ON WITt VECTORS AND PERIODIC GROUP-VARIETIES

BY
Iacopo Barsotti

1. Witt vectors were introduced in [11] (see bibliography at the end of the paper), and served the purpose of constructing unramified p-adic fields with preassigned residue fields; they entered the theory of analytic groups through the extensive use made of them in [7], [8], [9]; and they have now entered the field of algebraic geometry via analytic groups (see [3] or [4]), and also directly as in [10]; they play an essential role in some work still in progress (see introduction of [5]). The reason for the introduction of Witt vectors in algebraic geometry is in part the same which led to their discovery, namely the need of building a ring of characteristic zero from one of positive characteristic, but mainly the fact that truncated Witt vectors afford examples of periodic group-varieties, in the sense of [1]. Both reasons have a specious element in them, in that there is no a priori assurance that other, inequivalent, constructions would not accomplish the same purpose, or perhaps lead to more detailed results. A heuristic argument against this supposition is however offered by the fact that another construction, the hyperexponential vectors introduced in [6] for applications to the theory of analytic groups, turned out to be equivalent to Witt vectors, the specific transformation law being given in [8]. In this note we propose to show that any periodic group-variety of dimension n and period p^{n} is isogenous to a group-variety constructed by means of Witt vectors, ${ }^{1}$ so that the use of these, for the purposes described above, will remain fully justified.
We recall briefly the definition and first properties of Witt vectors as given in [11]. Let p be a prime number, and let $\left(x_{0}, x_{1}, \cdots\right)$ be an ordered set (Witt vector), either finite or countably infinite, of indeterminates; for each i, set

$$
g_{i}(x)=\sum_{j=0}^{i} p^{j} x_{j}^{p_{i}^{i-j}} \in I\left[x_{0}, x_{1}, \cdots\right],
$$

I being the ring of integers. Then

$$
x_{i}=f_{i}\left(g_{0}(x), \cdots, g_{i}(x)\right) \in R\left[g_{0}(x), g_{1}(x), \cdots\right]
$$

R being the field of rationals. If (y_{0}, y_{1}, \cdots) is another Witt vector, of the same cardinality as $\left(x_{0}, x_{1}, \cdots\right)$, define

$$
z_{i}^{\prime}=f_{i}\left(g_{0}(x)+g_{0}(y), g_{1}(x)+g_{1}(y), \cdots\right)
$$

[^0]it is proved in [11] that
$$
z_{i}^{\prime}=\varphi_{i}^{\prime}\left(x_{0}, \cdots, x_{i} ; y_{0}, \cdots, y_{i}\right) \in I\left[x_{0}, x_{1}, \cdots ; y_{0}, y_{1}, \cdots\right]
$$
so that the image φ_{i} of $\varphi_{i}^{\prime}, \bmod p I[x ; y]$, exists, and belongs to $C_{p}[x ; y], C_{p}$ being the prime field of characteristic p. We shall accordingly set
$$
z_{i}=\varphi_{i}\left(x_{0}, \cdots, x_{i} ; y_{0}, \cdots, y_{i}\right)
$$
and
$$
\left(x_{0}, x_{1}, \cdots\right)+\left(y_{0}, y_{1}, \cdots\right)=\left(z_{0}, z_{1}, \cdots\right)
$$

This notation remains meaningful when the x 's and y 's are replaced by elements of an integral domain K containing C_{p} as a subfield; when this is done, it is proved in [11] that the Witt vectors of a given cardinality, with elements in K, form an abelian group with respect to the addition as defined above. The mappings $\pi\left(x_{0}, \cdots, x_{n}\right)=\left(x_{0}^{p}, \cdots, x_{n}^{p}\right), \mathfrak{t}\left(x_{0}, \cdots, x_{n}\right)=$ $\left(0, x_{0}, \cdots, x_{n}\right), \varrho\left(x_{0}, \cdots, x_{n}\right)=\left(x_{0}, \cdots, x_{n-1}\right)$ (which reduces to the identity if $n=\infty$) are respectively a group-isomorphism, a group-isomorphism, and a group-homomorphism. They commute with each other, and satisfy the relation

$$
\begin{equation*}
\boldsymbol{\pi t} \varrho=p=\text { multiplication by } p \tag{1}
\end{equation*}
$$

In order to introduce the hyperexponential vectors, we shall consider a countable infinity of indeterminates z, u_{0}, u_{1}, \cdots, and the power series (in z) $\exp \sum_{i=0}^{\infty} u_{i} z^{p^{i}}$; if x_{i} is the coefficient of $z^{p^{i}}$ in this power series, the x_{i} are algebraically independent over R, and, according to [6], there exist polynomials $e_{j}^{\prime}\left(x_{0}, x_{1}, \cdots\right)(j=1,2, \cdots)$, with coefficients which are p-adic integers in R, such that e_{i}^{\prime} is the coefficient of z^{j} in the above power series; moreover, $e_{j}^{\prime}=x_{i}$ if $j=p^{i}$, while if $p^{i}<j<p^{i+1}, e_{j}^{\prime}$ involves only the indeterminates $x_{0}, x_{1}, \cdots, x_{i}$. Denote by $e_{j}\left(x_{0}, x_{1}, \cdots\right)$ the image of $e_{j}^{\prime} \bmod p I_{p}[x]$, so that $e_{j} \in C_{p}[x]$; if now $\left(x_{0}, x_{1}, \cdots\right)$ and $\left(y_{0}, y_{1}, \cdots\right)$ are ordered sets (hyperexponential vectors) of the same cardinality, either finite or countable, of elements of an integral domain K containing C_{p} as a subfield, define $\left(x_{0}, x_{1}, \cdots\right)\left(y_{0}, y_{1}, \cdots\right)=\left(z_{0}, z_{1}, \cdots\right)$ by setting

$$
\begin{equation*}
z_{i}=x_{i}+y_{i}+\sum_{1}^{p^{i-1}} e_{j}(x) e_{p^{i-j}}(y) \tag{2}
\end{equation*}
$$

