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In [4] a rather general approach to the first boundary value problem for a
class of functions called regular functions was presented, and the application
of probability theory to the solution was indicated. In the present paper,
this work is carried further, in several directions.
The place of the relativized problem, introduced by Brelot [1] into the study

of harmonic functions on a Green space (see also related work in a different
context by Feller [5]) is discussed. Boundary limit properties of extremal
and minimal regular functions are obtained. Finally, a new characterization
in probability terms of upper and lower first boundary value problem solu-
tions is obtained, which makes possible a rather elegant characterization of
the resolutive functions. This characterization implies that, in a large class
of applications, including for example the case when the regular functions are
the solutions of the heat equation, if the domain of the functions has a com-
pact closure in the defining space, every continuous boundary function is
resohtive.

1. Review of [4]
The basis for the theory of regular functions in [4], comprised in hypotheses

TM1-4 and RS1-4 of that reference, can be summarized as follows. A locally
compact separable Hausdorff space R is given, together with a specified class
of open subsets of R, called regular sets. The regular sets have compact
closures and form a basis for the topology of R. If D is a regular set, with
boundary D’, and if ( e D, there is a certain probability measure t((, D, ), de-
fined on the Borel subsets of D’. A function u on R is said to be regular if it
is continuous and if it is equal at each point ( of each regular set D to its
average over D’ with respect to the measure u((, D, .). Corresponding deft-
nitions of subregular and superregular functions are made.
A. additional hypothesis will be used, but only when mentioned explicitly,

in discussing the first boundary value problem for regular functions on an
open subset D of R. It is a form of the maximum principle, which we denote
by M(D, D’), and which states that, if u is subregular on D and bounded from
above, its supremum on D is a limiting value of u at some point of the bound-
:try D’ of D.
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If M(D, D’) is satisfied, the standard PWB (Perron-Wiener-Brelot) method
can be applied to the first boundary value problem for regular functions on D.
If a boundary function f yields a unique finite solution, f is called PWB resolu-
rive. If every bounded continuous function on D’ is PWB resolutive, D is
called strongly PWB resolutive. If D’ is compact and if D is strongly PWB
resolutive, the value of the solution at corresponding to a continuous bound-
ary function f is a bounded linear functional of f, and is therefore the integral
of f with respect to a measure t(, D, .) of Borel subsets of D’. The same re-
lation then holds between any PWB resolutive boundary function and cor-
responding solution.
Throughout this paper, we shall suppose, in the language of [4], that R is

strongly PWB resolutive from below, that is, that there is a sequence
{R, n >= 1} of open subsets of R (specified and unchanged throughout the
discussion) with the following properties: the closure of R is a compact sub-
set of R+I, U7 R R; hypothesis M(R,, R’,) is satisfied, andR is strongly
PWB resolutive.
We shall, but never unless explicitly mentioned, find it convenient some-

times to introduce a boundary R’ of R. The space R u R’ will always be
separable and compact. The hypothesis of compactness, together with strong
PWB resolutivity from below of R, means that M(R, R’) is satisfied, so that
the first boundary value problem for regular functions on R can be treated by
the PWB method.

In [4], corresponding to each point of R a stochastic process z., n __> 0}
was defined. (Here and below the point is omitted from the notation.)
For this process, z0 z , where N -t- 1 is the first value of n with

e R, and, for n > N, Zn is a random variable distributed on R. The proc-
ess is a M:arkov process, with transition probability from Rr to R’+1 given by
the measure t(, R+I, .), for n > N. If a boundary R is introduced, al-
most every z process path has a limit point on R’, so that, in the language of
[4], hypothesis Mr(R, R’) is satisfied. The set of limit points (necessarily on

R’) of such a path will be called the limit set of the path on R’.

2. h-regular functions

Let u be a positive (by which we always mean "nonnegative" in this paper)
lower semicontinuous function defined on R. The open set on which u is
strictly positive will be called the open support of u.

If u is a positive superregular function on R, the zeroes of u form closed
set, containing together with any point the set of all points covered by the
point relative to R and any neighborhood system (see [4]). If is a zero of
u, and if e D, where D is any regular set or set Rn the set of zeroes of u will
contain a subset of D’ of (, D, .) measure 1.
Throughout the rest of this paper, h is a positive, nonidentically vanishing

function, on R, which is regular and has open support H. If e R, H. then
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H includes a subset of R’, of positive t(, R,, .) measure. In the following,
we adopt the usual convention that 0. +/- 0.

Let u be an extended real-valued function on R. Then we shall call u an
h-regular function if uh is regular on R. Every function on R will be said to
be 0-regular. If u is h-regular on R, if D is an open set with compact closure,
if M(D, D’) is satisfied, if D is strongly PWB resolutive, if DH, and if
is defined by

(2.1)

then

(2.2)

th($, D, A) fA h(v)(,D,d)/h(i),

u() f,, u()th(i, D, d).

Thus, if h never wmishes, treating h-regular functions instead of regular func-
tions amounts to replacing by . In fact the fundamental hypotheses
TM1-4 and RS1-4 imposed on regular sets and the measures t remain valid
when is replaced by , and we have therefore obtained no increase in gen-

iierality in replacing t by However there is a slight increase in gen-
erality when h has zeroes in R, even though we have done very little more in
this case than to replace R by H.

