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1. Witt vectors were introduced in [ii] (see bibliography t the end of the
paper), and served the purpose of constructing unramified p-adic fields with
preassigned residue fields; they entered the theory of analytic groups through
the extensive use made of them in [7], [8], [9]; and they have now entered the
field of algebraic geometry via analytic groups (see [3] or [4]), and also directly
as in [10]; they play an essential role in some work still in progress (see intro-
duction of [5]). The reason for the introduction of Witt vectors in algebraic
geometry is in part the same which led to their discovery, namely the need
of building a ring of characteristic zero from one of positive characteristic,
but mainly the fact that truncated Witt vectors afford examples of periodic
group-varieties, in the sense of [1]. Both reasons have a specious element in
them, in that there is no a priori assurance that other, inequivalent, construc-
tions would not accomplish the same purpose, or perhaps lead to more de-
tailed results. A heuristic argument against this supposition is however
offered by the fact that another construction, the hyperexponential vectors
introduced in [6] for applications to the theory of analytic groups, turned
out to be equivalent to Witt vectors, the specific transformation law being
given in [8]. In this note we propose to show that any periodic group-variety
of dimension n and period p is isogenous to a group-variety constructed by
means of Witt vectors, so that the use of these, for the purposes described
above, will remain fully justified.
We recall briefly the definition and first properties of Witt vectors as given

in [11]. Let p be a prime number, and let (x0, x, be an ordered set
(Witt vector), either finite or countably infinite, of indeterminates; for each i,
set

g(x) _,---o PX- I[zo, ...],

I being the ring of integers. Then

..., ],

R being the field of rationals. If (yo, y, "") is another Witt vector, of the
same cardinality as (Xo, x, ...), define

z f,(go(x) -b go(y), g(x) -b g(y), );
Received May 15, 1957.
I am informed by the referee that C. Chevalley, J-P. Serre, and M. Rosenlicht have

found independent proofs of a generalization of this result, namely: Any periodic group-
variety is isogenous to a direct product of Witt varieties. The Appendix to the present
paper, which chronologically follows this footnote, contains my proof of a slightly more
detailed result.
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it is proved in [11] that

z (xo x yo y) I[xo xl yo yl ""],

so that the image of , rood pI[x; y], exists, and belongs to C[x; y], C
being the prime field of characteristic p. We shall accordingly set

and
z q,(xo, ,x yo, ...,y),

(0,,...) + (y0, y,... (z0, z,,... ).

This notation remains meaningful when the x’s and y’s are replaced by ele-
ments of an integral domain K containing C as a subfield; when this is done,
it is proved in [11] that the Witt vectors of a given cardinality, with elements
in K, form an abelian group with respect to the addition as defined above.
The mappings (x0, ..., x) (x, ..., x), t(x0, ..., x)
(0, x0, x), )(x0, x) (x0, x_) (which reduces to the iden-
tity if n ) are respectively a group-isomorphism, a group-isomorphism,
and a group-homomorphism. They commute with each other, and satisfy
the relation
(1) t p multiplication by p.

In order to introduce the hyperexponential vectors, we shall consider a
countable infinity of indeterminates z, u0, u, ..., and the power series
(in z) exp ’0 u z; if x is the coefficient of z’ in this power series, the x
are algebraically independent over R, and, according to [6], there exist poly-
nomials e(xo, x, (j 1, 2, ), with coefficients which are p-adic
integers in R, such that e is the coefficient of z in the above power series;
moreover, e. x if j p, while if < j < e. involves only the inde-
terminates x0, x, ..., x. Denote by e(xo, xl, the image of
e. mod pI[x], so that ei C[x]; if now (x0, x, ...) and (y0, yl, ") are
ordered sets (hyperexponential vectors) of the same cardinality, either finite
or countable, of elements of an integral domain K containing C as a sub-
field, define (x0, Xl, )(y0, y, (z0, z, by setting

p i-1

(2) z x + Yi + j ej(x)%i_(y).

The set of all the hyperexponential vectors, of a given cardinality, with ele-
ments in K formu an abelian group with respect to the product as defined
above. The operations , t, ) can be defined in the same manner as for Witt
vectors, and (1) is satisfied. It is proved in [8] that this group is isomorphic
to the group of Witt vectors.

