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1. Infroducfion
Suppose h is given positive integer greter thn 1. Let M(h) be the set

of ll positive integers n such that p In for every prime fctor p of n. If x
is a positive rel number, let N(x) be the number of elements of M(h) not
exceeding x. ErdSs nd Szekeres [3] proved that for h fixed- p-) (x(+)N(x) x/ (1 + =+ + 0 ).

(In this paper an unspecified product is understood to be a product over all
the primes p, while an 0-relation is understood to be with respect to x
and is not necessarily uniform in the parameters, such as h, that may be
involved.) It is the purpose of this paper to point out that considerably more
precise information may be easily obtained from known results in the theory
of lattice-point problems. The general idea is the familiar one of expressing
the given problem in terms of a "nearby" lattice-point problem whose solution
is known, that is, we express the Dirichlet series corresponding to the given
problem as the product of a Dirichlet series with a comparatively small abscissa
of absolute convergence and the Dirichlet series corresponding to the known
lattice-point problem.
More specifically, let c. 1 if n M(h) and c 0 if n is a positive integer

not in M(h), so that N(x) c,. Then, using the Euler product for
the Riemann zeta-function, we have

2h--1 p--m,)E
+ H (1 + p p

(Throughout this paper the letters m and n stand for positive integers and an
unspecified sum is understood to be a sum over all the positive integers.)
Continuing this process we obtain

(2)
where fn has abscissa of absolute convergence at most 1/(2h + 3).
(Actually f n 1 if h 2, while f n has abscissa of absolute con-
vergence exactly equal to 1/(2h + 3) if h > 2. Repetition of the above pro-
cedure shows that c n has a meromorphic continuation in the half-plane
Re s > 0.) Suppose now that we put

(3)
a n (hs) ((h + 1)s) ((h + r)s)
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for a suitable r not exceeding h 1. Then relatively good approximations
for .__<x a. are known or can readily be derived from known results, while

b. n has a comparatively small abscissa of absolute convergence. These
facts enable us to get good approximations to _xc Nh(x).

2. Basic lemmas

Throughout this section we suppose that we have the Dirichlet series
identity a. n-8. b n c. n for complex s of sufficiently large
real part, where a, b, and c need not have the specific meaning of the
previous section. For positive real x write

A (x) ,<__ a, B(x) ,<__ b,, C(x) ,,<= c,

The following (essentially known) lemmas are the basis of the method used
in this paper.

LEMMA 1. Suppose that

XXrA(x) ao x + ax + + a + O(x log (x + 1))
and

where h, g, , are nonnegative real constants and so, o
constants. Then

or, hr are complex

C(x) "Y0 x - "1 xl -- - "Yr Xr -- 0(xmax(X’) log’ (x + 1)),

where /i 0 if Re -< and. a b, n-x if Re > (i 0, 1, ..., r);
further t’ t if X > , ’ t + l if h ,, t’ O if X < and Re),
for all i, while t’ 1 if < , but , Re for some i.

Proof. Clearly

C(x) <= b,, A (x/n)

XXr En<xso x < b, n- + + b n-+ o(z (x +
Now if is real, we have for positive x by partial summation

__<.[bln-’ O(x-’) if , < ,
_,,<=,[b,ln-’ O(log (x -t- 1)) if ,
_,>,lb,[n-’= O(x,-’) if ,/ > ,.

Hence our result follows. (When h < , it is helpful to begin by replacing
the error term O(x log (x -t- 1)) in the formula for A(x) by O(xX’), where
), < ’ < .)

If r =< ),, the result of Lemma I is easily seen to be best possible. However
if X < , it can be substantially improved if we know somewhat more about
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the behavior of B(x). For example, if B(x) o(x) as x --+ oo, the following
result is better. (The assumption Re > r is not essential but was added
to avoid making the conclusion too complicated.)

LEMMA 2. Suppose that

XkrA(x) aoxx + + a + O(xx log (x + 1)),

where , X, , v are nonnegative real constants and o Xo k are com-
plex constants such that

0 k < v < Re (i 0,1, r).

Then for 1 y x we have, uniformly in y,

C(x) 0xx + #t + + xx + tx y log’ (y + 1))

+ O(x’y’-" max B*(u)u }),

where a b, n-x’ and B*(u) max B(v) .
Proof. Let z x/y. Then

C(z) =,$ab, ,b,A(x/n) + a{B(x/m) B(z)}.