The set of all the hyperexponential vectors, of a given cardinality, with elements in K forms an abelian group with respect to the product as defined above. The operations π, t, ϱ can be defined in the same manner as for Witt vectors, and (1) is satisfied. It is proved in [8] that this group is isomorphic to the group of Witt vectors.
2. In this note we depart from previous notations in that we use the symbol + to denote the law of composition on a commutative group-variety. If G is a commutative group-variety over the field k of characteristic $p \neq 0$, and if $\left\{x_{1}, \cdots, x_{n}\right\}$ is a n.h.g.p. (nonhomogeneous general point) of G, there
is a commutative group-variety G^{p} over k whose n.h.g.p. is $\left\{x_{1}^{p}, \cdots, x_{n}^{p}\right\}$; the natural homomorphism of G onto G^{p}, previously denoted by $\delta_{1, G}$, will now be denoted by π; if m is an integer, the endomorphism which maps any nondegenerate $P \in G$ onto $m P$, previously denoted by $m \delta_{G}$, will simply be denoted by m. For the meaning of "factor set", "crossed product", and of the symbols $\Gamma(G, V), \Gamma_{0}(G, V)$, see [1].
(3) Lemma. Let k be an algebraically closed field of characteristic $p \neq 0$; let L be a 1-dimensional vector variety over k, and let U be an n-dimensional periodic group-variety over k. Let ε be a factor set of L into $U(\varepsilon \in \Gamma(L, U))$ such that, for a generic $P \in L, \varepsilon\left[P \times P_{1}\right]+\varepsilon\left[2 P \times P_{1}\right]+\cdots+$ $\varepsilon\left[(p-1) P \times P_{1}\right]=R$ is independent of $P\left(P_{1}\right.$ being the copy of P on a copy L_{1} of L). Then $\varepsilon \in \Gamma_{0}(L, U)$.

Proof. Let G be the crossed product $\{L, U, \varepsilon\}$, and let λ be the rational mapping of L into G used in the definition of crossed product; namely, $\alpha \lambda P=P$ for a generic $P \in L$, if α is the natural homomorphism of G onto $L=G / U$. We shall first of all replace λ by $\lambda-\lambda E_{L}$ (E_{L} being the identity of L); this implies the replacement of ε by $\varepsilon-\lambda E_{L}$, which is associate to ε; we shall continue to denote $\lambda-\lambda E_{L}$ by λ, and $\varepsilon-\lambda E_{L}$ by ε. We have, for generic $P, Q \in L: \lambda P+\lambda Q=\lambda[P+Q]+\varepsilon\left[P \times Q_{1}\right]$, hence $p \lambda P=\lambda p P+$ $\varepsilon\left[P \times P_{1}\right]+\varepsilon\left[2 P \times P_{1}\right]+\cdots+\varepsilon\left[(p-1) P \times P_{1}\right]=\lambda p P+R=\lambda E_{L}+$ $R=R$; for $P=E_{L}$ this gives $R=E_{U}=E_{G}$, so that $p \lambda L=E_{G}$. As λL is a 1 -dimensional subvariety of G, this implies that it is a subvariety of the maximal vector subvariety V of G; now, the maximal vector subvariety Z of U is a component of $V \cap U$, outside the degeneration locus; we can thus assert that $\varepsilon\left[P \times Q_{1}\right]=\lambda P+\lambda Q-\lambda[P+Q] \in Z$. Hence $\{L, Z, \varepsilon\}$ has a meaning, and the property of ε, when applied to $\{L, Z, \varepsilon\}$, shows that this group-variety has period p, and is therefore a vector variety, by Lemma 3.6 of [1]; but then $\varepsilon \in \Gamma_{0}(L, Z)$, and also $\varepsilon \in \Gamma_{0}(L, U)$, Q.E.D.

Let $\left\{x_{0}, \cdots, x_{n-1}\right\}$ be the n.h.g.p. of an n-dimensional projective space G over a field k of characteristic $p \neq 0$; let G_{1}, G_{2} be copies of G, and let $\{y\}$, $\{z\}$ be the copies of $\{x\}$ in $k\left(G_{1}\right), k\left(G_{2}\right)$ respectively; define a law of composition on G by setting $\left(z_{0}, \cdots, z_{n-1}\right)=\left(x_{0}, \cdots, x_{n-1}\right)+\left(y_{0}, \cdots, y_{n-1}\right)$, where the three vectors involved are Witt vectors. Then it is easily verified that G becomes an n-dimensional periodic group-variety of period p^{n}, whose degeneration locus is the hyperplane at infinity for $\{x\}$; such G will be called the n-dimensional Witt variety over k, and denoted by $W_{n}(k)$. The homomorphism π becomes a purely inseparable endomorphism of degree p^{n}; t becomes an isomorphism of $W_{n}(k)$ into $W_{n+1}(k)$; and ϱ becomes a separable homomorphism of $W_{n}(k)$ onto $W_{n-1}(k)$; for $n=1$, we shall identify ϱ with the zero homomorphism. Also, $W_{n}(k)$ is a crossed product of $W_{n-1}(k)$ and $W_{1}(k)$, and ϱ is the related natural homomorphism. Conversely, we have:
(4) Lemma. Let G be a periodic group-variety of dimension $n>0$ and period p^{n} over the algebraically closed field k of characteristic p; let V be the maximal
vector subvariety of G, certainly of dimension 1 , and set $A=G / V$; let $\mathfrak{\rho}$ be the natural homomorphism of G onto A, and set $U=p G$. Assume the existence of an isomorphism ζ of U onto ζU, and of an isomorphism t of A onto U, such that, for any nondegenerate $P \in G, p P=\zeta^{-1} \pi \zeta \operatorname{to} P$. Then $G \cong W_{n}(k)$.

Proof. By Lemma 3.6 of [1], the result is true if $n=1$; we can therefore apply a recursive argument on n.

