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The norm N(G) of a group G is the set of elements x e G such that x -t- T
T -k x for every subgroup T of G. (G will be written additively in spite of the
fact that G need not be commutative.) The norm is, therefore, the inter-
section of the normalizers of all the subgroups of G and is a characteristic,
hence normal, subgroup of G. The main results of the paper are that the
norm N(G) is contained in the third center of G, and that the group of auto-
morphisms induced on N(G) by G is nilpotent of class 2. With certaill
reservations concerning the prime 2, we prove furthermore that the norm is
contained in the second center if and only if the group of automorphisms
induced on N(G) by G is commutative.

R. Baer [4] proved the result that the norm of a group is 0 if and only if the
center is 0. This theorem follows directly from our result that the norm is
contained in the third center, for if the center is 0, then the third center is 0,
and, afortiori, the norm is 0; the necessity follows from the obvious fact that
the norm contains the center.
The main results of the paper are obtained from a larger program, namely,

the consideration of norm pairs P, S. A norm pair P, S is defined as a pair of
groups P and S, where P is a commutative p-group and a normal subgroup
of a group G and contained in the norm of G, and where S is the group of
automorphisms induced on P by G. If a is an automorphism of the group P,
let F(a) denote the set of x e P such that x xa, i.e., the elements left fixed
by a; let P(1 a) denote the set of x xa x(1 a) for x e P.
A pair of groups P, S is termed a norm-like pair if P is a commutative p-

group and S is a group of automorphisms of P such that, for every a e S,
P(1 a) is cyclic and contained in F(a). We prove that norm pairs are
norm-like and that norm-like pairs, under certain conditions, are norm
pairs. (If P, S is a norm-like pair, then composition in P will be denoted as
addition whereas composition in S will be multiplication.)

If P, S is a norm-like pair, the elements a e S of S satisfy the equality,
k(1 a) 1 ak for all integers lc. With the aid of this equality it will be
shown that, if P, S is a norm-like pair, then S is a p-group and, in fact, the
order of a e S equals the order of P(1 a). For such pairs P, S we prove S
is of class 2 and P F. where F0 0 and F the set of x e P such that
x xa e F_I for every a e S with i 1, with p 2, S is commutative
if and only if P F2. These results demonstrate the strong connection
between norm pairs nd norm-like pairs, especially when one realizes that F
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plays the role of the intersection of P with the i1 member of the ascending
central series.

Notations

N(G) the norm of the group G.
Z(G) the center of G.
Z(G) the ith member of the ascending central series of G; in particular,
z((;) z(a).

Gp the p-component of G, i.e, the set of all elements of G whose order is
a power of the prime p.

o(x) the order of the element x.
o(G) the order of the group G.
(a) subgroup generated by a.

Section

Throughout the whole of the paper P will denote an additive commutative
p-group, i.e., a group ll of whose elements have order a power of some fixed
prime p. If P is contained in some larger group G as normal subgroup and
a is an element of G, we shll identify a with the automorphism a induces on P
nnd denote the automorphism by a. Consequently P(1 a) is, for a e G,
the commutator subgroup of the group generated by a nd P; F(a) is the,

centralizer of a in G. Since P is commutative, P(1 a) and F(a) re clearly
subgroups of P for every automorphism a of P.
Throughout this section assume that P is contained in the norm N(G) of

a group G and that P is a normal subgroup of G. Thus G induces n auto-
morphism group S on P and P, S is, therefore, a norm pair.

LEMMA 1.1. .’he centralizer of P in G contains all elements o.f infinite order
or of order prime to p.

Proof. Consider w e G such that o(w)= 0 or o(w) is prime to p.
(w) aP 0sincePisap-group. ForxeP

[w,x] -w--x+w+x= (-w-x+w)+xPsincePisnormalinG,

--w+ (--x+w+x)(w)sincexP 5=N(G).

So [w, x] e (w) n P 0, or w q- x q- w for every x e P, and the proof is
complete.

LEMMa 1.2. If a is an aulomorphism induced by an element of G on the
p-group P, then o(a) is a power qf p, and there exists a p-element a e G inducing
the aulomorphism a.