2. In this note we depart from previous notations in that we use the sym-
bol to denote the law of composition on a commutative group-variety.
If G is a commutative group-variety over the field k of characteristic p 0,
and if {xl, x} is a n.h.g.p. (nonhomogeneous general point) of G, there
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is a commutative group-variety G over ]c whose n.h.g.p, is {x’, ..., x};
the natural homomorphism of G onto G, previously denoted by l.a, will
now be denoted by ; if m is an integer, the endomorphism which maps any
nondegenerate P e G onto mP, previously denoted by ma, will simply be
denoted by m. For the meaning of "factor set", "crossed product", and of
the symbols F(G, V), F0(G, V), see [1].

(3) LEMMA. Let tc be an algebraically closed field of characteristic p 0;
let L be a 1-dimensional vector variety over lc, and let U be an n-dimensional
periodic group-variety over lc. Let be a factor set of L into U ( F(L, U))
such that, for a generic P L, e[P X P1] W e[2P X P] - W
e[(p 1)P X P] R is independent of P (P being the copy of P on a copy
L of L). Then r0(L, U).

Proof. Let G be the crossed product {L, U, }, and let h be the rational
mapping of L into G used in the definition of crossed product; namely,
ahP P for a generic P L, if a is the natural homomorphism of G onto
L G/U. We shall first of all replace h by h hEL (EL being the identity
of L); this implies the replacement of by hE,, which is associate to ;
we shall continue to denote h hE by h, and e hE by . We have, for
generic P, Q L: hP -t- hQ h[P - Q] - [P X Q], hence phP hpP -[P X PI]- e[2P X P1] -t- -t- [(p 1)P P] hpP - R hE -R R;forP ELthisgivesR Ev Ea,so that phL Ea. As hL
is a 1-dimensional subvariety of G, this implies that it is a subvariety of the
maximal vector subvariety V of G; now, the maximal vector subvariety Z of
U is a component of V n U, outside the degeneration locus; we can thus as-
sert that e[P X Q1] hP - hQ h[P-t- Q] Z. Hence [L,Z, e} hasa
meaning, and the property of e, when applied to {L, Z, }, shows that this
group-variety has period p, and is therefore a vector variety, by Lemma 3.6
of [1]; but then e F0(L, Z), and also e F0(L, U), Q.E.D.

Let {x0, xn_} be the n.h.g.p, of an n-dimensional projective space G
over a field ] of characteristic p 0; let G, G. be copies of G, and let {y},
z be the copies of {x in k(G), ](G) respectively; define a law of composi-

tion on G by setting (z0, ..., zn-i) (x0, ..., xn_) - (y0, "", yn-),
where the three vectors involved are Witt vectors. Then it is easily verified
that G becomes an n-dimensional periodic group-variety of period p, whose
degeneration locus is the hyperplane at infinity for {x I; such G will be called
the n-dimensional Witt variety over t, and denoted by W(k). The homo-
morphism becomes a purely inseparable endomorphism of degree p"; t
becomes an isomorphism of W(]c) into W+(k); and ) becomes a separable
homomorphism of W(]c) onto W_i(k); for n 1, we shall identify ) with
the zero homomorphism. Also, W(/c) is a crossed product of Wn_(]) and
Wi(]c), and ) is the related natural homomorphism. Conversely, we have:

(4) LEMMA. Let G be a periodic group-variety of dimension n > 0 and period
p’ over the algebraically closed field lc of characteristic p; let V be the maximal
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vector subvariety of G, certainly of dimension 1, and set A G/V; let e be the
natural homomorphism of G onto A, and set U pG. Assume the existence

of an isomorphism of U onto U, and of an isomorphism t of A onto U, such
that, for any nondegenerate P G, pP -lteP. Then G . W,(tc).