Part 1. Assume $n>1$; by the lemma just mentioned, A has period p^{n-1} and dimension $n-1$; let W be the maximal vector subvariety of A, and set $B=A / W$; let $\boldsymbol{\sigma}$ be the natural homomorphism of A onto B, and set $Z=p A$. Then the nondegenerate points of Z are of the type $p_{\varrho} P=\varrho p P$ for $P \epsilon G$, so that $Z=\varrho U$; now, $V \cong U$, so that $\varrho U \cong U / V \cong A / W=B$, or $Z \cong B$. For a nondegenerate $P \in G$ we have $p_{\varrho} P=\varrho p P=\varrho \zeta^{-1} \pi \zeta t \varrho P$, which is the same as $p Q=\mathbf{e} \zeta^{-1} \pi \zeta t Q$ for a nondegenerate $Q \in A$; the relation $p=\zeta^{-1} \pi \zeta$ to shows that $\pi \zeta U \cong \zeta U$, or that π is an endomorphism of ζU; consequently, for any nondegenerate $Q \in A, \zeta^{-1} \pi \zeta \mathrm{t} Q=\mathrm{t}^{-1} \pi \eta Q$, where $\eta=\zeta \mathrm{t}$, so that $p Q=$ $\rho t \eta^{-1} \pi \eta Q$. Now, for a suitable isomorphism s of B onto Z we have $\varrho \mathbf{t} Q=\mathbf{s} \boldsymbol{\sigma} Q$ for any nondegenerate $Q \epsilon A$, so that $p Q=s \delta \eta^{-1} \pi \eta Q$. Since π is an endomorphism of ηA onto itself, it is also an endomorphism of ηZ onto itself; therefore there exists an isomorphism s^{*} of B onto Z such that, for any nondegenerate $Q \in A$, s $\boldsymbol{\sigma}^{-1} \pi \eta Q=\eta^{-1} \pi \eta \mathbf{s}^{*} \boldsymbol{\partial} Q$, or $p Q=\eta^{-1} \pi \eta \mathbf{s}^{*} \boldsymbol{\partial} Q$. This proves that A satisfies the conditions stated in the lemma for G; by the recursive assumption, we conclude that $A \cong W_{n-1}(k)$.

Part 2. Having reached the result $A \cong W_{n-1}(k)$, there is no loss of generality in assuming $A=W_{n-1}(k)$. By Lemmas 3.2 and 3.6 of [1], we can write $G \cong\{L, A, \gamma\}$, and of course $G^{\prime}=W_{n}(k)=\left\{L, A, \gamma^{\prime}\right\}$, where L is a 1-dimensional vector variety, and $\gamma, \gamma^{\prime} \in \Gamma(L, A)$; on the other hand, we also have $G \cong\{A, L, \delta\}, G^{\prime} \cong\left\{A, L, \delta^{\prime}\right\}$, where $\delta, \delta^{\prime} \in \Gamma(A, L)$, and $A=\{L, B, \theta\}$, $\theta \in \Gamma(L, B)$. All this implies the following: there are homomorphisms α of G onto L with kernel $U \cong A, \alpha^{\prime}$ of G^{\prime} onto L with kernel $U^{\prime} \cong A, \varrho$ of G onto A with kernel $V \cong L, \varrho^{\prime}$ of G^{\prime} onto A with kernel $V^{\prime} \cong L, \beta$ of A onto L with kernel $Z \cong B=W_{n-2}(k)$, and we may assume $\alpha=\beta \varrho$. There are also rational mappings λ of L into G, λ^{\prime} of L into G^{\prime}, μ of A into G, μ^{\prime} of A into G^{\prime}, ν of L into A, such that $\alpha \lambda=\alpha^{\prime} \lambda^{\prime}=\varrho \mu=\varrho^{\prime} \mu^{\prime}=\beta \nu=1$; and we may select $\lambda=\mu \nu, \lambda^{\prime}=\mu^{\prime} \nu$. Finally, there are isomorphisms t of A onto U, t^{\prime} of A onto U^{\prime}. A generic point of G is of the type $R=\lambda P+\mathrm{t} Q$, where $P \in L, Q \in A$, so that $p R=p \lambda P+p \mathrm{t} Q=\lambda E_{L}+\mathrm{t}_{\gamma}\left[P \times P_{1}\right]+\mathrm{t} \gamma\left[2 P \times P_{1}\right]+$ $\cdots+\mathrm{t}_{\gamma}\left[(p-1) P \times P_{1}\right]+p \mathrm{t} Q, P_{1}$ being the copy of P on a copy L_{1} of L.

Having selected $A=W_{n-1}(k)$, we can also select, in the statement of the lemma, $\zeta=\eta \mathrm{t}^{-1}, \eta$ being an automorphism of A; then $p R=p \lambda P+p \mathrm{t} Q=$ $t \eta^{-1} \pi \eta \varrho \lambda P+p \mathrm{t} Q=\mathrm{t} \eta^{-1} \pi \eta \varrho \mu \nu P+p \mathrm{t} Q=\mathrm{t} \eta^{-1} \pi \eta \nu P+p \mathrm{t} Q$. Hence,

$$
\begin{align*}
\gamma\left[P \times P_{1}\right]+\gamma\left[2 P \times P_{1}\right] & +\cdots+\gamma\left[(p-1) P \times P_{1}\right] \\
& =\mathrm{t}^{-1}\left(p R-\lambda E_{L}-p \mathrm{t} Q\right)=\eta^{-1} \pi \eta \nu P-\mathrm{t}^{-1} \lambda E_{L} \tag{5}
\end{align*}
$$

likewise,

$$
\begin{align*}
\gamma^{\prime}\left[P \times P_{1}\right]+\gamma^{\prime}\left[2 P \times P_{1}\right]+\cdots+\gamma^{\prime}[(p-1) P & \left.\times P_{1}\right] \tag{6}\\
& =\pi \nu P-\mathrm{t}^{\prime-1} \lambda^{\prime} E_{L}
\end{align*}
$$

since $\eta^{\prime}=1$ in this case. Now, there exists an automorphism φ of A such that, for a nondegenerate $S \in A, \varphi \eta^{-1} \pi \eta S=\pi S$; if we set $\gamma^{\prime \prime}=\varphi \gamma$, we have $G \cong\left\{L, A, \gamma^{\prime \prime}\right\}$, and (5) becomes

$$
\begin{align*}
\gamma^{\prime \prime}\left[P \times P_{1}\right]+\gamma^{\prime \prime}\left[2 P \times P_{1}\right]+\cdots+\gamma^{\prime \prime}[(p-1) & \left.P \times P_{1}\right] \\
& =\pi \nu P-\varphi \mathrm{t}^{-1} \lambda E_{L} \tag{7}
\end{align*}
$$