Proof. If a 1, there is nothing to prove. Consider a 1. There exists
’-a w e G such that w induces a on P. If o(w) 0 or is prime to p, w coin-

mutes with P elementwise, which contradicts a # 1; therefore, o(w) pq
with 0 < /c and q prime to p. So there exist elements a and 5 in G such that



COMMUTATIVE PRIME POWER SUBGROUPS OF TIIE NORM 273

w a + 5 and such that o(a) pk and o(5) q. 5 commutes with P, so
a e G induces the automorphism a on P. The order of the automorphism a is
the smallest multiple of a e G contained in the centralizer C of P in G, which
is the smallest multiple of a contained in C n (a), which equals the index of
C n (a) in (a) since (a) is a cyclic group; but this index is a power of p since
a e G is a p-element.

THEOREM 1.1. Let P, S be a norm pair; then, P(1 a) is, for every a e S,
a cyclic group contained in F(a) and isomorphic to P/F(a); if P is not contained
in the center Z(G) of G, then P has bounded order, i.e., there exists a positive
integer m such that p"P O.

Proof. Let a be an clement of S. The mapping ofxePtox(1 a)
x xa is an endomorphism of P with kernel F(a) and image P(1 a). By
the first isomorphism theorem, P(1 a) is, therefore, isomorphic to P/F(a).
Let a eG induce the automorphism a. For every x eP we have
x a x e (a) since P is part of the norm of G; therefore, P(1 a) <- (a)
and thus is a cyclic group which is contained in F(a) since a commutes with
multiples of itself.
Now assume that P is not contained in Z(G). Then there exists an a e S

with a 1. Let a e G be p-element inducing a on P; such an element
exists by Lemm 1.2. By the above argument, P(1 a) is contained in (a)
nd is cyclic. Since P is a p-group, P(1 a) has order p for some positive
integer i and, therefore, equals pk-a where the order of a e G is p. Consider
x e F(a). Since P is commutative, a-t-x induces a o P. P(1- a)
(a -t- x), so there exists an integer j such that p-a j(a + x) ja - jx.
Now we distinguish two cases.

Case l. (x) (a) O.
Therefore, jx p-a -ja O, or ja p-a, ja p-ia O. Hence

j pk-j’, where j’ 1 rood p. Furthermore jx 0; and this implies
p-x O, since o(x) is a power of p. Hence o(x) divides p-.

Case 2. (x) (a) O.
(x) (a) therefore contains all elements of order p in (a), which are in turn

all elements of order p in (x). Let U be the subgroup of G generated by a and
x; U is a finite commutative p-group since x e F(a) and x and a are p-elements.
The maximum of o(u) for u e U equals the maximum of o(x) and o(a) since x
:rod a are p-elements for the same prime p. Assume by way of contradiction
that the maximum order of the elements in U is o(x). Since every element of
mximum order in a finite commutative group generates a direct summand,
(x) is a direct summand of U. Hence there exists a subgroup V such that
U (x) + Vwith(x)V 0. IfV(a) 0, V contains ll elements of
order p in (a); but these elements arc in (x), which contradicts V (x) 0.
So V (a) 0. Since U is generated by a and x, the direct summand V is
cyclic, and there exists v ha + jx for integers j and h such that V (v).
Then P(I. v) P(1. ha) <= V (ha) <= V (a) O, so that v induces 1
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on P. But a is a linear combination of v and x, both of which commute with
P, and a does not induce the identity on P. Thus we have a contradiction,
and our assumption that o(x) was maximal i U is false. So o(x) <= o(a),
and this holds for all x e F(a) since x was chosen arbitrarily. As noted before,
P/F(a) is isomorphic to P(1 a). So P/F(a) has order pi, or py e F(a) for
every y eP. But pkx 0 for every x eF(a) from the above; therefore
p+P 0, and P has bounded order.

Section II

Wc now tur to more general considerations and therefore make the
following definition.

DE’INITION. We term the pair P, S of groups P and S a norm-lilce pair if
S is an automorphism group of P such that, for every a e S,

1. P(1 a) is cyclic, and,
2. P(1 a) is contained in F(a).

Throughout this section P, S will be a norm-like pair, but P is not assumed
to be contained in some larger group. However, we assume that P is a p-
group. We shall use the additive notation in P, but the multiplicative
notation in S.

IEMMA 2.1. For every pair of automorphisms a and b in S, F(a)b F(a).

Proof. Let x be an arbitrary element of F(a). Then

x(1- b) x- xb x- xab x(1- ab).

From property 2 of S,

y x(1 b) x(1 ab) eF(b) F(ab);

so y yb yab. By applying b-, y ya. Since xeF(a), x- y
xb F(a). So F(a)b <= F(a). By the same argument but with b replaced by
b-, F(a)b- -< F(a). Applying b to the last inequality, F(a) <= F(a)b, which
completes the proof.
The following lemma proves a very useful and somewhat surprising equality

obeyed by the elements of S.

