algebraic closure of fields and rings of functions

Dedicated to L. J. Mordell in gratitude and friendship on his seventieth birthday, January 28, 1958

BY
Reinhold Baer

The class of rings of functions that is going to be the object of our discussion may be described as follows: There are given firstly a [commutative] field F, the field of values of the ring of functions; secondly a set D of elements [called points], the domain of the ring of functions; and thirdly and mainly a ring R of single-valued functions, defined on D with values in F. [Addition and multiplication of functions in R are defined in the natural fashion:

$$
(f+g)(x)=f(x)+g(x), \quad(f g)(x)=f(x) g(x)
$$

for x in D and f, g in R.] These rings will always be subject to the following requirements:
R contains all the constants;
if x and y are different points in D, then there exists a function f in R such that $f(x) \neq f(y)$.

All these rings are commutative and contain a ring unit 1 , namely the constant 1. The requirement that all constants are present in R is not quite as harmless as it appears. The field of constants which is naturally isomorphic with the field F of values shall be denoted by C. The requirement on the other hand that there exists to any pair of different points in D a function in R which takes different values on these points does not constitute a loss of generality, since we would form otherwise the classes of points in D on which all functions in R take the same value, and since we could consider these classes as the "points".

With such a configuration $[F, D, R]$ we connect two topological spaces.

The space of maximal ideals

We denote by $T=T(R)$ the totality of maximal ideals in R. If p is a point in T and S is a subset of T, then p is said to belong to the closure \bar{S} of S if, and only if,

$$
S^{*}=\bigcap_{s \in S} s \leqq p
$$

It is well known that T with the topology just described is a compact T_{1}-space [so that in particular every point is a closed set and every covering of T with open sets contains a finite covering of $T]$; see Jacobson [1] or Samuel [1; pp.

118-120, Chapter II, 7]. We note furthermore that an element r in R possesses an inverse in R if, and only if, r does not belong to any maximal ideal, since [because of the existence of the ring identity in R] the element r does not belong to any maximal ideal if, and only if, $R r=R$. Note that T is often referred to as the structure space of R.

The zero set topology of D

A subset S of D shall be termed closed if, and only if, there exists a set Y of functions in R with the following property:

The element d in D belongs to S if, and only if, $f(d)=0$ for every f in Y.
It is well known and easily seen that with this topology D is turned into a T_{1}-space. For the convenience of the reader we indicate the principal points of the proof of this fact. If p and y are different points, then there exists a function f in R such that $f(p) \neq f(y)$. If $f(p)=v$, then $g(x)=f(x)-v$ belongs to R too [since R contains the constants]; and we have $g(p)=0 \neq g(y)$. It follows that points are closed sets. It is clear that the whole space, the empty set, and intersections of closed sets are closed sets. If finally A and B are closed sets, and if the point p does not belong to the join $A \vee B$ of A and B, then there exist functions v and w in R such that $v(A)=w(B)=0$ whereas neither $v(p)$ nor $w(p)$ vanishes. It is clear then that $(v w)(A \vee B)=0 \neq$ $(v w)(p)$; and this shows the closure of the join of two closed sets.

Implicit in this proof is the following fact: If the point p does not belong to the closed subset A of D, then there exists a function f in R such that $f(A)=0 \neq f(p)$; and this fact may be called the "complete R-regularity of D ". The reader will verify without difficulty that our zero set topology is completely determined by the following two requirements:

The zero sets of functions in R are closed sets in D, and D is completely R-regular.

The canonical mapping of D into T

If p is a point in D, then we denote by p^{σ} the totality of functions f in R such that $f(p)=0$. It is clear that p^{σ} is an ideal in R and that the field C of constants is a field of representatives of R / p^{σ}. Hence every p^{σ} is a maximal ideal in R. If y is a point, not p, in D, then there exists, as we noted before, a function f in R such that $f(p)=0 \neq f(y)$. Since f belongs to p^{σ}, but not to y^{σ}, these maximal ideals are different; and we see that σ is a one to one mapping of D into T.

The point d in D belongs to the closure \bar{S} of the subset S of D if, and only if, $f(d)=0$ is, for every f in R, a consequence of $f(S)=0$. This is equivalent to saying that

$$
\left(S^{\sigma}\right)^{*}=\bigcap_{s \in S} s^{\sigma} \leqq d^{\sigma}
$$

Hence d belongs to the closure of S if, and only if, d^{σ} belongs to the closure of S^{σ}; and this shows that the canonical mapping σ is a topological mapping of D into T.

It is clear that $\left(D^{\sigma}\right)^{*}=\bigcap_{x \in D} x^{\sigma}=0$; and this implies that D^{σ} is everywhere dense in T.