Proof. By Lemma 3.6 of [1], the result is true if n 1; we can therefore
apply a recursive argument on n.

n--1Part 1. Assume n > 1; by the lemma just mentioned, A has period p
and dimension n 1; let W be the maximal vector subvariety of A, and set
B A/W; let 6 be the natural homomorphism of A onto B, and set Z pA.
Then the nondegenerate points of Z are of the type peP epP for P e G,

"B.so that Z eU; now, V _-- U, so that eU " U/V " A/W B, or Z
For a nondegenerate P e G we have peP epP e-lteP, which is the
same as pQ e-ltQ for a nondegenerate Q e A; the relation p
shows that i’U

__
U, or that is an endomorphism of ’U; consequently,

for any nondegenerate Q A, -li’tQ t Q, where t, so that pQ
et-lQ. Now, for a suitable isomorphism s of B onto Z we have etQ s6Q

s6 Q. Since is an endomor-for any nondegenerate Q e A, so that pQ
phism of vA onto itself, it is also an endomorphism of vZ onto itself; there-
fore there exists an isomorphism s* of B onto Z such that, for any nondegen-
erate Q e A, -1 -1 , -1

s6 Q s Q, orpQ s*6Q. This proves thatA
satisfies the conditions stated in the lemma for G; by the recursive assump-
tion, we conclude that A

Part 2. Having reached the result A --- Wn_l(/), there is no loss of gen-
erality in assuming A Wn_l(/c). By Lemmas 3.2 and 3.6 of [1], we can

/}, where L is awrite G
__

{L, A, ,}, and of course G’ W,() {L, A,
1-dimensional vector variety, and % ’ e F(L, A); on the other hand, we also
have G {A, L, }, G’ {A,L, ’}, where , ’ e Y(A, L), and A {L, B, },
o r(L, B). All this implies the following" there are homomorphisms a of

a’ of G’ onto L with kernel U’ A e of GG onto L with kernel U
_

A,
onto A with kernel V _--__ L, e’ of G’ onto A with kernel V’

_
L, of A onto

L with kernel Z --__ B W_(k), and we may assume a e. There are
also rational mappings of L into G, ’ of L into G’, of A into G, of A
into G’, of L into A, such that aX a’),’ e e’’ 1;and we
may select ), , ),’ #’. Finally, there are isomorphisms t of A onto
U, t’ of A onto U’. A generic point of G is of the type R ,P W tQ, where
P e L, Q e A, so that pR phP + ptQ E + t/[P X P1] + t,[2P X P]

W t,[(p 1)P X P1] W ptQ, P1 being the copy of P on a copy L1 of L.
Having selected A W_l(k), we can also select, in the statement of the

lemma, t-1, being an automorphism of A; then pR pXP -t- ptQ
t-e),P -t- ptQ ty-leP -t- ptQ t-lvP ptQ. Hence,

(5)
-[P X P] -t--[2P X P] + -I-/[(p 1)P X P]

t-l(pR )E ptQ) v-lp t-lXE
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likewise,

"’[P X P1] + ’[2P X P1] + -t-/’[(p 1)P X P]
(6)

P- t’-XEL,
since n’ 1 in this case. Now, there exists an automorphism of A such
that, for a nondegenerate S e A, n-nS S; if we set 7 ,, we have
G ----- {L, A, 7’ }, and (5) becomes

/"[P X P] + 7"[2P X P1] + -7’[(p 1)P X P]
(7)

P t-kEL
Set e ’ 7’; then (6) and (7) give [P X P] -t- e[2P

e[(p 1)P X P1] t’-lk’E qCIXE, which is independent of P. Re-
sult (3) implies then e e to(L, A), or ’ ", so that G G’ W(h), Q.E.D.

3. It is now expedient to restate a particular case of (4), with some modi-
fications, in a form which is independent of the language of algebraic geometry.
Let h be a field of characteristic p 0, and let g(xo, x yo, y,)
(i 0, n) be polynomials in the indeterminates Xo, y, with co-
efficients in/c; set (Xo, ..., x) -t- (yo, "", y) (go(x; y), ..., g(x; y)).
We say that {go, "", g} is a commutative recursive group-law over t if the
following conditions are satisfied"

(a) g /[Xo, x Yo, Y];
(b) g,(x; y) g(y; x);
(c) (Xo, ...,x) + [(y0, "’,y) + (z0, ...,z)]

[(Xo, x,) - (yo Yn)] - (Zo Zn), {Z} being another set of inde-
terminates;

(d) there exist polynomials g(xo, x), with coefficients in k, such that
g(xo, ..., g(x), ..., ’()) o;