.LEMMA 2.2. The following three properties of elements a and b in S are
equivalent:P(1 a) -<_ F(b);(1 a)b 1 a; 1 ab (1 a) + (1 b).

Proof. The equivalence of the first two properties, and their equivalence
with the third property, may be inferred from the identity:

1-ab= l-b+ b- ab (1 b) -t- (1 a)b.

ConoAav 2.1. If P(1 a) <- F(b) and P(1 b) <-_ F(a), then ab ha.
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Proof. The hypotheses imply by Lemma 2.2 that

1-ab (1- a)-k (1- b) 1- ba;

md this in turn implies ab ba.

COROLLARY 2.2. If U is a subgroup of S such that P(1 a) <= F(b) for
every pair of elements a, b in U, then mapping x in U on 1 x (in the ring of
endomorphisms of P) is a homomorphism.

This is an immediate consequence of Lemma 2.2.

COOLLARY 2.2’. If a is an element in S and lc an integer, then
1 ak k(1 a).

This is a special case of Corollary 2.2.

]EMMA 2.3. For every a e S, o(a) o(P(1 a)).

Proof. From property 1 of S, there exists an x e P such that x(1 a)
generatesP(1 a). Leto(P(1 a)) r. IfyeP, then.

ya" y- y - ya y- y(1 a) y- ry(l a) by Corollary2.2r,
-y since r o(P(1- a)).

O the other hand xa x ix(1 a), so that x xa if, and only if, r li.
Hence o(a) r o(P(1 a)).

Since P is assumed to be a p-group for the prime p, S is therefore a p-group
for that priIne.

]EMMA 2.4. If, for a and b in S, C is the subgroup of S generated by a and b,
and if P(1 C) is the subgroup of P generated by all the P(1 c) for c e C,
then P(1 C) P(1 a) + P(1 b), and o(c) <= max [o(a), o(b)] for every

Proof. It is clear thatQ P(1 a) + P(1 b) _-< P(1 C). Since
x(1 a)b x(1 a) -k xa(1 b) x(1 b), it follows that Qb <= Q.
Likewise we see that Qa <= Q. It is clear now that both a and b induce the
identity automorphism in P/Q; and this implies that all of C induces the
identity on P/Q and that therefore P(1 C) -_< Q. Hence Q P(1 C).
For the remainder of the lemma remember that, if a commutative p-group is
the sum of 2 cyclic groups, the order of each of its cyclic subgroups cannot
exceed the maximum of the orders of the 2 summands. From Lemma 2.3,
the order of c in C equals the order of P(1 c). Since, for every c e C,
P(1 c) is cyclic by property 1 of S, we can apply the previous remark to
yield o(c) <= max [o(a), o(b)].

DEFINITION. If a and b are in S, we say a and b are disjoint elements, or just
disjoint, when P(1 a) P(1 b) 0.
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COROLLARY 2.3. If C <= S is the group generated by a and b, and if a and
b are. disjoint elements or o(a) o(b), then o(ab) max [o(a), o(b)].

Proof. Assume by symmetry that o(a) <= o(b). By Lemma 2.4, o(ab)
max [o(a), o(b)].

Case 1. o(a) < o(b).
Then o(ab) <-_ o(b). Since C is also generated by a and ab, o(b)

max [o(a), o(ab)]. But o(a) < o(b), so o(b) <= o(ab). So o(b) o(ab)
max [o(a), o(b)].

Case 2. a and b are disjoint.
If o(a) < o(b), then o(ab) max [o(a), o(b)] by Case 1. Assume therefore

that o(a) o(b). Since a and b are disjoint, P(1 C)
P(1 b) and hence, by Lemma 2.3, o(P(1 C)) o(a).o(b) o(a).
Since C is likewise generated by a and ab, we have P(1 C) P(1 a)
P(1 ab); and we deduce that o(P(1 C)) is a divisor of o(a).o(b) by
Lemma 2.3. But it follows from Lemma 2.4 that o(ab) is a divisor of
max [o(a), o(b)] o(a). Hence o(a) o(P(1 C)) is both a divisor and a
multiple of o(a).o(ab). Consequently o(ab) o(a) max [o(a), o(b)].

Section III

We still continue the study of norm-like pairs P, S, obtaining va,rious
necessary and sufficient conditions for elements of S to commute.