Set $\varepsilon=\gamma^{\prime \prime}-\gamma^{\prime}$; then (6) and (7) give $\varepsilon\left[P \times P_{1}\right]+\varepsilon\left[2 P \times P_{1}\right]+\cdots+$ $\varepsilon\left[(p-1) P \times P_{1}\right]=\mathrm{t}^{\prime-1} \lambda^{\prime} E_{L}-\varphi \mathrm{t}^{-1} \lambda E_{L}$, which is independent of P. Result (3) implies then $\varepsilon \epsilon \Gamma_{0}(L, A)$, or $\gamma^{\prime} \sim \gamma^{\prime \prime}$, so that $G \cong G^{\prime}=W_{n}(k)$, Q.E.D.
3. It is now expedient to restate a particular case of (4), with some modifications, in a form which is independent of the language of algebraic geometry. Let k be a field of characteristic $p \neq 0$, and let $g_{i}\left(x_{0}, \cdots, x_{n} ; y_{0}, \cdots, y_{n}\right)$ ($i=0, \cdots, n$) be polynomials in the indeterminates x_{0}, \cdots, y_{n}, with coefficients in k; set $\left(x_{0}, \cdots, x_{n}\right)+\left(y_{0}, \cdots, y_{n}\right)=\left(g_{0}(x ; y), \cdots, g_{n}(x ; y)\right)$. We say that $\left\{g_{0}, \cdots, g_{n}\right\}$ is a commutative recursive group-law over k if the following conditions are satisfied:
(a) $g_{i} \in k\left[x_{0}, \cdots, x_{i} ; y_{0}, \cdots, y_{i}\right]$;
(b) $g_{i}(x ; y)=g_{i}(y ; x)$;
(c) $\left(x_{0}, \cdots, x_{n}\right)+\left[\left(y_{0}, \cdots, y_{n}\right)+\left(z_{0}, \cdots, z_{n}\right)\right]=$
$\left[\left(x_{0}, \cdots, x_{n}\right)+\left(y_{0}, \cdots, y_{n}\right)\right]+\left(z_{0}, \cdots, z_{n}\right),\{z\}$ being another set of indeterminates;
(d) there exist polynomials $g_{i}^{\prime}\left(x_{0}, \cdots, x_{i}\right)$, with coefficients in k, such that $g_{i}\left(x_{0}, \cdots, x_{n} ; g_{0}^{\prime}(x), \cdots, g_{n}^{\prime}(x)\right)=0$;
(e) $g_{i}\left(x_{0}, \cdots, x_{n} ; 0, \cdots, 0\right)=x_{i}$;
(f) $g_{i}\left(0, x_{0}, \cdots, x_{n-1} ; 0, y_{0}, \cdots, y_{n-1}\right)=g_{i-1}\left(x_{0}, \cdots, x_{n} ; y_{0}, \cdots, y_{n}\right)$ if $i>0$.
We have:
(8) Theorem. Let k be a field of characteristic $p \neq 0$, and let $\left\{g_{0}, \cdots, g_{n}\right\}$ be a commutative recursive group-law over k; assume moreover that, in the previous notations, $p\left(x_{0}, \cdots, x_{n}\right)=\left(0, x_{0}^{p}, \cdots, x_{n-1}^{p}\right)$. Then there exist polynomials $\psi_{i}, \chi_{i} \in k\left[x_{0}, \cdots, x_{i}\right], i=0, \cdots, n$, such that

$$
\psi_{i}\left(\chi_{0}(x), \cdots, \chi_{i}(x)\right)=\chi_{i}\left(\psi_{0}(x), \cdots, \psi_{i}(x)\right)=x_{i}
$$

and that

$$
\begin{aligned}
& \left(\psi_{0}(x), \cdots, \psi_{n}(x)\right)+\left(\psi_{0}(y), \cdots, \psi_{n}(y)\right) \\
& \quad=\left(\psi_{0}\left(g_{0}(x ; y)\right), \psi_{1}\left(g_{0}(x ; y), g_{1}(x ; y)\right), \cdots, \psi_{n}\left(g_{0}(x ; y), \cdots, g_{n}(x ; y)\right)\right)
\end{aligned}
$$

the + denoting addition of Witt vectors.

Proof. Let G be a group-variety over k with n.h.g.p. $\left\{x_{0}, \cdots, x_{n}\right\}$, and with the law of composition prescribed by $\left\{g_{0}, \cdots, g_{n}\right\}$. Then \bar{G} (extension of G over the algebraic closure \bar{k} of k) is a periodic group-variety of dimension $n+1$ and period p^{n+1}, endowed with all the properties requested for the applicability of (4). Hence, by (4), it is isomorphic to $W_{n+1}(\bar{k})$, and this proves the existence of $\psi_{i}, \chi_{i} \in \bar{k}\left(x_{0}, \cdots, x_{i}\right)$ with the properties expressed in the statement (see the remark at the end of this proof for the existence of the endomorphism π). Since \bar{G} and $W_{n+1}(\bar{k})$ are normal varieties, and the birational correspondence of isomorphism is regular at finite distance, we also obtain that $\psi_{i}, \chi_{i} \in \bar{k}\left[x_{0}, \cdots, x_{i}\right]$. The stronger result according to which ψ_{i} and χ_{i} can be selected in $k\left[x_{0}, \cdots, x_{i}\right]$ is proved by induction in the following manner: if $n=0$, any χ_{0} must have the form $\chi_{0}\left(x_{0}\right)=a x_{0}+b$, or $\psi_{0}\left(x_{0}\right)=a^{-1}\left(x_{0}-b\right)$, where $a, b \in \bar{k}$ and $a \neq 0$; moreover, we can always select $a=1$. We then have $g_{0}\left(x_{0}, y_{0}\right)=\chi_{0}\left(\psi_{0}\left(x_{0}\right)+\psi_{0}\left(y_{0}\right)\right)=x_{0}+y_{0}-b$, so that $b \in k$, since $\{g\}$ is a recursive law over k. We can then assume χ_{i}, $\psi_{i} \in k[x]$ for $i<j \leqq n$, and prove the same for $i=j$; we shall do this for the particular case $j=n$, this being equivalent to the general case. Let $\chi_{0}, \cdots, \chi_{n-1}, \psi_{0}, \cdots, \psi_{n-1}$ be selected in $k[x]$, and let χ_{n}, ψ_{n} be any possible selection in $\bar{k}[x]$; we have $g_{n}(x ; y)=x_{n}+y_{n}+h\left(x_{0}, \cdots, x_{n-1} ; y_{0}, \cdots, y_{n-1}\right)$, $h \in k[x ; y]$; if for a Witt vector $\left(z_{0}, \cdots, z_{n}\right)$ and a polynomial F we denote $F\left(z_{0}, \cdots, z_{n}\right)$ also by $F\left(\left(z_{0}, \cdots, z_{n}\right)\right)$, we must have

$$
\begin{aligned}
\chi_{n}\left(\left(x_{0}, \cdots, x_{n}\right)\right. & \left.+\left(y_{0}, \cdots, y_{n}\right)\right) \\
& =\chi_{n}(x)+\chi_{n}(y)+h\left(\chi_{0}(x), \cdots, \chi_{n-1}(x) ; \chi_{0}(y), \cdots, \chi_{n-1}(y)\right)
\end{aligned}
$$