(e) g(xo, ..., x ;0, ..., 0) x;
(f) g(O, Xo x,_ O, Yo Yn--1) g_(Xo x Yo y)

ifi > 0.
We have"

(8) TEOREM. Let be a field of characteristic p O, and let {go, g,,}
be a commutative recursive group-law over ; assume moreover that, in the pre-
vious notations, p(xo, ..., x) (0, x ..., x_). Then there exist poly-
nomials b, x e/[Xo, x], i O, n, such that

,(xo(x),..., x()) x(o(), ..., ()) ,
and that

(o(x), ..., ()) + (o(), ..., ())
(o(go(x; y)), l(go(x; y), gl(x; y)), "", (go(x; y), "", g,(x; y))),

the denoting addition of Witt vectors.
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Proof. Let G be a group-variety over ] with n.h.g.p. {x0, ..., x}, and
with the law of composition prescribed by {go, g}. Then ( (extension
of G over the algebraic closure of k) is a periodic group-variety of dimension
n -t- 1 and period p+, endowed with all the properties requested for the ap-
plicability of (4). Hence, by (4), it is isomorphic to W+(), and this proves
the existence of , x (x0, x) with the properties expressed in the
statement (see the remark at the end of this proof for the existence of the
endomorphism ). Since G and W+(k) are normal varieties, and the bira-
tional correspondence of isomorphism is regular at finite distance, we also
obtain that , x e [x0, x]. The stronger result according to which

and x can be selected in/[x0, x] is proved by induction in the fol-
lowing manner" if n 0, any x0 must have the form x0(x0) axo b, or
o(Xo) a-(xo b), where a, b and a O; moreover, we can always se-
lect a 1. We then have go(xo, yo) xo(bo(xo) -t- b0(yo)) x0 -[- yo b,
so that b e/, since {g} is a recurive law over k. We can then assume x,

k[x] for i < j

_
n, and prove the same for i j; we shall do this for

the particular case j n, this being equivalent to the general case. Let
xo, x.-, o, b_ be selected in ][x], and let x., b. be any possible
selection in [x]; we have g,(x; y) x, + y + h(xo x_ yo y,-),
h k[x; y]; if for a Witt vector (zo, ..., z.) and a polynomial F we denote
F(zo, z,) also by F((zo, z)), we must have

+
X.(z) -t- X,(Y) -t- h(xo(X), "", X-(x); Xo(Y), "", X,-(Y)).

If k’ is the smallest subfield of over k which contains all the coefficients of
x,, and if b 1, b, b is a k-basis for ]’, write x,(x) ’ F(x)b,
E(x) k[x]; then, [F((x0,..., x) + (yo, "., y,)) F,(x) F,(y)]b,

or
F((x) - (y)) F,(x) F(y) 0

for i > 1. This proves that for i > 1 the mapping (Xo, ..., x) -- F(x)
is a homomorphism of W+(/) into a 1-dimensional vector variety over
thus, F(x), for i > 1, belongs to/[x0]. We can therefore change the selection
of x by taking x(x) F(x) k[x], with the assurance that b(x) exists,
and that the conditions expressed in the statement are fulfilled, Q.E.D.
Remark. Since, in the previous statement, the mapping (Xo, ..., x.) --(0, x$, ..-, x_) is a homomorphism, we must have

g,(x, .,x ;Y0,’ y) g,+(0, x$, z ;0, y’, y’)

[g(x0, "’,x;y0, "-,y)] for i 0, -..,n-- 1;

hence, for these values of i, g(x; y) C[x; y].
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4. We recall that two commutative group-varieties are said to be isog-
enous if each is a homomorphic image of the other; we shall say that they
are inseparably isogenous if each is the homomorphic image of the other in a
purely inseparable homomorphism.