LEMMA 3.1. If, for a e S and b e S, any of the following four conditions
holds, then ab ba"

1. P(1- a) <= F(b)and P(1 -b) =< F(a);
2. P(1 a) -<_ P(1 b);
3. 0 P(1 a) nP(1- b);
4. there exists a c e S such that o(a) <= o(c) and c and b are disjoint elements.

Proof. Assume condition 1. Then (1 a) (1 b) 0 (1-- b) (1 a),
so 1 a- b -4- ab 1 b- aft- ba 1 a- b -k ba; cancelling from
both sides, ab ba. Assume 2. If the inequality is actually equality, then
property 2 of S reduces condition 2 to condition 1. So assume the inequality
is strict. By Lemma 2.3, o(a) < o(b); by Corollary 2.1, o(ab) o(b). Ap-
plying Lemma 2.4, P(1 b) P(1 ab). As in the argument above, b
commutes with ab, so ab ba. Assume 3. Assume by symmetry that
o(a) <= o(b). Let C be the subgroup of S generated by a and b. Then

o(a) .o(ba)o(P(1 C)) o(a).o(b)
o[P(1 a) n P(1 ba)]"

By Corollary 2.1, o(ba) <= o(b), so 0 P(1 a) n P(1 ba). Consider
xeP(l b). From property 2 of S,

x(l a) x(1 ba) P(]- a)n P(1 ha);
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SO x(1- a)= 0, and P(1- b)<= F(a). Adding this to the fact that
P(1- a) <= F(a) yields P(1- C) <= F(a). So P(1- ba) <- F(a), and there-
fore, P(1 ba) <= F(a) n F(ba) F(b), by applying a-1. Hence, P(1 a) =<
P(1 C) .<= F(b), and we are again reduced to condition 1, thus proving
condition 3 implies ab ha. Assume 4. If a and b are disjoint, we can
apply 3. Assume a and b are not disjoint. Since P(1 d) is a cyclic p-group
for every d e S, and since c and b are assumed disjoint, c and a must be dis-
joint. Since it is assumed that o(a) <= o(c), we reproduce the counting argu-
ment used above in 3 to yield a and ca are disjoint. Since b and a are not
disjoint by assumption, b and ca are. By 3, bc cb, and bca cab. So
cab bca cba, and ab ba again.

Coo1LAtY 3.1. If, for a e S, there exist c e S and d e S such that
o(a) <= o(c) <-o(d) and such that c and d are disjoint, then a e Z(S);
if P(1 S) =< F(S), where P(1 S) is the group generated by all P(1 a)
for a e S and F(S) as F(a), then S is commutative.

Proof. Consider an arbitrary b e S. If b and c are disjoint, we can apply
condition 4 of Lemma 3.1 to yield ab ha. If b and c are not disjoint, then
b and d are, since c and d are disjoint, and we can apply condition 4 to the
triple a, d, b and obtain ab ha. Since b was chosen arbitrarily, a is con-
tained in the center of . For the second half of the corollary, consider an
arbitrary pair of elementsaandbinS. P(1- a) =< P(1- S) <= F(S) <-_
F(b); similarly, P(1 b) -<- F(a). Applying condition 1 of Lemma 3.1 yields
ab ha. a and b were chosen arbitrarily, and the proof is complete.

LEMMA 3.2. If, for a and b in S, ab ha, then P(1 a) <= F(b).

Proof. Using property 2 of S,

1-- ab a- a ab (1- a-- a ab)ab (1 a)b -- a(1. b)a

b- 1--[- 1- ab-a- ab 1-ab+a- 1+ (1 a)b;
the last equality follows from the fact that endomorphisms of a commutative
group additively commute. Subtracting 1 ab from the first and last and
transposing a 1, we have a (1 a:)b, and the result is established.

CooL.Y 3.2. If P is a p-group with p 2, then a e Z(S) "if and only ,
for every b S, P(1 a) <= F(b) and P(1 b) <= F(a).