If k^{\prime} is the smallest subfield of \bar{k} over k which contains all the coefficients of χ_{n}, and if $b_{1}=1, b_{2}, \cdots, b_{r}$ is a k-basis for k^{\prime}, write $\chi_{n}(x)=\sum_{i} F_{i}(x) b_{i}$, $F_{i}(x) \in k[x]$; then

$$
\begin{aligned}
\sum_{i}\left[F_{i}\left(\left(x_{0}, \cdots, x_{n}\right)+\left(y_{0}, \cdots, y_{n}\right)\right)-F_{i}(x)\right. & \left.-F_{i}(y)\right] b_{i} \\
& =h(\chi(x) ; \chi(y)) \in k[x]
\end{aligned}
$$

or

$$
F_{i}((x)+(y))-F_{i}(x)-F_{i}(y)=0
$$

for $i>1$. This proves that for $i>1$ the mapping (x_{0}, \cdots, x_{n}) $\rightarrow F_{i}(x)$ is a homomorphism of $W_{n+1}(k)$ into a 1-dimensional vector variety over k; thus, $F_{i}(x)$, for $i>1$, belongs to $k\left[x_{0}\right]$. We can therefore change the selection of χ_{n} by taking $\chi_{n}(x)=F_{1}(x) \in k[x]$, with the assurance that $\psi_{n}(x)$ exists, and that the conditions expressed in the statement are fulfilled, Q.E.D.

Remark. Since, in the previous statement, the mapping $\left(x_{0}, \cdots, x_{n}\right) \rightarrow$ ($0, x_{0}^{p}, \cdots, x_{n-1}^{p}$) is a homomorphism, we must have

$$
\begin{aligned}
& g_{i}\left(x_{0}^{p}, \cdots, x_{i}^{p} ; y_{0}^{p}, \cdots, y_{i}^{p}\right)=g_{i+1}\left(0, x_{0}^{p}, \cdots, x_{i}^{p} ; 0, y_{0}^{p}, \cdots, y_{i}^{p}\right) \\
& \quad=\left[g_{i}\left(x_{0}, \cdots, x_{i} ; y_{0}, \cdots, y_{i}\right)\right]^{p} \text { for } i=0, \cdots, n-1
\end{aligned}
$$

hence, for these values of $i, g_{i}(x ; y) \in C_{p}[x ; y]$.
4. We recall that two commutative group-varieties are said to be isogenous if each is a homomorphic image of the other; we shall say that they are inseparably isogenous if each is the homomorphic image of the other in a purely inseparable homomorphism.
(9) Theorem. Let G be a periodic group-variety of dimension n over the algebraically closed field k of characteristic p; then G has period p^{n} if and only if it is a homomorphic image of $W_{n}(k)$. And if this is the case, G is inseparably isogenous to $W_{n}(k)$.

Proof. If G is a homomorphic image of $W_{n}(k)$, it certainly has period p^{n}. Conversely, let G have period p^{n}; if $n=1$, all the statements of the theorem are true; we shall accordingly proceed by induction on n. Consider the case in which $\operatorname{dim} G=n$, and let A, U, V, L have the same meaning as in the proof of (4) (we recall that $L=G / U$); then $G \cong\{A, V, \delta\}$, for a suitable $\delta \epsilon \Gamma(A, V)$. By the recurrence assumption, there exists a purely inseparable homomorphism β such that $A=\beta W_{n-1}(k)$. The mapping $\delta^{\prime}\left[P \times Q_{1}\right]=$ $\delta\left[\beta P \times(\beta Q)_{1}\right]$, where P, Q are generic points of $W_{n-1}(k)$, is a factor set of $W_{n-1}(k)$ into V, and obviously G is a homomorphic image of $\left\{W_{n-1}(k), V, \delta^{\prime}\right\}$ in a purely inseparable homomorphism. In order to prove that G is a homomorphic image of $W_{n}(k)$, in a purely inseparable homomorphism, it is sufficient to prove that this is true of $\left\{W_{n-1}(k), V, \delta^{\prime}\right\}$; we can, for this purpose, assume $A=W_{n-1}(k)$.