Put A0 (x) . a , and suppose A0 (x) K for all positive x. Then,
since B* is a nondecreasing function, we have

va {B(x/m) B(z)}] v a B*(x/m)

vAo (m){B*(x/m)- B*(z/(m + 1))} + Ao (y)S*(x/[y + 1])

g{B*(x/m) B*(z/(m + 1))} + g[y]’B*(x/[y + 1])

Km (m 1)"lB*(/m) K B*(/m)- d
N K B*(x/u)u"- du K,x" B*(u)u-"- du,

the convergence of the integrals being justified by the estimate B*(u) O(u).
Further

xx’,, b n, b A(x/n) a0 zx, b, Xo + + a,

+ 0(., ]b I(x/n) lod (z/n + 1)).
Now for i 0, 1, r we have

ai X
x’ n. bnx, ixx’ bn n-x’ Xa xx’ {B(u) B(z) }x,- du,

+ 0 B*(u)-d
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where convergence is guaranteed by the estimate B*(u) O(uV). Also if
f(u) D,{u’ log (u -t- 1)} we have

F_,._. b. (/,) o (x/ + ) o ( + 1)Z. I.
x/n x

ux-’-i log (u + 1)

O(xy- log (y + 1)).

Combining these estimutes we obtuin

B*(u)u-’’- du)
(4)

-t- 0 B*(u)u-K-l d .-[.. O(x"y’-" log (y - 1)).

Using (4) and the inequality

x’ B*(u)u-’- du <-_ x’(max,_,{B*(u)u-V}) u-’- du

(7 --1 --,
) x y max,/, {B*(u)u-’),

valid for > v, we immediately obtain the assertion of the lemma.
The argument used in the proof of Lemma 2 goes back in essence to Axer.

For example, 6 of [1] contains a special case of formula (4), namely the case
r-- 0, a0 1,),0- K,k-- 0, 0, v-- 1.

3. Elementary results

By an elementary argument similar to that used by Dirichlet in the divisor
problem, Landau [6] proved that if a and/ are fixed positive numbers and if
/, then

(5) .. (/,)x" + (,/)x’ + O(z("+))
for positive x. (See also [2] or Lemma 3 of [10].) The only information
about the zeta-function required in this proof of (5) is the formula

r(s) s/(s 1) -t- s ([y] y)y-’- dy (s > O, s 1).

If s > 1, this is merely a disguised form of the definition i’(s) n-. For
0 < s < I it can be regarded as the definition of t(s).
From Lemma I and formula (5) we easily derive the following theorem.

(The result for h 2 was given in [2].)
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THEOREM 1. There exist constants "oh and "1 such that for positive x

N() "o + " x"(+" + O(x(+)).
When h 2, we may replace the error term by O(x).

Proof. Take r I in (3). Then we have
where a" (hs) ((h + 1)s) and b n-’ is equal to the infinite
product in the final line of (1). By formula (5) with a h and B h W 1,
we have for x positive

((h + 1)/h)x + (h/(h + 1))x(+) + O(x("+)).
Since b, does not exceed the coefficient of n-’ in the Dirichlet ries for
((h + 2)s) ((h + 3)s) (3hs), we have by a crude estimation

When h 2, we have b, n-’ -(6s), and so in this case

Thus the theorem follows from Lemma 1 with

ih (h/(h + 1)) b n-(+)

2h--1 (h+l) ahm--2h+2 p-m(h/(h + 1)) H (1 + =+
Note that 0 (3/2)/(3) and 12 (2/3)/(2).
We remark that the argument of ErdSs and Szekeres amounts to using (3)

with r 0. The application of Lemma 1 in that case would be based on the
trivial estimate

,al x+ 0(1).. More precise results for h > 2

By standard complex variable methods in the theory of lattice-point prob-
lems it can be proved that if d0, d, d are given positive numbers and
if d0 < d < < d, then for positive x

xl/d xl/d xl/d
dOn dl. rdr(6) o

+ O(x"/’+) log" (x + 1)),
where

P, IIo__,, :(d/d) (i O, 1, r).

In fact this follows at once if we apply Landau’s colossal lattice-point theorem
[7] with Z(s) (do s)(dl s) (d s), l/do, H do - d T " d
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(r -}- 1)/2, A r, r/o(r 2). In this application the numbers
l of Landau’s theorem are the distinct numbers of the form ,0 , n,
where n0, n, n, are positive integers, while l further

c. 1 ’e (n0n’..
n0d0n ldl.., nrdrln nodonldl.., nrdrln

The essential fact which makes Landau’s theorem applicable here is the func-
tional equation

r(dos) r(d.s)Z(s) r(- d s)...

valid for Re s < 0. The results of [8] show that, on the other hand, the error
term in (6) cannot be sharpened to o(x(+’+’"+’)).

Using (6) and Lemma 1 we obtain the following result.

