and let

’ f-. Clearly M(F2) is a free group on the generators M(ai)’, and hence
M(a)’ may be written as a reduced word w(M(al)’, M(a2)’) in these gen-
erators. Let pl"Fe --+ Z be the (unique) map such that (pl al) and
(p a) 1. Then (pl a) , and hence (M(p) M(a))’ ’. Con-
sequently the word w is such that

vo(, 1)

Similarly it can be shown that

w(1, )

Let F3 be the free product of three copies of Z under the maps

b’Z -+ F3 (j 1, 2, 3).

Then it is readily verified that M(F) is the free product of three copies of
M(Z) under the maps M(b). Let b’Z --+ F be the map given by

b b ’-b

and let c" F -+ F be the map such that

(c al)" bl and (c a2) b .b3
Then (c a) b, and hence

M(b)’ (M(c) M(a))’

M(c)w(M(a)f’, M(a)f’)

w(M(b)’, w(M(b)’, M(b)’)).

Similarly it can be shown that

i(b)’ w(w(M(bi)", M(b)f’), M(b3)’).

Hence the word w is such that

w(, w(, )) w(w(, ), ),

and it follows from Lemma 3 that either w(a,
Let g’Z -+ M(Z) be the (only) other isomorphism, i.e. g f-. If

w(a, )= a, then f has the desired property, and it is readily verified
that g has not. Conversely if w(a, ) a, then f does not have the de-
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sired property, but already g does. Hence there is exactly one isomorphism
h’Z - M(Z) with the desired property.

PROPOSITION 15. There exists at most one natural equivalence m’I -+ M.

Proof. Suppose m:I - M is a natural equivalence. Then it follows
from Proposition 14 that re(Z) h. The naturality of m implies that for
every group A and map f: Z -- A commutativity holds in the diagram

fZ ’ A

M(A) M(f); M(A).

As every element a e A is the image of the generator " e Z under a unique
map f,’Z -- A, it follows that

(2) m(A)a (M(f,)

i.e. the natural equivalence m is completely determined by the functor M
and the (unique) isomorphism h and hence is unique.

In order to prove the first part of Lemma 1 it thus remains to show that

PROPOSITION 16. Suppose M(Z) is infinile cyclic. For every group A
let m(A)’A M(A) be the function defined by (2). Then the function m is a
natural equivalence m’I --+ M.

Proof. The naturality of m follows immediately from its definition. We
first show that m(A):A --+ M(A) is a homomorphism for every A and then
that it is actually an isomorphism.

Let a, / e A. Then we must show that m(A) (a.) m(A)a, m(A).
Let d:F ---+ A be the map such that (d al) a and (d a) . Then
it follows from the naturality of m that

m(A)(a ) (re(A) d a) (M(d) o M(a) h)

M(d){ (M(al) h). (M(a,.) h)’}

(M(d) M(al) h). (M(d) M(a2) h)

m(A)a.m(A).

Consider the commutative diagram

(a) lm(F) Ira(F2) m(Z)
1 -- M(F) M(j)_ M(F2) M(p), M(Z) --
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where p:F2--+ Z is the map such that poas poa2 identity and
j:F --+ F is such that the upper sequence (and hence the lower sequence)
is exact. It follows from Proposition 12 that F is an infinitely generated
free group. As re(Z) is an isomorphism, so is m(F). Application of the
"five lemma" (see [1]) now yields that m(F) is also an isomorphism.
Every group A e c can be embedded in a commutative diagram

s
1 --+ Fo -- F --- A -- 1

(4) lm(F) [m(’) ]m(A
1-- i(F) ..i(s)_, i(F) ...i(t), M(A) --+ 1

where the maps s and are such that the upper sequence (and hence the
lower sequence) is exact. As m(F) is an isomorphism, it follows from the
"five lemma" that M(A) is also an isomorphism.
This completes the proof of Proposition 16.

In order to prove the second part of Lemma 1 we need

PROPOSITION 17. If M(Z) 1, then M(A) 1 for all A e

Proof. Clearly M(A) 1 implies M(Fz) 1, and hence in view of the
exactness of the lower sequence of diagram (3), M(F) 1. Finally the
exactness of the lower sequence of diagram (4) implies that M(A) 1 for
all A ec.

This completes the proof of Lemma 1.

6. Proof of Theorem 3

It clearly suffices to prove Theorem 3 for the case that {r, 0} is the
usual theory of homotopy groups on
The proof consists of two parts. We first show that Axioms I and

imply Axiom II (Proposition 21). Hence Theorem 1 may be applied and
yields the existence and uniqueness of the natural equivalence

hn rn --+

for n > 0. The second part of the proof consists of showing the existence
and uniqueness of the natural equivalence h0: r -- N0 (Propositions 24 and
25) and proving that this natural equivalence h0 has the desired property
(Proposition 26).

PROeOSXTXON 18. Let P be a c.s.s, complex with one simplex in every di-
mension. Then N,(P) 1 for all n.