Proof. The sufficiency has been established by condition 1 of Lemma 3.1.
For the necessity, let a be in the center of S. Consider an arbitrary b e S.
From the previous lemma, P(1 a) <= F(b). From property 1 of S, there
exists an x e P such that x(1 a) generates P(1 a). From Lemma 2.2,
x(1 a:) 2x(1 a) e F(b). But 2 and p are relatively prime, so 2x(1 a)
generates P(1. a), ad I)(1 a) is, therefore, contained in F(b). By the
same argument, P(1 b) F(a). Since b was chosen arbitrarily, wehavethe
result.
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For Theorem 3.1 nd for future use, we define F0 0, F F(S)=
,s F(a), F M1 x e P such that x xa rood F for every a S, nd, in-
ductively, F the set of x e P such that x =-- xa rood F_ for every a S
(i 1, 2,...). F. is that subgroup of P whose elements generate cosets
mod F which re left fixed by every a S; there is no confusion in pplying n
element of S to P/F since the modulus is S-inwrint.

THEOEM 3.1. If P, S is a norm-like pair but with p 2, and if S is com-
mutative, then P F and (1 S), the set of (1 a)(1 b) for all a and
b in S, is 0; conversely, [ P, S is a norm-like pair and P F, then S is com-
mulative.

Proof. Assume S is commutative nd p 2. Consider a e S. By
Corollary 3.2, P(1 a) <-_ F(b) for every b e S. Therefore, for every a e S,
P(1 a) <= F(S) F. So, for every x e P nd every a S, x xa rood F,
which is equivalent to P F. Since, for every x P nd every a nd b in
S, x(1 a)F(b), we hve x(1 a)(1 b) 0, or (1 a)(1 b)is the
0-endomorphism of P for every a nd b in S. Since P-- F implies
P(1 S) <-_ F(S) F., the converse of the theorem is direct consequence
of Corollary 3.1.

Section IV
Throughout this Section let P, S be a norm-like pair but with the added

assumption that the elements of P have bounded order pro, i.e., there exists
a positive integer m such that p’P 0. By Lemma 2.3, Sm l, so S
contains elements of maximum order. In fact, every element of S has
maximum order in S or can be written as a product of two such, for let a e S
be of maximum order in S and consider c e S. If o(c) is maximal in S, there
is nothing to prove. If o(c) < o(a), then o(ac) o(a) by Corollary 2.1, and

--1c a ac is a product of two elements of maximum order.

Remark. If S contains elements a and b of maximum order such that a and
b are disjoint, then for an arbitrary c e S application of Corollary 3.1 to the
triple c, b, a yields c Z(S). Hence, S equals its center and is consequently
commutative.

LEMMA 4.1. If S contains elements a and b of maximum order pk such that
a and b are disjoint, then F(S) F(m) for every m e S of maximum order in S,
P/F(S) is cyclic of order pk and P F

Proof. Let a and b be elements of S which are disjoint and have maximum
order p. :By duplicating the argument at the end of the proof of Corollary
2.1, we see that ab and b are disjoint and a and ba are disjoint. If x e F(a),
x(1 b) x(1 ab) 0 since b and ab are disjoint; so F(a) <= F(b). Sim-
ilarly, F(b) <= F(a). So F(b) F(a). If c e S is of maximum order in S,
then c and a, or c and b, are disjoint since all P(1 d) with d e S are cyclic
p-groups. Applying the above argument to the proper pair, say c and a,
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we hve F(c) F(a). Therefore, all F(m) are equal for m e S of maximum
order in S. Since S is generated by its elements of maximum order [as noted
at the beginning of this section], F(S) is the intersection of all the F(m) for
m e S of maximum order. But all these F(m) have been shown to be equal;
and thus we have F(S) F(m) for every m e S of maximum order; and the
first part of the lemma is established. As in Theorem 1.1, P/F(m) is iso-
morphic to P(1 m) which is cyclic and has order o(m). But F(S) F(m)
for m e S of maximum order, and o(m) pk. So P/F(S) is cyclic of order
p For every m e S of maximum order, P(1 m) <= F(m) F(S). Since
every element of S is of maximum order in S or is a product of 2 such ele-
ments, Lemma 2.4 yields P(1 S) <= F(S) F1. This is precisely equiv-
,ulent to P F..

Remarlc. If P/F(S) is cyclic, then there exists an x e P such that x(1 a)
generates P(1 a) for every a e S. For let x e P be a representative of a
coset which generates P/F(S). Consider a e S. From property 1 of S,
there existsayePsuchthaty(1 a) generatesP(1 a). y lcx -+- z
for some integer ]c and some zeF(S), y(1 a) (/cx -t- z)(1 a)
lcx(1 a) since F(S) <-_ F(a). So x(1 a) generates P(1 a).

THEOREM 4.1.
Z(S).