EORE 2. If r is a positive integer greater than 1 a
r:/2 < h (r W 1)/2,

then there exist constants o such that for positive x

N(x) o x + x+ + + x"+ + a(x),

where

Aa(x) O(x((+)} log (x + 1)) ff r:/2 < h < r(r T 1)/2,

5(x) O(x((+) log+ (x + 1))

O(x(a+r+l) 1ogr+(X + 1)) ff h r(r + 1)/2,

A(x) O(x(+r+)) ff r(r + 1)/2 < h (r + 1):/2.
When r 2 and h 3 we may replace the factor log (x W 1) by log (x W 1).

Proof. We apply (3). By (6) we have

Za.=
n<x h hTl .nhTr<xnon

xl/h xl[(h+l) xl/(hWr) {h(rT2)
aOh + ah + + arh + O(Xr/ }log (x + 1)),

where
o,., ((h + i)/(h + i)) (i O, 1, ..., r).

(Note that, since r < 2h, the error term here is of lower order of magnitude
than the other terms.) From (2) and (3) it readily follows that

E. I o("(+’+’)

ifh > 3, while ,b O(x/s) ifh 3. Nowl/(h+ r + 1) isless
than, equal to, or greater than r/{h(r + 2)) according as h is less than, equal
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to, or greater than r(r 1)/2. Hence our result follows from Lemma 1 with

It can be verified that if a were chosen to contain either more or
fewer of the factors in (2), then a poorer error term would be obtained.
We remark that (-1) > 0 for i 0, 1, r. For it is easily seen

from the procedure bywhichwe pass from (1) to (2) thatif Re s > 1/(2h + 3),
then

where 1 + ,+a x is a power series with integral coefficients which
converges inside the unit circle and which takes only positive values when
0<x<l.

5. The cse h 2

By means of the delicate theory of exponent pairs (due to J. G. van der
Corput and Eric Phillips) H.-E. Richert [10] has recently proved that if
2 > > a> 0, then

(7) r(/)z + r(/)z + O(z*+)
for positive x. Note that (6) would give only an error term
O(x log ( + 1)) in this case. If we were to use (6) and argue as in the
previous two sections, we would obviously get

,(z) ’*(3/2)/r(3) + ’(2/3)/(2) + o(x og* (x + )).

However, if we use Richert’s result (7) instead of (6) and Lemma 2 instead of
Lemma 1, we get the following sharper result.

THeOReM 3. There is a positive absolute constant a such that for large

,(x) ’*r(3/2)/r(3) + ’r(2/3)/(2) + 0(’%-),
where () (log ) (log log )-.

Proof. Take h 2 in (1) or (2). Then we have

where a, n- (2s)(3s), b, 0 if n is not a sixth power, and b (n)
if n is a sixth power, denoting the MSbius function. By (7) we have

(s) a , (3/2)z* + r(/3)z" + O(z*’)
for positive x, while b. ,(n) M() in the usual notation
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(of. [5]). Put

A(x) N.(z) x(3/2)/(3) x(2/3)/(2).
Then if 1 <= y

_
x, we obtain from Lemma 2 (taking 1/2, k v, 0,

= )

)u- O(x/y-/),(9) As(x) o(xl/6y1/3 max/{M*(u1/ }) "+"
where

M*(v) maxl [M(n)I.
Now if we have a nontrivial estimate for M(n)/n, i.e., one which tends to

zero as n -+ , we can get an error term in (9) which is sharper than x1/6

merely by taking y as a function of x which tends to infinity sufficiently slowly
as x --* . In particular the simple estimate M(n) o(n), which is equivalent
to the prime number theorem, gives an error term o(xl/6). However, from the
information on p. 114 of [11], it follows by standard arguments (cf. 164 of
[5] and pp. 157-159 of [9]) that for large n

M(n) O(ne-67"(")),
where 67a is a positive absolute constant. To use this to advantage in (9),
suppose x is large and take y e3(). Then x/y x, and so

max>_=/ M$(ul/6)u-1/6.. O(e-67a((x/y)l/’)) O(e,-67a(xll/6)) O(e"lla(x)).
Thus the result of our theorem follows from (9), so that the proof of Theorem
3 is complete.