With this assumption, we shall denote by ϱ the natural homomorphism of G onto A, and by μ the rational mapping of A into G which defines a crossed product; then $p \mu$ is a homomorphism of A onto U, certainly divisible by the endomorphism π of A, since the homomorphism p of G is divisible by the homomorphism π of G; we can thus write $p \mu=\mathrm{t} \pi$, t being a homomorphism of A onto U. This gives $p R=\mathrm{t} \pi \rho R$ for any nondegenerate $R \epsilon G$; the latter is the same relation given in the statement of (4), with the difference that now t is a homomorphism rather than an isomorphism. As in part 2 of the proof of (4) we shall write $G=\{L, U, \gamma\}=\{A, V, \delta\}, A=\{L, B, \theta\}$, and denote by ν the rational mapping of L into A used in defining $\{L, B, \theta\}$; we shall also set $\lambda=\mu \nu$. A generic point of G is of the type $R=\lambda P+Q$, with $P \in L$ and $Q \in U=\mathrm{t} A$, so that $p R=p \lambda P+p Q=\lambda E_{L}+\gamma\left[P \times P_{1}\right]+$ $\gamma\left[2 P \times P_{1}\right]+\cdots+\gamma\left[(p-1) P \times P_{1}\right]+p Q$. But $p R=\mathrm{t} \pi \rho \mu \nu P+p Q=$ $\mathrm{t} \pi \nu P+p Q$, so that $\gamma\left[P \times P_{1}\right]+\gamma\left[2 P \times P_{1}\right]+\cdots+\gamma\left[(p-1) P \times P_{1}\right]=$ $\mathrm{t} \pi \nu P-\lambda E_{L}$, which is the analogue of (5). On the other hand, if we write $W_{n}(k)=\left\{L, A, \gamma^{\prime}\right\}$, we have, as in (6), $\gamma^{\prime}\left[P \times P_{1}\right]+\gamma^{\prime}\left[2 P \times P_{1}\right]+\cdots+$ $\gamma^{\prime}\left[(p-1) P \times P_{1}\right]=\pi \nu P$, since λ^{\prime} can be so selected as to have $\lambda^{\prime} E_{L}=$ $E_{W_{n}(k)}$. If we now set $\gamma^{\prime \prime}=\mathrm{t} \gamma^{\prime}$, and $\varepsilon=\gamma^{\prime \prime}-\gamma$, we have that $\varepsilon\left[P \times P_{1}\right]+$ $\varepsilon\left[2 P \times P_{1}\right]+\cdots+\varepsilon\left[(p-1) P \times P_{1}\right]=\lambda E_{L}$ is independent of P, so that, by (3), $\varepsilon \in \Gamma_{0}(L, U)$, and $\gamma \sim \gamma^{\prime \prime}, G=\{L, U, \gamma\} \cong\left\{L, U, \gamma^{\prime \prime}\right\}$; but $\left\{L, U, \gamma^{\prime \prime}\right\}$ is obviously a homomorphic image, in a purely inseparable homomorphism, of $\left\{L, A, \gamma^{\prime}\right\}=W_{n}(k)$. It is thus proved that G is a homomorphic
image of $W_{n}(k)$ in a purely inseparable homomorphism. If we write, accordingly, $k(G) \subseteq k\left(W_{n}(k)\right)$, we have, for a suitable $r,\left(k\left(W_{n}(k)\right)\right)^{p^{r}} \subseteq k(G)$, so that G is inseparably isogenous to $W_{n}(k)$, Q.E.D.

The existence of periodic group-varieties isogenous, but not isomorphic, to Witt varieties, is established, for instance, by the following example: G is a 2 -dimensional projective space with n.h.g.p. $\left\{x_{0}, x_{1}\right\}$ over a field of characteristic 2 , with the law of composition given by $\left(x_{0}, x_{1}\right)+\left(y_{0}, y_{1}\right)=$ $\left(x_{0}+y_{0}, x_{1}+y_{1}+x_{0}^{2} y_{0}^{2}\right)$.

A direct consequence of (9), and of a result of [11], is:
(10) Corollary. Let k be as in (9), and let F be a field of characteristic zero, complete with respect to a normalized discrete valuation v of rank 1 , with residue field k, and such that $v(p)=1$; if R_{v}, \Re_{v} are respectively the valuation ring of v and its prime ideal, and if G is a periodic group-variety over k, of dimension n and period p^{n}, the group of the nondegenerate points of G is isomorphic to the additive group $R_{v} / \mathfrak{P}_{v}^{n} \cong \mathfrak{P}_{v}^{-n} / R_{v}$.

It may not be superfluous to note specifically that from the construction used in the proof of (9) follows that for any n-dimensional periodic groupvariety G over k, of period p^{n}, there exist $(n+1)$-dimensional group-varieties G^{\prime} and $G^{\prime \prime}$ over k, of period p^{n+1}, of which G is, respectively, a homomorphic image (in a separable homomorphism) and a group-subvariety. The projective and injective limits of chains of the type G, G^{\prime}, \cdots, or $G, G^{\prime \prime}, \cdots$ yield, respectively, an infinite abelian torsion-free group, and an infinite abelian torsion group. These are isomorphic to, respectively, R_{v} and F / R_{v}.
5. According to (6) of [2], each periodic group-variety over the algebraically closed field k of characteristic p is isomorphic to a Vessiot variety; this must be true, in particular, of $W_{n}(k)$; now, according to (8), or also by Corollary 1 $\S 8$ of [8], $W_{n}(k)$ is isomorphic to a group-variety G with a general point $\left\{x_{0}, \cdots, x_{n-1}\right\}$, whose law of composition is the recursive group law (2) of hyperexponential vectors; namely, if for a nondegenerate $P \epsilon G$ we denote by $x_{i}(P)$ the value of x_{i} at P, we have $x_{i}(P+Q)=x_{i}(P)+x_{i}(Q)+$ $\sum_{j} e_{j}(x(P)) e_{p^{i-j}}(x(Q))$. Let then $M=\left(m_{i j}\right)\left(i, j=0, \cdots, p^{n-1}\right)$ be the square matrix of order $p^{n-1}+1$ such that: $m_{i j}=0$ if $j>i ; m_{i i}=1 ; m_{i j}=$ $e_{i-j}(x)$ if $j<i$; since, in the notations of (2), $e_{r}(z)=e_{r}(x)+$ $e_{r}(y)+\sum_{j=1}^{r-1} e_{j}(x) e_{r-j}(y)$, it is easily verified that $M(P+Q)=M(P) M(Q)$, so that M provides an explicit representation of $W_{n}(k)$ as a Vessiot variety.