The necessary conditions for $D^{\sigma}=T$
Since T is compact, and since D and D^{σ} are topologically equivalent, $T=D^{\sigma}$ implies the compactness of D. Since elements in R, not belonging to any maximal ideal, possess inverses in R, and since elements in R, not belonging to any ideal in D^{σ} are just the functions which do not vanish anywhere, we see that $T=D^{\sigma}$ implies the existence in R of inverses to any function in R which does not vanish anywhere.

It will be convenient to say that R is a full ring of functions, if D is compact and if every nowhere vanishing function f in R possesses an inverse function $1 / f$ in R. Thus we have seen that $T=D^{\sigma}$ implies the fullness of R. We note the following partial converse: If T happens to be a Hausdorff space, then the compact subspaces of T are closed in T; see, for instance, AlexandroffUrysohn [1; p. 263, Satz V]. Dense compact subspaces of T would then be identical with T. Hence $T=D^{\sigma}$, if T is a Hausdorff space and R is full.

We are now ready to state and prove our principal result.
Theorem. $\quad T=D^{\sigma}$ for every full ring of functions over F if, and only if, the field F is not algebraically closed.

Note that the condition $T=D^{\sigma}$ signified the existence of a common zero for all the functions in any given maximal ideal of R. Thus the presence of a common zero for all the functions in any given maximal ideal of every given full ring of functions over F is equivalent to the existence of a zerofree polynomial [of positive degree] over R.

We precede the proof of our theorem by a proof of the following
Lemma. If R is a ring of functions over F, if the field F is not algebraically closed, if the finitely many functions f_{1}, \cdots, f_{k} in R do not possess any common zero, then the ideal $\sum_{i=1}^{k} R f_{i}$ contains a function which does not vanish anywhere in D.

Proof. By hypothesis there exists a zerofree polynomial $\sum_{i=0}^{n} a_{i} x^{i}$ over F. We may assume without loss in generality that $a_{0} \neq 0 \neq a_{n}$. We define

$$
\begin{aligned}
p_{2}\left(x_{1}, x_{2}\right) & =\sum_{i=0}^{n} a_{i} x_{1}^{i} x_{2}^{n-i} \\
p_{j+1}\left(x_{1}, \cdots, x_{j+1}\right) & =p_{2}\left[p_{j}\left(x_{1}, \cdots, x_{j}\right), x_{j+1}\right]
\end{aligned}
$$

and we note that the polynomials p_{k} are well defined for every $k>1$, that they are homogeneous, and that none of them possesses an absolute term. Since
$\sum_{i=0}^{n} a_{i} x^{i}$ is zerofree over $F, p_{2}\left(x_{1}, x_{2}\right)=0$ if, and only if, $x_{1}=x_{2}=0$ [provided, of course, that x_{1} and x_{2} are in $\left.F\right]$; and now it follows by complete induction that

$$
p_{j}\left(x_{1}, \cdots, x_{j}\right)=0 \quad \text { if, and only if, } x_{1}=\cdots=x_{j}=0
$$

Since the ring R contains the constants, and since the ideal $J=\sum_{i=1}^{k} R f_{i}$ contains all the positive powers of the functions f_{i}, it follows that

$$
f(x)=p_{k}\left[f_{1}(x), \cdots, f_{k}(x)\right]
$$

belongs to J. If d were a point in D such that $f(d)=0$, then the numbers $f_{i}(d)$ in F would satisfy $p_{k}\left[f_{1}(d), \cdots, f_{k}(d)\right]=0$. But we noted before that this implies $f_{1}(d)=\cdots=f_{k}(d)=0$. Hence d would be a common zero of the functions f_{1}, \cdots, f_{k}, contradicting our hypothesis. Thus the function f in J does not vanish anywhere on D.

Proof of the Theorem. We assume first that F is not algebraically closed and that R is a full ring of F-valued functions over the domain D. Assume that the ideal J in R is not contained in any of the ideals d^{σ} for d in D. Then there exists to every point d in D a function f_{d} in J satisfying $f_{d}(d) \neq 0$. Denote by $N(d)$ the set of all points x in D such that $f_{d}(x) \neq 0$. It is clear that d belongs to $N(d)$ and that $N(d)$ is just the complement of the set of zeros of the function f_{d}. Since the latter set is closed in the zero set topology, every $N(d)$ is open. These sets $N(d)$ form consequently a covering of D by open sets. Since R is full, the space D is compact. Consequently D may be covered by finitely many of the sets $N(d)$. Hence there exist finitely many points d_{1}, \cdots, d_{k} in D such that D is covered by the sets $N\left(d_{1}\right), \cdots, N\left(d_{k}\right)$. The finitely many functions $f_{d_{1}}, \cdots, f_{d_{k}}$ in J do not possess any common zero in D. Application of the Lemma [which is applicable, since F is not algebraically closed] proves the existence of a function f in the ideal $\sum_{i=1}^{k} R f_{d_{i}} \leqq J$ which does not vanish anywhere on D. Since R is full, the inverse function $1 / f$ belongs to R. Hence $(1 / f) f=1$ belongs to J so that $J=R$.