(9) THEOREM. Let G be a periodic group-variety of dimension n over the al-
gebraically closed field k of characteristic p; then G has period pn if and only if it
is a homomorphic image of W(t). And if this is the case, G is inseparably
isogenous to Wn k

Proof. If G is a homomorphic image of W(k), it certainly has period pn.
Conversely, let G have period p; if n 1, all the statements of the theorem
are tree; we shall accordingly proceed by induction on n. Consider the case
in which dim G n, and let A, U, V, L have the same meaning as in the
proof of (4) (we recall that L G/U); then G {A, V, }, for a suitable

F(A, V). By the recurrence assumption, there exists a purely inseparable
homomorphism such that A Wn_l(k). The mapping ’[P QI]
[P (Q)], where P, Q are generic points of W_(/), is a factor set of
W_(k) into V, and obviously G is a homomorphic image of {W_l(k), V,
in a purely inseparable homomorphism. In order to prove that G is a homo-
morphic image of W(/), in a purely inseparable homomorphism, it is suffi-
cient to prove that this is true of {W_(k), V, ’}; we can, for this purpose,
assume A W_I().
With this assumption, we shall denote by e the natural homomorphism of

G onto A, and by the rational mapping of A into G which defines a crossed
product; then p is a homomorphism of A onto U, certainly divisible by the
endomorphism of A, since the homomorphism p of G is divisible by the
homomorphism of G; we can thus write p t, t being a homomorphism
of A onto U. This gives pR tR for any nondegenerate R G; the latter
is the same relation given in the statement of (4), with the difference that now
t is a homomorphism rather than an isomorphism. As in part 2 of the proof
of (4) we shall write G {L, U, ,} IA, V, }, A {L, B, 0}, and denote
by the rational mapping of L into A used in defining {L, B, 0}; we shall also
set, . A generic point of G is of the type R ,P W Q, withP L
and Q U tA, so that pR pP - pQ E
[2P P1] - -t-"[(p 1)P P] + pq. But pR tP
tP - pQ, so that [P X P] + ,[2P X P] + -/[(p 1)P
tP E, which is the analogue of (5). On the other hand, if we write
Wn() {L, A, ’}, we have, as in (6), "’[P PI] - .’[2P
.’[(p 1)P P] P, since ,’ can be so selected as to have X’E,.

E. If we now set " t,’, and , % we have that [P
e[2P XP] - W e[(p 1)P ( P1] E is independent of P, so
that, by (3), e r0(L, U), and , / G {L, U, } /L, U, ’}; but
{L, U, ""} is obviously a homomorphic image, in a purely inseparable homo-
morphism, of {L, A, ’} W(/). It is thus proved that G is a homomorphic
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image of W(]) in a purely inseparable homomorphism. If we write, accor-
dingly,/c(G) ____c/(W(/c)), we have, for a suitable r, (/c(W(/)))" --_c/(G), so
that G is inseparably isogenous to W,(/), Q.E.D.

The existence of periodic group-varieties isogenous, but not isomorphic,
to Witt varieties, is established, for instance, by the following example:
G is a 2-dimensional projective space with n.h.g.p. {x0, xl} over a field of
characteristic 2, with the law of composition given by (x0, xl) + (y0, yl)
(Xo - yo, x y xoyo).
A direct consequence of (9), and of a result of [11], is:

(10) COROLLARY. Let tc be as in (9), and let F be a field of characteristic
zero, complete with respect to a normalized discrete valuation v of rank 1, with
residue field lc, and such that v(p) 1; if R, are respectively the valuation
ring of v and its prime ideal, and if G is a periodic group-variety over ]c, of di-
mension n and period pn, the group of the nondegenerate points of G is isomor-
phic to the additive group R/ -/R.

It may not be superfluous to note specifically that from the construction
used in the proof of (9) follows that for any n-dimensional periodic group-
variety G over/, of period p, there exist (n + 1)-dimensional group-varie-
ties G’ and G" over k, of period p+, of which G is, respectively, a homomor-
phic image (in a separable homomorphism) and a group-subvariety. The
projective and iniective limits of chains of the type G, G’, or G, Gtp,
yield, respectively, an infinite abelian torsion-free group, and an infinite abel-
inn torsion group. These are isomorphic to, respectively, R, and F/R.