Periodic group-varieties are rational, that is, birationally equivalent to projective spaces; Witt varieties, in addition, are actually projective spaces, with a hyperplane as degeneration locus, and a group of Cremona transformations as group of "translations"; we shall prove that this property is common to all periodic group-varieties of the type studied in this note (the relation of this property to Fano's theorem on regular group-varieties is not investigated here):
(11) Theorem. Let A be a periodic group-variety of dimension n and period p^{n} over the algebraically closed field k of characteristic $p \neq 0$; then A is isomorphic to a group-variety G over k, with degeneration locus F, such that G is a projective space; and a n.h.g.p. $\left\{x_{0}, \cdots, x_{n-1}\right\}$ of G can be selected in such a way that F is the hyperplane at infinity for $\{x\}$, and that the law of composition on G is (a Cremona transformation) given by
$x_{i}(P+Q)=x_{i}(P)+x_{i}(Q)+f_{i}\left(x_{0}(P), \cdots, x_{i-1}(P) ; x_{0}(Q), \cdots, x_{i-1}(Q)\right)$,
f_{i} being a polynomial with coefficients in k.
Proof. The theorem is true for $n=1$; we shall therefore proceed by induction on n. Given A, of dimension n, we have, by (9), $A=\alpha W_{n}(k), \alpha$ being a purely inseparable homomorphism; we shall accordingly assume $k(A) \subseteq$ $k\left(W_{n}(k)\right)$ as prescribed by α. There is a natural homomorphism ϱ of $W_{n}(k)$ onto $W_{n-1}(k)$, and a natural homomorphism d of A onto an ($n-1$)-dimensional periodic group-variety B over k, of dimension $n-1$ and period p^{n-1}; we shall assume, accordingly, $k\left(W_{n-1}(k)\right) \subset k\left(W_{n}(k)\right), k(B) \subset k(A)$. Since $\operatorname{dim} B=n-1$, by the recurrence assumption we may assume B to have the property claimed for G, and denote by $\left\{x_{0}, \cdots, x_{n-2}\right\}$ a n.h.g.p. of B having the properties stated in the theorem. Furthermore, the previous embeddings are such that $k(B) \subseteq k\left(W_{n-1}(k)\right)$; this generates a homomorphism β of $W_{n-1}(k)$ onto B. There are rational mappings λ of $W_{n-1}(k)$ into $W_{n}(k)$, and μ of B into A, such that $\varrho \lambda=\boldsymbol{\sigma} \mu=1$. Since the rational mapping $\delta \alpha \lambda$ of $W_{n-1}(k)$ into B coincides with β, we can select μ to be such that $\mu \beta=\alpha \lambda$; then, for a nondegenerate $P \epsilon B$, say $P=\beta Q$ where $Q \epsilon W_{n-1}(k)$ is nondegenerate, we have $\mu[P]=\alpha \lambda[Q]$; since, by the nature of $\lambda, \lambda[Q]$ is a nondegenerate point of $W_{n}(k), \mu[P]$ is a nondegenerate point of A. But then there exists a factor set γ of B into a 1 -dimensional vector variety V over k, such that $A \cong\{B, V, \gamma\}$, and such that $\gamma\left[P \times Q_{1}\right]=\mu[P]+\mu[Q]-\mu[P+Q]$ is a nondegenerate point of V for each pair of nondegenerate points P, Q of B. If x_{n-1} is a canonical coordinate on V, namely one for which $x_{n-1}(P+Q)=x_{n-1}(P)+x_{n-1}(Q)$, this means that

$$
x_{n-1}\left(\gamma\left[P \times Q_{1}\right]\right)=f_{n-1}\left(x_{0}(P), \cdots, x_{n-2}(P) ; x_{0}(Q), \cdots, x_{n-2}(Q)\right)
$$

f_{n-1} being a polynomial with coefficients in k. Thus A is isomorphic to the projective space G with n.h.g.p. $\left\{x_{0}, \cdots, x_{n-1}\right\}$, and has the required degeneration locus and the required law of composition, Q.E.D.

Appendix

In this appendix, all varieties are over an algebraically closed field k of characteristic $p \neq 0$. Those group-varieties which are isogenous to Witt varieties will be called of Witt type.
(12) Lemma. Let V, W be varieties of Witt type, V being 1-dimensional. If $\{V, W, \gamma\}$ is a homomorphic image of $V \times W$, then $\gamma \in \Gamma_{0}(V, W)$.

Proof. If $\operatorname{dim} W=1$, the lemma is true, since in this case $\{V, W, \gamma\}$ is a vector variety, hence isomorphic to $V \times W$. If $\operatorname{dim} W=n>1$, and the lemma is accepted when $\operatorname{dim} W<n$, then either γ operates on the $(n-1)$ dimensional irreducible group-subvariety U of W, certainly of Witt type by (9), and in this case the result is true by the recurrence assumption; or else, if β is the natural homomorphism of W onto $L=W / U,\{V, L, \beta \gamma\}$ is a homomorphic image of $V \times L$, so that $\beta \gamma \epsilon \Gamma_{0}(V, L), \gamma$ is associate to a γ^{\prime} which operates on U, and the previous case gives $\gamma^{\prime} \in \Gamma_{0}(V, W)$, Q.E.D.
(13) Lemma. V and W having the same meaning as in (12), any given $\{V, W, \gamma\}$ is either of Witt type, or isomorphic to $V \times W$.
Proof. The lemma will be proved by recurrence on $n=\operatorname{dim} W$, since the result is true if $\operatorname{dim} W=1$, by (9). If $\{V, W, \gamma\}$ is not of Witt type, then, by (9), it has period p^{n}, so that $p^{n-1} \sum_{i=1}^{p-1} \gamma\left[i P \times P_{1}\right]=\sum_{i=1}^{p^{n-1}} \gamma\left[i P \times P_{1}\right]=$ E_{W} for a generic $P \in V$. Then $\sum_{i=1}^{p=1} \gamma\left[i P \times P_{1}\right]$ belongs to the irreducible ($n-1$)-dimensional group-subvariety U of W; if α is the natural homomorphism of W onto W / U, we have $\sum_{i=1}^{p-1} \alpha \gamma\left[i P \times P_{1}\right]=E_{\alpha W}$, hence

$$
\alpha \gamma \in \Gamma_{0}(V, \alpha W)
$$

by (3), and γ is associate to a γ^{\prime} which operates on U. We shall consequently assume γ to operate on U from the beginning; if

$$
\{V, U, \gamma\} \cong V \times U
$$

γ belongs to $\Gamma_{0}(V, W)$, as claimed. Otherwise, by recurrence, $\{V, U, \gamma\}$ is of Witt type, and is therefore a homomorphic image of $W \cong\{V, U, \delta\}$, by (9); but then $\{V, W, \gamma\}$ is a homomorphic image of $\{V, W, \delta\}$, and this is isomorphic to $V \times W$ since $\delta \epsilon \Gamma_{0}(V, W)$. The result now descends from (12), Q.E.D.
(14) Theorem. Let A be a periodic group-variety of period p^{n}; then A is isomorphic to the direct product of varieties of Witt type. In particular, A possesses n-dimensional group-subvarieties of Witt type, and any one of these is a direct factor of A.

