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The class of rings of functions that is going to be the obiect of our discussion
my be described s follows" There re given firstly [commutative] field F,
the field of vMues of the ring of functions; secondly set D of elements [clled
points], the domMn of the ring of functions; nd thirdly and mMnly ring R
of single-vlued functions, defined on D with vlues in F. [Addition and
multiplication of functions in R are defined in the ntural fashion:

(f -t- g)(x) f(x) + g(x), (fg)(x) f(x)g(x)

for x in D nd f, g in R.] These rings will always be subiect to the following
requirements"

R contMns M1 the constants;

if x nd y re different points in D, then there exists , function f in R such
that f(x) f(y).

All these rings re commutative nd contain ring unit l, namely the con-
stnt 1. The requirement that ll constants re present in R is not quite as
hrmless ts it ppers. The field of constants which is nturally isomorphic
with the field F of vlues shall be denoted by C. The requirement on the
other hnd that there exists to any pir of diffcrcn points in D function in
R which tkes different values on these points does not constitute loss of
generality, since we would form otherwise the classes of points in D on which
all functions in R take the sme w.due, t.md since we could consider these
classes as the "points".
With such a configuration [F, D, R] we connect two topological spaces.

The space of maximal ideals

We denote by T T(R) the totality of maximal ideals in R. If p is a,

point in T and S is a subset of T, then p is said to belong to the closure S of
S if, ttnd only if,

S*- f’l s<=p.

It is well known thttt /’ with the topology just described is a compact T-space
[so that in particular every point is a closed set and every covering of T with
open sets contains t finite covering of T]; sec Jacobson [1] or Smuel [1; pp.
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118-120, Chapter II, 7]. We note furthermore that an element r in R pos-
sesses an inverse in R if, and only if, r does not belong to any maximal ideal,
since [because of the existence of the ring identity in R] the element r does
not belong to any maximal ideal if, and only if, Rr R. Note that T is
often referred to as the structure space of R.

The zero set topology of D
A subset S of 1) shall be termed closed if, and only if, there exists a set Y

of functions in R with the following property"

The element d in D belongs to S if, and only if, f(d) 0 for every f in Y.

It is well known and easily seen that with this topology D is turned into a

T-spaee. For the convenience of the reader we indicate the principal points
of the proof of this fact. If p and y are different points, then there exists a
function f in R such that f(p) f(y). If f(p) v, then g(x) f(x) v be-
longs to R too [since R contains the constants]; and we have g(p) 0 g(y).
It follows that points are closed sets. It is clear that the whole space, the
empty set, and intersections of closed sets are closed sets. If finally A and B
are closed sets, and if the point p does not belong to the join A v B of A and
B, then there exist functions v and w in R such that v(A) w(B) 0 whereas
neither v(p) nor w(p) vanishes. It is clear then that (vw)(A v B) 0
(vw)(p); and this shows the closure of the join of two closed sets.

hnplicit in this proof is the following fact" If the point p does not belong
to the closed subset A of D, then there exists a function f in R such that
f(A) 0 # f(p); and this fact may be called the "complete R-regularity of
D". The reader will verify without difficulty that our zero set topology is
completely determined by the following two requirements"
The zero sets of functions in R :tre closed sets in D, md D is completely

R-regular.

The canonical mapping of D into T

Ii’ p is a point in D, then we denote by p the totality of functions f in R
such that f(p) 0. It is clear that p is an ideal in R and that the field C
of constants is a field of representatives of Rip. Hence every p is a maxi-
mal ideal in R. If y is a point, not p, in D, then there exists, as we noted
before, a function f in R such that f(p) 0 f(y). Since f belongs to p,
but not to y, these maximal ideals are different; and we see that is a one to
one mapping of D into T.
The point d in D belongs to the closure S of the subset S of D if, and only

if, f(d) 0 is, for every f in R, a consequence of f(S) 0. This is equivalent
to saying that

()*= Cl s_<_d.
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Hence d belongs to the closure of S if, and only if, d belongs to the closure
of S; and this shows that the canonical mapping is topological mapping
of D into T.

It is clear that (D)* =FIxeD x 0; and this implies that D is everywhere
dense in T.

The necessary conditions for D 7’

Since T is compact, nd since D and D re topologically equivalent, ]’ D
implies the compactness of D. Since elements in R, not belonging to any
mximl ideal, possess inverses in R, nd since elements in R, not belonging to
any ideal in D are just the functions which do not vnish anywhere, we see
that T D implies the existence in R of inverses to any function in R which
does not vanish nywhere.

It will be convenient to sy that R is a full ring of functions, if D is compact
nd if every nowhere vanishing function f in R possesses an inverse function
1If in R. Thus we hve seen that T D implies the fullness of R. We
note the following partial converse: If T happens to be Hausdorff space,
then the compact subspces of T re closed in T; see, for instance, Alexandroff-
Urysohn [1; p. 263, Stz V]. Dense compact subspaces of T would then be
identical with T. Hence T D, if T is a Hausdorff space and R is full.
We re now redy to state nd prove our principal result.

THEOREM. T D for every full ring of functions over F if, and only if, the
field F is not algebraically closed.

Note that the condition T D signified the existence of common zero
for all the functions in ny given mximl ideal of R. Thus the presence of
common zero for ll the functions in any given mximal ideal of every given

full ring of functions over F is equivalent to the existence of zerofrec poly-
nomial [of positive degree] over R.
We precede the proof of our theorem by proof of the following

LEMMA. If R is a ring of functions over F, if the field F is not algebraically
closed, if the finitely many functions f f in R do not possess any common
zero, then the ideal =Rf contains a function which does not anish anywhere
inD.