If P, S is a norm-like pair, S is nilpotent of class 2, i.e.,

Proof. If S contains elements a and b of maximum order which are dis-
joiat, then S is commutative as has already been remarked. If S does not
contain 2 such elements, let D fls P(1 m) with m of maximum order in
S; then we are going to show that 0 < D -<- P, and that there exist elements
a and b of maximum order such that P(1 a) nP(1 b) D. For let
m e S be of maximum order in S. We can consider the various intersections
P(1 m) n P(1 It) for every
cyclic p-group, and since the lattice of subgroups of a cyclic p-group is simply
ordered and contains a finite number of elements, there exists a j e S of
maximum order such that P(1 m) n P(1 j) E _-< P(1 m) n P(1
for every ] e S of maximum order in S. Therefore, E =< P(1 It) for every
lce S of maximum order, and hence E <_- D. From the definition of D,
D =< P(1 m) nP(1 -j) E. SoD E, and m and j are the elements
whose existence we wish to establish. Let T <- S be the set of all a e S such
that P(1 a) N D; Tis a normal subgroup of S. If o(D) p, and if
a e S is of maximum order p, applying Lemma 2.3 to S/T and P/D yields
o(aT) p-. We claim aT has maximum order in SIT, for consider
cT e SIT. If o(c) is maximal in S, then o(cT) p- o(aT). If not, then
o(ac) o(a) from Corollary 2.1. Let R <- S/T be the group generated by
aT ad acT. Applying Lemma 2.4 to R, we have o(cT) <-_ max [o(aT), o(acT)],
hence _-< pk-. So o(cT) <- o(aT) for every cT S/T, and aT has maximum
order in SIT. SinceP(1 a) nP(1 b) D,

(P/D)(I aT) n (P/D)(1 bT) D,



,80 LA’WRENCE THOMAS WOS

the 0 of P/D. Applying the first remark of this section to S/T, we see that
SIT is commutative. For every e T and every m e S of maximum order,
P(1 t) =< D__< P(1 m). From Lemma 3.1, tm- mtforeveryteTand
every m e S of maximum order in S. Since S is generated by its elements of
maximum order, T<= Z(S). Therefore, S Z2(S).

THEOREM 4.2. If P, S is a norm-like pair, P

Proof. If S contains elements a and b of maximum order which are dis-
joint, then, by Lemma 4.1, P F. =< Fa ;so P Fa. If S does not contain
two such elements, we can define T and D as in the previous theorem. Since
S/T is an automorphism group of P/D satisfying the hypothesis of Lemma
4.1, we conclude that P/D equals its F with respect to SIT. Since
D <= F(S) F, this is equivalent to P

THEOREM 4.3. I.f P, S is a norm-like pair such that S contains elements a
and b of maximum order which are disjoint and such that p 2, then S and
P(1 S) are isomorphic.

Proof. By Lemma 4.1, P/F(S) is cyclic; therefore, by the second remark
of this section, there exists an x e P such that x(1 c) generates P(1 c)
for every c S. The existence of the elements a and b implies that S is com-
mutative; this coupled with the fact that p 2 implies P(1 d) -< F(c) for
every d and c in S, by Theorem 2.1. Therefore, for every c and d
every y e P,

y(1 cd) y(1 c+ c- cd)

y(1- c) -t- y(1 d)c y(l.. c) + y(1 d).

If, for at e S gnd y e P, y(1 a) is an grbitrgry clement of P(l. S),
then there exist integers / such that

y(1 a) lcx(1 a) .x([ a) x(1 -II,a)
So every element of P(1 S) equals x(1 c) for some c e S nd that special
x whose existence was established earlier in the proof. If we mp c e S to
x(1 c) e P, we huve a homomorphism from S onto P(1 S), and its kernel
is exactly 1.

Section V
We IlOW turn to consideration of the norm N(G) of the group G. By

Theorem 1.1, we see that, if P, S is a norm pair, then P, S is a norm-like pair.
We can therefore tpply all results established in Sections II, III, and IV to
norm pairs P, S. For example, where S is a meInbcr of the norm pair P, S
:md a e S, o(a) o(P(1 a)), and F(a) is nornal in G.

THEOREM 5.1. The norm N(G) of the group G is contained in the third center
Z,(G) of G.
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Proof. It follows directlyfrom the definition of the norm that all subgroups
of N(G) are normal in N(G) which is, therefore, commutative or hamiltonian.