5. According to (6) of [2], each periodic group-variety over the algebraically
closed field ] of characteristic p is isomorphic to a Vessiot variety; this must
be true, in particular, of W(); now, according to (8), or also by Corollary 1
8 of [8], W(]) is isomorphic to a group-variety G with a general point
{x0, ..., x._}, whose law of composition is the recursive group law (2) of
hyperexponential vectors; namely, if for a nondegenerate P G we denote by
x(P) the value of x at P, we have x(P -t- Q) x(P) + x(Q) +
-e(x(P))e,,_(x(Q)). Let then M (m) (i, j 0, ..., p-l) be the
square matrix of order p-i -t- 1 such that: m. 0 if j > i; m 1; m.
e_(x) if j < i; since, in the notations of (2), e,.(z) e,.(x) +
e(y) -t- .,’- e(x)e,._(y), it is easily verified that M(P + Q) M(P)M(Q),
so that M provides an explicit representation of W(]) as a Vessiot variety.

Periodic group-varieties are rational, that is, birationally equivalent to pro-
jective spaces; Witt varieties, in addition, are actually projective spaces, with
a hyperplane as degeneration locus, and a group of Cremona transformations
as group of "translations"; we shall prove that this property is common to all
periodic group-varieties of the type studied in this note (the relation of this
property to Fano’s theorem on regular group-varieties is not investigated
here)"
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(11) THEOREM. Let A be a periodic group-variety of dimension n and period
p’ over the algebraically closed field ] of characteristic p 0; then A is isomor-
phic to a group-variety G over k, with degeneration locus F, such that G is a pro-
jective space; and a n.h.g.p. xo, x,_l} of G can be selected in such a way
that F is the hyperplane at infinity for {x}, and that the law of composition on G
is (a Cremona transformation) given by

x(P - Q) x(P) - x(Q) - f(xo(P), x_l(P); xo(Q), x_(Q)),

f being a polynomial with coefficients in ]c.

Proof. The theorem is true for n 1; we shall therefore proceed by induc-
tion on n. Given A, of dimension n, we have, by (9), A aW(]), a being
a purely inseparable homomorphism; we shall accordingly assume ]c(A)
/(W(]c)) as prescribed by a. There is a natural homomorphism
onto Wn-l(]), and a natural homomorphism of A onto an (n 1)-dimen-
sional periodic group-variety B over ]c, of dimension n 1 and period pn-1;
we shall assume, accordingly,/c(W_(/c)) c ]c(W(]c)), It(B) c k(A). Since
dim B n 1, by the recurrence assumption we may assume B to have the
property claimed for G, and denote by {x0, x_2} a n.h.g.p, of B having
the properties stated in the theorem. Furthermore, the previous embeddings
are such that k(B) ]c(W_(])); this generates a homomorphism of W_(k)
onto B. There are rational mappings k of W_I() into W(]c), and of B
into A, such that )), 1. Since the rational mapping a of W_(k)
into B coincides with , we can select to be such that ah; then, for a
nondegenerate P B, say P Q where Q e W_l(k) is nondegenerate, we
have [P] ah[Q]; since, by the nature of , k[Q] is a nondegenerate point of
W.(k), [P] is a nondegenerate point of A. But then there exists a factor set, of B into a 1-dimensional vector variety V over ]c, such thatA --- B, V, ,},
and such that -[P X Q] [P] -t- [Q] [P -t- Q] is a nondegenerate point
of V for each pair of nondegenerate points P, Q of B. If x_ is a canonical
coordinate on V, namely one for which x,_(P - Q) Xn-I(P) - x,_(Q),
this means that

x_([P X Q]) fn-(Xo(P), "", Xn-:(P); xo(Q), ..., x_2(Q)),
f._ being a polynomial with coefficients in k. Thus A is isomorphic to the
projective space G with n.h.g.p. {x0, ..., x_}, and has the required de-
generation locus and the required law of composition, Q.E.D.

Appendix

In this appendix, all varieties are over an algebraically closed field ] of
characteristic p 0. Those group-varieties which are isogenous to Witt
varieties will be called of Witt type.

(12) LEMA. Let V, W be varieties of Witt type, V being 1-dimensional.
V, W, "1 is a homomorphic image of V X W, then , Fo(V, W).
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Proof. If dim W 1, the lemma is true, since in this case {V, W, ,} is a
vector variety, hence isomorphic to V X W. If dim W n > 1, and the
lemma is accepted when dim W n, then either , operates on the (n 1)-
dimensional irreducible group-subvariety U of W, certainly of Witt type by
(9), and in this case the result is true by the recurrence assumption; or else,
if/ is the natural homomorphism of W onto L W/U, {V, L, t’} is a homo-
morphic image of V L, so that F0(V, L), is associate to a ,’ which
operates on U, and the previous case gives ,’ e F0(V, W), Q.E.D.