Proof. The first statement is a consequence of the second; the two parts of the second statement will be proved by recurrence on $\operatorname{dim} A$. If $X=p A, X$ has the period p^{n-1}; if X is not of Witt type, by the recurrence assumption we have $X \cong Y \times Z$, where Y is of Witt type and dimension $n-1$, and $\operatorname{dim} Z>0$; after setting $W=p^{-1} Y \subset A, W$ has the period p^{n}, hence it possesses an irreducible n-dimensional group-subvariety of Witt type; it follows that A has the same property. If instead X is of Witt type, $L=A / X$ has period p, and is therefore isomorphic to a direct product $V_{1} \times \cdots \times V_{r}$ of 1-dimensional vector varieties; but then

$$
A \cong\left\{V_{1} \times \cdots \times V_{r}, X, \gamma_{1}+\cdots+\gamma_{r}\right\}
$$

(by Lemma 3.3 of [1]), where $\gamma_{i} \in \Gamma\left(V_{i}, X\right)$, and $\gamma_{i} \notin \Gamma_{0}\left(V_{i}, X\right)$ for at least one value of i, say $i=1$ (otherwise $A \cong L \times X$ would have period p^{n-1}). Thus $\left\{V_{1}, X, \gamma_{1}\right\}$ is a group-subvariety of A, of dimension n, and it is of Witt type by (13).

Having now established that A possesses an n-dimensional group-subvariety of Witt type, if $\operatorname{dim} A>n$ let B be an irreducible group-subvariety of A, containing W, and having dimension equal to $\operatorname{dim} A-1$. Then, by the recurrence assumption, $B \cong W \times C$, and $A \cong\left\{V, W \times C, \delta_{0}+\delta_{1}\right\}$, where V is a 1-dimensional vector variety, $\delta_{0} \in \Gamma(V, W)$, and $\delta_{1} \in \Gamma(V, C)$; now, $\left\{V, W, \delta_{0}\right\} \cong A / C$ has period p^{n}, so that, by (13), $\delta_{0} \in \Gamma_{0}(V, W)$, and $A \cong\left\{V, C, \delta_{1}\right\} \times W$, Q.E.D.

Remark. If W is a group-subvariety of A, of Witt type and dimension $<n$, in general W is not a direct factor of A, not even in the case in which W is not a proper group-subvariety of any group-subvariety of Witt type of A. For instance, if A has n.h.g.p. $\{x, y, z\}$ and law of composition

$$
(x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+f\left(x, x^{\prime}\right), z+z^{\prime}\right)
$$

where $f\left(x, x^{\prime}\right)=-\sum_{i=1}^{p-1}(i!)^{-1}[(p-i)!]^{-1} x^{i} x^{p-i}$, the vector group-subvariety W given by $x=0, z=y^{p}$ is not properly contained in any group-subvariety of Witt type of A, since no point of W, with the exception of E_{W}, is of the type $p P$ with $P \in A$. However, W is not a direct factor of A; in fact, $V=A / W$ has n.h.g.p. $\{\xi, \eta\}$ and the law of composition $(\xi, \eta)+\left(\xi^{\prime}, \eta^{\prime}\right)=$ $\left(\xi+\xi^{\prime}, \eta+\eta^{\prime}+f\left(\xi, \xi^{\prime}\right)^{p}\right)$, and the natural homomorphism of A onto V is given by $\xi=x, \eta=y^{p}-z$. We have $A=\{V, W, \delta\}$, where δ is determined by the function $g\left((\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right)\right)=f\left(\xi, \xi^{\prime}\right)$. Were W a direct factor of A, δ would belong to $\Gamma_{0}(V, W)$, and it would be possible to find an $h(\xi, \eta) \in k(\xi, \eta)$ such that

$$
f\left(\xi, \xi^{\prime}\right)=h(\xi, \eta)+h\left(\xi^{\prime}, \eta^{\prime}\right)-h\left(\xi+\xi^{\prime}, \eta+\eta^{\prime}+f\left(\xi, \xi^{\prime}\right)^{\eta}\right)
$$

Set here $\eta=\eta^{\prime}=0$, derivate with respect to ξ^{\prime}, and set $\xi^{\prime}=0$; one obtains $\xi^{p-1}+d h(\xi, 0) / d \xi \in k$, which is impossible.

Bibliography

1. I. Barsotti, Structure theorems for group-varieties, Ann. Mat. Pura Appl. (4), vol. 38 (1955), pp. 77-119.
2. ——— Un teorema di struttura per le varietà gruppali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), vol. 18 (1955), pp. 43-50.
3. ———, Abelian varieties over fields of positive characteristic, Rend. Circ. Mat. Palermo (2), vol. 5 (1956), pp. 145-169.
4. ——, Gli endomorfismi delle varietà abeliane su corpi di caratteristica positiva, Ann. Scuola Norm. Sup. Pisa (3), vol. 10 (1956), pp. 1-24.
5. -, Repartitions on abelian varieties, Illinois J. Math., vol. 2 (1958), pp. 43-70.
6. J. Dieudonne, Sur les groupes de Lie algébriques sur un corps de caractéristique $p>0$, Rend. Circ. Mat. Palermo (2), vol. 1 (1952), pp. 380-402.
7. ———, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$. III, Math. Zeit., vol. 63 (1955), pp. 53-75.
8. ——, Witt groups and hyperexponential groups, Mathematika, vol. 2 (1955), pp. 21-31.
9. ——, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$ (IV), Amer. J. Math., vol. 77 (1955), pp. 429-452.
10. J-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, mimeographed notes of the Symposium of Algebraic Topology, Mexico, Summer 1956.
11. E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad pm. Struktur diskret bewerteter perfekter Körper mit volkommenem Restklassenkörper der Charakteristik p, J. Reine Angew. Math., vol. 176 (1937), pp. 126-140.

University of Pittsburgh
Pittsburgh, Pennsylvania

[^0]: Received May 15, 1957.
 ${ }^{1}$ I am informed by the referee that C. Chevalley, J-P. Serre, and M. Rosenlicht have found independent proofs of a generalization of this result, namely: Any periodic groupvariety is isogenous to a direct product of Witt varieties. The Appendix to the present paper, which chronologically follows this footnote, contains my proof of a slightly more detailed result.