Case I. N(G) contains an element of infinite order.
In this case, the norm and center of G are the same (see Baer [1, 3]), and

the theorem is trivially true.
Case 2. N(G) is commutative and contains no elements of infinite order.
Then N(G) equals the direct sum of NT, where NT is the p-component of

N(G), i.e., NT is that subgroup of the norm consisting of all x e N(G) whose
order is a power of the prime p. Consider the prime p. N is a characteristic
subgroup of N(G), and N(G) is characteristic in G; so NT is normal in G, and
G induces a group of automorphisms ST on NT. NT, ST is a norm pair.
N, <= Z(G), or, by Theorem 1.1, N, has bounded order. In the latter ease
we can apply Theorem 4.2 to yield N F. But F is precisely the inter-
section of P vith the i*h member of the ascending central series of G, and
therefore NT is contained in Z(G). Since p was chosen arbitrarily and N(G)
equals the direct sum of the NT, N(G) <= Z(G), which completes Case 2.

Case3. N(G) is hamiltonian.
By a well known theorem hamiltonian groups are the direct sum of three

groups" a commutative group all of whose elements have odd order, a eom-
Inutative group all of whose nonzero elements have order 2, and the qua-
ternions; see Zassenhaus [1]. So again the norm of G is the direct sum of its
p-components, but, different from Case 2, N is not commutative. N. is, in
fact, the direct sum of the quaternions and a commutative group all of whose
nonzero elements have order 2. N contains a unique nonzero element w such
that w 2x for some x e N. (w) is therefore a characteristic subgroup of N.
Since N. is normal in G, (w) is normal in G. Adding this to the fact that
o(w) 2 shows that w Z(G). Baer [2] proved that when the norm of a

group is hamiltonian, the following four statements must hold" G contains no
elements of infinite order; G contains no elements whose order is divisible
by 8; all elements of G whose order is divisible by 4 are of the form z -t- v,
where v commutes with every element in N and z e N. with o(z) 4.; all
elements of G whose orders are not divisible by 4 commute with every element
in N.. Hence, if the commutator [a, x] -a x -t- a + x for some a e G
trod some x e N. is different from 0, a z -t- v, where v commutes with N. and
z e N with o(z) o(z) 4. To see this, recall the structure of N.. There-
fore, when [a, x] 0 for a e G and e N, there exists a z e N. such that
[a, x] [z, z] w. Since we established earlier that w e Z(G), N <= Z.(G).
We can apply the argument of Case 2 to the complement of N. in N(G) to
show that the complement is contained in Z(G). Since N(G) equals the
direct sum of N and its complement, N(G) Z.(G), and the proof of the
theorem is complete.

Since the norm N(G) as the intersection of all normalizers of all subgroups
of G is a normal subgroup of G, G induces a group of tutomorphisms on N(G).
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THEOREM 5.2. The group of automorphisms induced by the group G on its
norm is nilpotent of class 2.

Proof. Let S denote the group of automorphisms induced by G on N(G).
If N(G) contains an element of infinite order, then N(G) Z(G) (see Baer
[1, 3]); then S 1, and there is nothing to prove. Assume that every element
in the norm of G has finite order.

Case 1. N(G) is commutative.
Then N(G) equals the direct sum of N. For the prime p, let S all

a e S such that a 1 on Nq for every prime q p. Nv is a characteristic
subgroup of N(G) for every prime p, and N(G) is characteristic in G; so N
is normal in G. By using Lemma 1.1, we have S is precisely the group of
automorphisms induced by G on N. N, S is a norm pair and therefore, by
Theorem 1.1, is a norm-like pair. If N <= Z(G), S 1. If N is not con-
rained in the center of G, then N has bounded order by Theorem 1.1, and we
can apply Theorem 4.2 to obtain S, is nilpotent of class 2. Using Lemma 1.1,
we see that S is the direct product of its p-components S, and therefore S
itself must be nilpotcnt of class 2.

Case 2. N(G) is hamiltonian.
Recall the structure of hamiltonian groups stated in Case 3 of Theorem 5.1

to see that N(G) is again the direct sum of N. For p 2, we can argue as
in Case 1 to obtain S, is nilpotent of class 2. Let C the centralizer of
N: in. G. Since N is a normal subgroup of G, C is normal also. Let Q be the
quaternions. Using Baer’s result on groups with hamiltonian norm cited in
Case 3 of Theorem S.l, weseethatG Q + C. Cn Q 2Q. S2isiso-
morphic to G/C (Q + C)/C is isomorphic to Q/Q n C Q/2Q the
4-group. So $2 is commutative. Since commutativity was not needed in
the proof of Lemma 1.1, we can again apply Lemma 1.1 to obtain S equals the
direct product of S. Since S, is nilpotent of class 2 for p 2, and since S
is commutative, S is of class 2.
We can connect and sharpen Theorems 5.1 and 5.2 with the following

theorem.