(13) LEMM. V and W having the same meaning as in (12), any given
V, W, . is either of Witt type, or isomorphic to V X W.

Proof. The lemma will be proved by recurrence on n dim W, since the
result is true if dim W 1, by (9). If {V, W, .} is not of Witt type, then,
by (9), it has period p, so that p-.-.__ "[iP X P] --t "[iP X P1]
Ew for a generic P e V. Then __- [iP X Pt] belongs to the irreducible
(n 1)-dimensional group-subvariety U of W; if a is the natural homo-
morphism of W onto W/U, we have ’ a,[iP X PI] E,w, hence

a e r0(V, aW)

by (3), and , is associate to a ’ which operates on U.
quently assume . to operate on U from the beginning; if

We shall conse-

{V,U,,r}-----V U,
belongs to F0(V, W), as claimed. Otherwise, by recurrence, {V, U, } is

of Witt type, and is therefore a homomorphic image of W _-- {V, U, }, by
(9); but then {V, W, } is a homomorphic image of {V, W, /t}, and this
is isomorphic to V W since e I’0(V, W). The result now descends from
(12), Q.E.D.

(14) THEOREM. Let A be a periodic group-variety of period pn; then A is
isomorphic to the direct product of varieties of Witt type. In particular, A pos-
sesses n-dimensional group-subvarieties of Witt type, and any one of these is a
direct factor of A.

Proof. The first statement is a consequence of the second; the two parts of
the second statement will be proved by recurrence on dim A. If X pA, X
has the period pn-; if X is not of Witt type, by the recurrence assumption
we have X --- Y X Z, where Y is of Witt type and dimension n 1, and
dim Z > 0; after setting W p-Y c A, W has the period pn, hence it pos-
sesses an irreducible n-dimensional group-subvariety of Witt type; it follows
that A has the same property. If instead X is of Witt type, L A/X has
period p, and is therefore isomorphic to a direct product V X X Vr of
1-dimensional vector varieties; but then
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(by Lemma 3.3 of [1]), where e r(V, X), and , r0(V, X) for at least
one value of i, say i 1 (otherwise A --- L X X would have period p-l).
Thus {V1, X, 1} is a group-subvariety of A, of dimension n, and it is of
Witt type by (13).
Having now established that A possesses an n-dimensional group-subvariety

of Witt type, if dim A > n let B be an irreducible group-subvariety of A,
containing W, and having dimension equal to dim A 1. Then, by the re-
currence assumption, B --- W X C, and A {V, W X C, i0 + 1}, where V
is a 1-dimensional vector variety, i0 I(V, W), and i F(V, C); now,
{V, W, t0} --- A/C has period p, so that, by (13), i0 e F0(V, W), and
A {V, C, } X W, Q.E.D.

Remark. If W is a group-subvariety of A, of Witt type and dimension <n,
in general W is not a direct factor of A, not even in the case in which W is
not a proper group-subvariety of any group-subvariety of Witt type of A.
For instance, if A has n.h.g.p. {x, y, z} and law of composition

(x, y, z) + (xr, y’, z) (x + x, y + y + f(x, x’), z + zr),

where f(x, z’) ,-1(i!)-1[(p i) 1-1 ,-
--1 !l x x the vector group-subvariety

W given by x 0, z y is not properly contained in any grouposubvariety
of Witt type of A, since no point of W, with the exception of E, is of the
type pP with P e A. However, W is not a direct factor of A; in fact,
V A/W has n.h.g.p. {, y} and the law of composition (, y) + (’, y)
( - , -t- ’ W f(, r)), and the natural homomorphism of A onto V is
given by x,y y z. We haveA {V, W, i},whereiisdeter-
mined by the function g((, y), (’, ’)) f(, ’). Were W a direct factor
of A, would belong to F0(V, W), and it would be possible to find an
h(, ) e ]c(, ) such that

f(, ’) h(, 7) - h(’, 7’) h( - ’, , - 7’ - f(,

Set here 7’ 0, derivate with respect to r, and set ’ 0; one obtains
-1 W dh(, O)/d e , which is impossible.
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