If it were known that the least upper bound of the real parts of the zeros
of the Riemann zeta-function is less than 1 i, where 0 1/2, then a
classical argument of Littlewood would give M(n) O(n-) (cf. pp. 161-
166 of [9] or pp. 315-316 of [11]). Taking y x(+) in (9), we could then
obtain A(x) O(xi-(+)). On the other hand, the formula

’IA(x)x-- dx (2s)(3s) i’()/(3) i’(])/(2)
s’(6s) s- 1/2 s- --shows that if p is any zero of the Riemann zeta-function such that p/2 and

p/3 are not zeros, then A.(x) o(xm/6). (The details of the argument are
as in the proof of Theorem 1.3 in [4] or the proof of Theorem 14.26 (B) in
[11]). Thus one can expect to get an estimate of the form As(x) O(x"), a

fixed, q < -, if and only if the least upper bound of the real parts of the zeros
of the zeta-function is less than unity.
The above results about h(x) exhibit an obvious parallelism with (and are

proved in much the same way as) the corresponding results concerning R(x)
Qa(x) x/(h), where Q(x) is the number of integers not exceeding x which
are not divisible by the ht power of any prime. (These corresponding results
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are"

R() O(ze-),
where b is a positive constant depending only on h;

R(z) 0(’+),
if the least upper bound of the zeros of the zeta-function is less than 1 ;

R() o(z),
if p is a zero of the zeta-function such that p/h is not a zero. Cf. 7 of [l]
and 1 of [4].)

6. Concluding remarks
Let us return for a moment to the general situation described at the begin-

ning of 2. Our lemmas deal only with very special cases of the general ques-
tion of deducing an approximate formula for C(x) from approximate formulas
for A(x) and B(x) and upper bounds for_a, [a and"__a, b !. This ques-
tion is discussed in much greater generality in a forthcoming paper by J. P.
Tull. Our particular lemmas give good results only when the absciss of ab-
solute convergence of b n is comparatively small (i.e., when =< ,) or
when the approximate formula for B(x) is simply an upper estimate of its
order of magnitude. Thus our results on N(x) when h > 2 can be greatly
improved by the use of somewhat less special instances of Tull’s theorems.

In particular, Tull has proved the following result, which contains our
Lemma 1, some of the results of 214-217 of [5], and some of the arguments
of [10]. (Note also that equation (5) is an immediate corollary, in view of the
obvious formulas -a_ 1 x W 0(1) and _a 1 x -t- 0(1).)

Suppose that (with the notation of 2)
XkrA(x) ,oXx W - - O(zx log(x + 1)),

B(x) o x " " x’ " O(x log(x q- 1)),

’,,<= a,, O(x), ,,_ b,, O(x),

where , , , ,, p, r are nonnegative real constants such that

min (, ) > max (, p)

and ao ho "", a flo po "’, t pt are complex constants such that

, <Re=< , p <Rep.-< , ,p

for i O, ...,randj= O, ., t. For Res> k put

:() ,o S/(s o) + + , s/(s

-!- s A (y) ao yXO a yX, y-.- dy,



ON A THEOREM OF ERDS AND SZEKERES 97’

so that f(s) a,, n for Re s > K. Similarly, for Re s > p put

g(s) oS/(s ,o) + + ,s/(s ,,)

+ s B(y) o y,O f y,,} y--i dy,

so that g(s) b,, n for Re s > ,. Then

(x) o g(Xo) + + , g(x,)z"
+ flof(po)xp + -- ,f(p)xp*

nu O(x" log (x + 1)),
where

" (,, + ,) (x + ,) (,: ,) + (, x) + ’ (,: ,) + (, x)

"(,, ,) + (, x) + " (, ,) + O’- x)’
and

-P +" ’ (- p) + (,- x) (- p) + (,- x)"

(Note that max (),, p) < r < min (x, v) and that min (u, a)

_
-< max (u, a),

with strict inequality in both places if r.)

If we apply the preceding result to N(x), for example, the following results
are obtained. Suppose that for some positive and some nonnegative # we
have

(10) ,,,,z= 1 (4/3)x1/3 q- i’(3/4)x/’ q- O(x1/5-’ log"(x q- 1)).
Using Tull’s theorem in connection with (10) and the obvious formula
_

1 x15 -t- 0(1), we obtain,,,,,_ 1 (4/3)(5/3)x q- (3/4)(5/4)x
q- (3/5)(4/5)xx/ q- O(x/(+’)log/(+’)(x + 1)).

Using (2) and Lemma 1, we then immediately obtain

(11) Na(x) "roa x
lla q-3’z x/ "q- " xx/ q- O(xt(+’)log/(+3’)(x - 1)).

Now if we use the results of the form (10) given respectively by (5), (6), and
(7), we obtain for the error term in (11) the following: 0(xTM) from elementary
methods, O(xlog(x - 1)) from classical complex variable methods, and
O(xv) from Richert’s results.
However, although the results in 3 and 4 for h > 2 are accordingly not

definitive, there does not seem to be any obvious way of substantially im-
proving the results of 5 for the case h 2.
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