THEOREM 5.3. Where N(G) is hamiltonian, N(G) <= Z.(G) if and only if the
group ofautomorphisms S induced on N(G) by G is commutative; where N(G) is a
commutative group containing no elements of infinite order and 2N O,
N(G) <= Z(G) if and only if S is commutative.

Proof. Assume N(G) is hamiltonian. By Theorem 3.1., N, <= Z.(G) if and
only if S is commutative for p 2. For p 2, S was shown to be com-
mutative in Case 2 of Theorem 5.2, and N <= Z(G) was shown in Case 3 of
Theorem 5.1. Since S equals the direct product of S, and N(G) equals the
direct sum of N,, the first part of the theorem is established. Now assume
N(G) is commutative and contains no elements of infinite order and that
2N 0. S: thus contains elements of maximum order. If S. contains 2
such which are disjoint, then, by Lemma 4.1, N2 F. Z(G) n N this
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in turn implies, by Theorem 3.1, that $2 is commutative. If $2 does not
contain 2 elements of maximum order which are disjoint, then all N(1 a)
are equal for a leS, since 2N. 0. ThenN2(1 S) <= F(S2)
Z(G) a P. This implies, by Corollary 3.1, that $2 is commutative.
N(1 S.) -< Z(G) is equivalent to N2 <= Z.(G). Therefore, in either case,
N. <= Z(G), and $2 is commutative. For p 2, Np <= Z(G) if and only if
Sp is commutative, by Theorem 3.1. So again S is commutative if and only
if N(G) <= Z(G).
By examining the proof just completed nd by reclling that, by Ber

[1, 3], if the norm contains n element of infinite order, then the norm equals
the center, we see there is only one obstacle to the theorem" N(G) <-_ Z(G) if
nd only if S is commutative. This obstacle is the prime 2 md the restriction
it imposes on the sufficiency of the desired theorem. This restriction is
exemplified by Theorem 3.1.

Section VI
Theorem 1.1 establishes that norm pairs P, S are norm-like pairs and, if

S 1, P has bounded order. A trivial example of the converse is provided
by the norm-like pair P, S with S 1. Theorem 6.1. gives sufficient condi-
tions for norm-like pairs to be norm pairs.

THEOREM 6.1. If P, S is a norm-like pair such that P has bounded order p"
with p 2 and such that S contains elements of maximum order which are dis-
joint, then P, S is a norm pair.

Proof. The problem is to construct a group G such that P <= N(G), P is
normal in G, and G induces exactly the group of automorphisms S on P. If
S 1, let G P. If S 1, S contains 2 elements of maximum order which
are disjoint. From Lemma 4.1 and the second remark of Section IV, there
exists an x e P such that x(1 c) generates P(1 c) for every c e S. By the
first remark of Section IV and Lemma 2.3, S is a commutative group of
bounded order, and therefore S has a basis b. Let G be the group formed by
adjoining x to P with the following properties" x induces b on P, x -t- x
x. - x, and p"x x(1 b). G contains P as a normal subgroup, and
induces exactly S as automorphism group on P. Therefore, we need only
show that P <= N(G). The general element of G has the form y a with
y e P and a a finite sum of x, where a given x may occur more than once.
If a e G induces the automorphism a on P, then a y y a -k y(1 a)
since P is commutative. Since p’P 0 and p is not divisible by 2,

p"(a + y) p’’a + p"y + y(1 a) + 2y(1 a) -[-

+ (p -1)y(1 a) p"a +(p’-l)p’/2.y(1 a) p’a.

By Corollary 3.2,

1 cd 1 c+ c- cd (1 c)-k (1 d)c (1 c) - (1 d)
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for every c and d in S. Therefore, if a

p"a x(l 51) +... - x(1 bk) x(l- IIb,:),
and the automorphism a IIbi since xi induces b,x. Sincex(1 a) generates
P(l a) and p"a p(a nt- y), P(1 a) =< (a + y). Sincea-t- ywasa
general element of G, we have, for every z e P and every w e G, z(1 w)
z w z + w (w). This is equival(mt to P <- N(G) since every element
of G has finite order.
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