Consider now some maximal ideal M in R. Since $M \neq R$, there exists at least one point d in D such that $M \leqq d^{\sigma}$. Since M is maximal and $d^{\sigma} \neq R$, we have $M=d^{\sigma}$. Hence $T=D^{\sigma}$.

Assume conversely that the field F is algebraically closed. Denote by E the set of all pairs $x=\left(x_{1}, x_{2}\right)$ of elements x_{i} in F, and by P the ring of all polynomials $f\left(x_{1}, x_{2}\right)$ of two variables x_{1} and x_{2} with coefficients in F. Every polynomial f in P defines a function on E. The function 0 is induced by the polynomial 0 only, since F is, as an algebraically closed field, infinite. Hence we may identify every polynomial in P with the induced function on E; and consequently P will be considered as a ring of functions on E. It is clear that this ring of functions on E contains the constants and that to every pair of different points in E there exists a function in P which vanishes on one of these two points, but not on the other one.

If S is a subset of E, then we denote by S^{P} the totality of functions f in P such that $f(S)=0$. Clearly S^{P} is an ideal in P. The set S is closed [in the zero set topology] if, and only if, S is exactly the set of all the common zeros of all the functions in S^{P}. It follows that for closed subsets A and B of E the statements $A \leqq B$ and $B^{P} \leqq A^{P}$ are equivalent. Noting the well known fact that the maximum condition is satisfied by the ideals in P, we conclude that every descending chain of closed subsets of E terminates after a finite number of steps. This is, of course, a property considerably sharper than compactness.

Assume now that the polynomial f in P is not a constant. Then $f\left(x_{1}, x_{2}\right)=\sum_{i=0}^{n} f_{i}\left(x_{1}\right) x_{2}^{i}$, where each of the $f_{i}\left(x_{1}\right)$ is a polynomial in x_{1} with coefficients in F, and where in particular the polynomial f_{n} is not the zero polynomial. Since f is not a constant, $0<n$. Consequently there exists only a finite number of elements v in F such that $f_{n}(v)=0$. Since the algebraically closed field F is infinite, there exists an infinity of numbers w in F such that $f_{n}(w) \neq 0$; and for each of these infinitely many numbers w the polynomial $f(w, x)$ has degree n. Since $0<n$ and F is algebraically closed, the equation $f(w, x)=0$ has at least one solution x in F; and this shows that f possesses an infinity of zeros in E.

Assume again that the polynomial f in P is not a constant. If c is any number in F, then $f-c$ is likewise a polynomial in P which is not a constant. Hence $f-c$ possesses an infinity of zeros in E so that the equation $f\left(x_{1}, x_{2}\right)=c$ possesses an infinity of solutions in E.

Denote by D the subset of E arising by the removal of one point, say $(0,0)$ we could equally well remove from E any finite number of points. Denote by R the ring of F-valued functions on D which are induced by functions in P.

If the function f in P vanishes everywhere on D, then there exists at least one number c in F-since F contains an infinity of numbers-such that the equation $f\left(x_{1}, x_{2}\right)=c$ has no solutions in E. It follows that f is a constant; and this implies that f is the constant 0 . Every function in R is consequently induced by one and only one function in P so that R and P are essentially the same.

Assume next that the function f in P does not vanish anywhere in D. Then f has only a finite number of zeros in E. Consequently f is a constant which is of necessity different from 0 . This implies in particular that f possesses an inverse in P. We conclude that a function in R possesses an inverse $1 / f$ in R if, and only if, f does not vanish anywhere in D [and is a constant, not 0].

The zero set topology defined by R in D is clearly the same topology as is induced by the space E in its subspace D. Since descending chains of closed subsets of E terminate after a finite number of steps, the same holds true for D; and this implies in particular that D is compact. Thus we have verified that R is a full ring of F-valued functions on D.

It is clear that the totality of functions f in P satisfying $f(0,0)=0$ is a maximal ideal in P; and the functions in this maximal ideal induce a maxi-
mal ideal M in R. Since to every point (u, v) in D there exists a function in P vanishing in (0,0), but not in (u, v), M is different from all the ideals $(u, v)^{\sigma}$ with (u, v) in D. Hence M does not belong to $D^{\sigma} \neq T$; and this concludes the proof.

Bibliography

Paul Alexandroff and Paul Urysohn

1. Zur Theorie der topologischen Räume, Math. Ann., vol. 92 (1924), pp. 258-266. Nathan Jacobson
2. A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U. S. A., vol. 31 (1945), pp. 333-338.

Pierre Samuel

1. Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc., vol. 64 (1948), pp. 100-132.

Oscar Zariski

1. The compactness of the Riemann manifold of an abstract field of algebraic functions, Bull. Amer. Math. Soc., vol. 50 (1944), pp. 683-691.

Universität

Frankfurt am Main, Germany
University of Illinois
Urbana, Illinois