Fo
Proof. By hypothesis there exists a zerofree polynomial =0 a x over
We may assume without loss in generality that a0 0 a,,. We define

nip(x x) a xx
i-.O

p+(x Xj+l) p[p(x x), x.+];
and we note that the polynomials p are well defined for every/ 1, that they
are homogeneous, and that none of them possesses an absolute term. Since
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i0 ai x is zerofree over F, p2(xl, x2) 0 if, and only if, xl x. 0 [pro-
vided, of course, that x and x. are in F]; and now it follows by complete in-
duction that

pj(xl, xj) 0 if, and only if, xl x O.

Since the ring R contains the constants, and since the ideal J _,=
contains all the positive powers of the functions fi, it follows that

f() p[f(), ..., f(x)]
belongs to J. If d were a point in D such that f(d) O, then the numbers
fi(d) in F would satisfy pk[f(d), ..., fk(d)] 0. But we noted before that
this implies f(d) fk(d) O. Hence d would be a common zero of
the functions fl, "", f, contradicting our hypothesis. Thus the function
f in J does not vanish anywhere on D.

Proof of the Theorem. We assume first that F is not algebraically closed
and that R is a full ring of F-valued functions over the domain D. Assume
that the ideal J in R is not contained in any of the ideals d for d in D. Then
there exists to every point d in D a function f in J satisfying f(d) O. De-
note by N(d) the set of all points x in D such that f(x) O. It is clear that
d belongs to N(d) and that N(d) is just the complement of the set of zeros of
the function f. Since the latter set is closed in the zero set topology, every
N(d) is open. These sets N(d) form consequently a covering of D by open
sets. Since R is full, the space D is compact. Consequently D may be cov-
ered by finitely many of the sets N(d). Hence there exist finitely many
points d, d in D such that D is covered by the sets N(d), N(d).
The finitely many functions fl, fk in J do not possess any common zero
in D. Application of the Lemma [which is applicable, since F is not alge-
braically closed] proves the existence of a function f in the ideal
_,=1 Rfd <-_ J which does not vanish anywhere on D. Since R is full, the
inverse function 1If belongs to R. Hence (1/f)f 1 belongs to J so that
J=R.

Consider now some maximal ideal M in R. Since M R, there exists at
least one point d in D such that M d. Since M is maximal and d R,
we hareM d. Hence T D.
Assume conversely that the field F is algebraically closed. Denote by E

the set of all pairs x (x, x) of elements x in F, and by P the ring of all
polynomials f(xl, x) of two variables x and x. with coefficients in F. Every
polynomial f in P defines a function on E. The function 0 is induced by the
polynomial 0 only, since F is, as an algebraically closed field, infinite. Hence
we may identify every polynomial in P with the induced function on E;
and consequently P will be considered as a ring of functions on E. It is clear
that this ring of functions on E contains the constants and that to every pair
of different points in E there exists a function in P which vanishes on one of
these two points, but not on the other one.
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If S is a subset of E, then we denote by Se the totality of functions f in P
such that f(S) 0. Clearly Se is an ideal in P. The set S is closed [in
the zero set topology] if, and only if, S is exactly the set of all the common
zeros of all the functions in Se. It follows that for closed subsets A and B
of E the statements A _-< B and Be =< A e are equivalent. Noting the well
known fact that the maximum condition is satisfied by the ideals in P, we
conclude that every descending chain of closed subsets of E terminates after
a finite number of steps. This is, of course, a property considerably sharper
than compactness.
Assume now that the polynomial f in P is not a constant. Then

f(xl, x2) ,i=ofi(xl)x2, where each of the fi(xl) is a polynomial in xl with
coefficients in F, and where in particular the polynomial f is not the zero
polynomial. Since f is not a constant, 0 < n. Consequently there exists
only a finite number of elements v in F such that f,(v) O. Since the alge-
braically closed field F is infinite, there exists an infinity of numbers w in F
such that f,(w) 0; and for each of these infinitely many numbers w the
polynomial f(w, x) has degree n. Since 0 < n and F is algebraically closed,
the equation f(w, x) 0 has at least one solution x in F; and this shows that
f possesses an infinity of zeros in E.
Assume again that the polynomial f in P is not a constant. If c is any

number in F, then f c is likewise a polynomial in P which is not a constant.
Hence f c possesses an infinity of zeros in E so that the equation f(x, z) c

possesses an infinity of solutions in E.
Denote by D the subset of E arising by the removal of one point, say (0, 0)---

we could equally well remove from E any finite number of points. Denote
by R the ring of F-valued functions on D which are induced by functions in P.

If the function f in P vanishes everywhere on D, then there exists at least
one number c in F--since F contains an infinity of numberssueh that the
equation f(x, x2) c has no solutions in E. It follows that f is a constant;
and this implies that f is the constant 0. Every function in R is consequently
induced by one and only one function in P so that R and P are essentially
the same.
Assume next that the function f in P does not vanish anywhere in D. Then

f has only a finite number of zeros in E. Consequently f is a constant which
is of necessity different from 0. This implies in particular that f possesses
an inverse in P. We conclude that a function in R possesses an inverse 1If
in R if, and only if, f does not vanish anywhere in D [and is a constant, not 0].
The zero set topology defined by R in D is clearly the same topology as is

induced by the space E in its subspaee D. Since descending chains of closed
subsets of E terminate after a finite number of steps, the same holds true
for D; and this implies in particular that D is compact. Thus we have veri-
fied that R is a full ring of F-valued functions on D.

It is clear that the totality of functions f in P satisfying f(0, 0) 0 is a

maximal ideal in P; and the functions in this maximal ideal induce a maxi-
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mal ideal M in R. Since to every point (u, v) in D there exists a function in
P vanishing in (0, 0), but not in (u, v), M is different from all the ideals (u, v)
with (u, v) in D. Hence M does not belong to D T; and this concludes
the proof.
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