PROPOSXTON 1_9. Let K be conlractible. Then Nn(K) 1 for all n.

PROPOSXTON 20. Let K be connected. Then No(K) I.
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The proofs of these propositions are similar to the proofs of Propositions
1, 2, and 3.

PROPOSITION 21. Let F q_ E P_ B be a fibre sequence, and let F be
connected. Then l(p) (E) -- (B) is onto.

Proof. This follows immediately from Axiom II’ arid Proposition 20.

For every X e let K(X 0) denote the c.s.s, complex defined as follows.
An n-simplex is any pair (, n) where e X; for every map a: [m]-- [n],
(, n)a (, m). The 0-simplex (1, 0) is chosen as a base point. If X hap-
pens to be a group, then this definition reduces to the usual definition of
K(X, 0) (see [7]).

Clearly a map u:X -- Y e induces a map K(u, 0):K(X, 0) -- K(Y, 0).

PROPOSITION 22. The set o(K(Z., 0)) consists of two elements.

Proof. There exists (see [7]) a fibre sequence

K(Z2 O) -- E ---. K(Z2 ,1),

where E is contractible. By Theorem 1, I(K(Z2,1)) Z. Hence Axiom
II’ and Proposition 20 imply that o(K(Z., 0)) consists of two elements.

Let L be a c.s.s, complex and let r(L):L -- K(o(L), 0) be the map which
assigns to every n-simplex z e L the element (, n) where e r0(L) is the
component containing z. Then

PROPOSITION 23. The map o(r(L)):o(L) 0(K(0(L), 0)) is an iso-
morphism.

Proof. Let L be the component of L containing the base point. Then
there exists (see [3]) a fibre sequence

G(L)-- E(L) LI,

where E(L1) is contractible. Furthermore for every component L of L
there exists a fibre map p :E(L)-- L where E(L) is also contractible.
There results a fibre sequence

G(L) -- E P-- L,

where E is the disjoint union of the E(L). By Axiom II’ the map

0(p) :0(E) -- 0(L)

is onto. The contractibility of the E(L) implies that the composite map

E- p L r(L) K(ro(L),O)

is a weak homotopy equivalence. Hence by Axiom I, o(r(L)o p) is an iso-
morphism, and because 0(p) is onto it follows that o(r(L)) is also an iso-
morphism.
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PROPOSITION 24. There is at most one natural equivalence ho :v0-+ o.

Proof. Suppose h0:m-- 0 is a natural equivalence.
Proposition 22 that there exists only one isomorphism

It follows from

ro(K(Z2, O) o(K(Z, 0)).

Hence ho(K(Z, 0)) is this unique isomorphism. The naturality of ho implies
that for every map f:K(Z., O)-- K(ro(L), 0) commutativity holds in the
diagram

(5)

ro(K(Z, 0)) r0(f) )r0(K(r0(L),0)) ro(r(L)) ro(L)

lho(K(Z O) lho(K(ro(L) O) lho(L)
0(K(Z, 0)) 0(f) ,0(K(r0(L),0)) o(r(L)) o(L).

Let e r0(K(Z, 0)) be the element different from 1. For ,every element
e r0(L) there exists a unique map f :K(Z2, O) K(ro(L), 0) such that

(ro(r(L))-1o o(f)) . Hence in view of Proposition 23

ho(L) {0(r(L))-I 0(f) ho(K(Z. 0))}k,

i.e., the natural equivalence h0 is completely determined by the functor 0
and hence is unique.

PROPOSITION 25. For every c.s.s, complex L$c let ho(L):o(L)-- o(L)
be the function defined by (5). Then the function ho is a natural equivalence
ho ro

Proof. The naturality of h0 follows immediately from its definition. In
view of Proposition 23 it suffices to prove that ho(K(X, 0)) is an isomorphism
for every countable X e 6t. This is done in two steps. First it is shown that
ho(K(X, 0)) is an isomorphism into and then that it is onto.

Suppose ho(K(X, 0)) is not an isomorphism into for some X, i.e., there exist
two elements 1, . o(K(X, 0)) such that ho(K(X, 0)) ho(K(X, 0))2.
Then there clearly exists a map f: K(X, O) -- K(Z, 0) such that v0(f)l 1
and r0(f) 1. This however is in contradiction with the commutativity
of the diagram

ro(f)ro(K(X, 0))

0))

ro(f)o(K(X, 0))

o(K(Z, o))

ho(K(Z2 0)

o(K(Z, 0)).

Hence ho(K(X, 0)) is an isomorphism into for all X.
Let Zn be a cyclic group of order n. Then there exists (see [7]) a fibre se-

quence
K(Zn O) ---> E g(Zn 1),
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where E is contractible. In view of Theorem 1, I(K(Zn, 1)) Zn. Hence
it follows from Axiom II’ and Proposition 19 that o(K(Zn, 0)) contains at
most n elements. Hence ho(K(Zn, 0)), being an isomorphism into, must be
onto, and so is therefore ho(K(X, 0)) for every finite X e fit.
Let Z be the direct sum of a countably infinite number of copies of Z..

For every map f:Z -- Z’ there exists a commutative diagram

K(Z,0) q E. p )K(Z,I)

lK(f, O) l lK(f, 1)

qP E’K(Z, O) K(Z, I)

such that both horizontal sequences are fibre sequences and E and E’ are con-
tractible. Hence commutativity holds in

x(K(Zz, 1)) (q’ p) ,0(K(Z, 0))(ho(K(Z,O)) ro(K(Z, 0))

lrl(K(f,X))leo(K(f,O)) le0(K(f, 0))

r(g Z’ (q’ p’) ho(g(z, 0)), 1)).. 0(K(Z, 0)), ro(K(Z,O)).

In view of Axiom II’ and Proposition 19 the map (q’, p’) is onto. Hence in
view of Theorem 1, there exists for every element e o(K(Z’:, 0)) a map
f:Z Z such that image (51(q’, p’)oe(K(f, 1))), and because
ho(K(Z’, 0)) is onto, it follows that image ho(K(Z, 0)). Therefore
ho(K(Z, 0)) is onto, and so is ho(K(X, 0)) for every X e fit which is eountably
infinite.

This completes the proof of Proposition 25.

PROPOSITION 26. For every fibre sequence F q- )E P )B the diagram

r(S) 01(q, p) ,to(F)

lh(B) lho(F)
r(B)

b(q’ p) ro(F)

is either always commutative or always anticommutative.

Proof. Consider a fibre sequence

K(Z, O)
sE K(Z, 1),

where E is contractible. It then follows from naturality considerations that
it suffices to show that for a generator e r(K(Z, 1))

{((t, s) o h(K(Z, 1))}- {ho(K(Z, 0)) o O(t, s)},
where n =i= 1.
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Suppose n 0 (mod i) where i > 1. Let f:Z ---. Z be a homomorphism
onto. Then there exists a commutative diagram

t SK(Z, O) E g(z, 1)

tK(f, O) t lK(f, 1)

K(Z O) ti si 1)E- K(Zi,

such that both horizontal sequences are fibre sequences and E and E are con-
tractible. As (t, s) is an isomorphism (see the proof of Proposition 25),
it follows from the naturality of 0, 5, and h0 that

{#0(K(f, 0)) o l(t, s) o hI(K(Z, 1))

{l(&, s) o #(K(f, 1)) o h(g(z, 1))}i" 1,
while

{#0(g(f, 0))o ho(g(z, 0))o O(t, s)

{ho(K(Z, 0)) o ro(g(f, 0)) o O(t, s)}

{ho(g(z, 0)) o O(&, s) o r(g(f, 1))}’ 1.

This is a contradiction. Hence n 0 (mod i) for all i > 1, ie., n +/-1.

This completes the proof of Theorem 3.

Appendix
7. The influence of Axioms and II (or I1’) on r(( ))

In the above axiomatization the group Z and hence the group r(K(Z, 1))
played an important role, somewhat similar to the role of the coefficient group
in homology theory. Hence one may ask the question"

Is it possible to weaken or change Axiom III in such a manner that
rl(K(Z, 1)) need not necessarily be infinite cyclic or trivial, but may be any
(abelian) group?

The answer to this question is negative. In fact we will show

THEOREM 4. Let {r, 0} be a theory of homotopy groups on the category
$c, which satisfies only Axioms I and II (or I and II’). Then r(K(Z, 1)) is

torsion-free and abelian.

An example of such a theory of homotopy groups on $c which satisfies
Axioms I and II but not Axiom III can, for instance, be obtained by taking
the direct sum (or product) of a number of copies of the usual homotopy
groups.

Proof of Theorem 4. By Theorem 3, Axioms I and II’ imply Axiom II.
As in the proof of Proposition 7 no use was made of Axioms III and IV,
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Theorem 4 is an immediate consequence of the following group theoretical
lemma.

LEMMA 4. Let M"c -- be a functor which preserves short exact sequences.
Then M(Z) is torsion-free and abelian.

Proof. As in the proof of Proposition 11 no use was made of Proposition 8,
it follows that M(Z) is abelian.
For A abelian, let ’A A denote the map given by a a for all

a A. We now show that M(i) ().
Clearly M(i) " (). Suppose it has already been shown that

M(i-) .-

The map i is the composition
.1 .n--1

A A A A A q

where d:A A A is the diagonal map and q is as. in the proof of Proposi-
tion 11. It is readily verified that M(d) is again the diagonal map. As
application of the functor M to the above sequence yields a similar sequence,
it follows that M(i]) M(A)

Let n > 1 and consider the exact sequence

IZ z )ZZ,I.

Application of the functor M yields the exact sequence

i(Z)
() M(Z) i(ZJ .

Hence M(Z) is torsion-free.
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