If u is an extended real-valued function, such that uh is superregular on H,
that the integral in (2.2) is well-defined (absolutely convergent), and that
(2.2) with "=" replaced by ">=" is true with the above-stated restrictions on
D and , then u will be said to be h-superregular. If uh is superregular, then
u is h-superregular, and conversely if u is positive on H. The negative of an
h-superregular function will be called h-subregular. If u is h-regular, it is
both h-superregular and h-subregular, and conversely.
Only the values of u on H are relevant to h-regularity, h-superregularity,

and h-subregularity of u.
Let Ul be positive and h-superregular on R, and let u. be positive and h-regu-

lar on R. We adopt the convention throughout this paper that ul/u2 is de-
fined arbitrarily at the zeroes of u2 on R H, is defined as -t- at a zero of
u. on H which is not a zero of ul, and is defined as 0 at a common zero of ul

and u on H. With this convention, ul/u is (hu2)-superregular on R. If ul

is positive and regular, this conclusion cannot always be strengthened. How-
ever if we suppose also that u vanishes whenever u2 does on H, Ul/U, will then
be (u.h)-regular. As a particular case, we remark that 1/h is h-superregular,
and is even h-regular if h never vanishes.

It will be convenient to qualify the notation systematically by the super-
script h when t is replaced by t, but no superscript will be used when h 1.
The family of measures {(, R, .), n >= 1, e H} defines a stochastic proc-
ess {z, n >- 0} just as in the case h 1, except that the initial point must
be in H. The sample paths will be called h-paths from the initial point.
Almost no h-path from a point ever leaves H.
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Let D be an open subset of R, with compact closure. Suppose that
M(D, D’) is satisfied, and that D is strongly PWB resolutive. Then, if h
never vanishes on D u D’, Mh(D, D’) is satisfied, and the PWB method can be
applied to the first boundary value problem for h-regular functions on D. If
u is the regular function on D which is the PWB solution for the boundary
function fh on D’, then u/h is the PWB solution corresponding to the bound-
ary function f. Thus D is strongly PWBh resolutive. It follows that R is
strongly PWB resolutive from below, if h never vanishes.

If R is provided with a boundary R’, in such a way that R u R’ is separable
and compact, then (for arbitrary h) M(R, R’) is satisfied, in the sense that,
if u is subregular and bounded from above, and if u _-< c in some neighbor-
hood of each point of R’ that is a limit point of H, then u -<_ c on H. To see
this, we shall assume, as is no restriction, that c 0. Then uh <= 0 in some
neighborhood of each point of R’. Hence uh =< 0 on R’, if n is sufficiently
large, so that u =< 0 on R’ H for large n. Hence u _-< 0 on H, using the defi-
nition of h-subregularity.

If u is positive and superregular on R, it has a limit along almost every
1-path from each point of R, according to [4]. M:oreover, if ul() is the ex-
pected value of the limit, ul is a regular function, u -< u, and u has the same
limit as u along almost every 1-path from each point of R. If h is strictly
positive, the above remains true if regularity is replaced by h-regularity and
1-paths by h-paths. This is not really a generalization, since 1-paths for
are h-paths for g. If h may vanish, the result remains true with the obvious
restriction that only points of H are used as initial points of h-paths. The
functions involved are defined arbitrarily on R H. The proof needs no
change. Similarly, in the case h 1, and therefore for every h, it is known
from [4] that the following assertions are true. Let D be the class of func-
tions u, h-regular on R, for which u, considered successively on R, R,
defines, in relation to the measures g(, R1, .), gh(, R2, .), a uniformly
integrable sequence of functions, for each point of H. Then each member
of D has a limit on almost every h-path from each point of H, and the value
of u at the initial point is the expected value of this limit. The function
above is in the class D. Note that only the values of u on H are involved
in the defining condition of D. Conversely, according to [4], as general-
ized in repltcing 1 by h, it is possible to prescribe the limits along h paths
and find a unique member of D (neglecting values on R H) with these
limits. This is really how u above was obtained, lrescribing the limits
along h-pths from means assigning a random variable x as the limit of
u along almost all h-paths from each point of H. If these random vari-
ables satisfy certain necessary consistency conditions, the class {x, e H} is
called a stochastic boundary function, and, if E{ x[ < oo for every point
of H, the function u defined by u() E{x} for e H, and arbitrarily on

R H, is in the class D. This function u is called the stochastically ramified
Dirichlet solution determined by the stochastic boundary function. It has
the limit x along almost every one of the given h-paths from in H.
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Roughly speaking, h-paths move in R to regions where h is not small. For
example, since 1/h is a positive h-superregular function, it has a finite limit
along almost every h-path from a point of H. This means that h must have a
strictly positive (or infinite) limit on almost every such h-path.
To clarify this discussion, we make the following comments, without going

into detail. If u is positive and h-superregular, the integral

f, u()h(,),(, R, d)

defines a function v on R, which vanishes on R Rn H, because if ( is a
zero of h in R, h vanishes v((, R, -) almost everywhere on R’,. Moreover,
on R, v is regular, v, uh, and V+l =< v. Let v be the limit of the mono-
tone sequence of functions obtained in this way. Then v is regular on R, v
vanishes on R H, and v <= uh. The function u v/h is h-regular and van-
ishes on R H, according to our conventions. This function is the member
of the class D (stochastically ramified Diriehlet solution) with the same limit
ts u on almost every h-path from each point of H.
The following theorem illustrates the tendency of h-paths to go where h is

not small. We shall say that r is a condition on the final character of paths if
P is a set of points in the space of sequences (f;, , ...), f: R’,, of the fol-
lowing character. For each positive integer n, the set F is in the Borel field
of sets determined by restrictions of the form e A, where A is a Borel sub-
set of R, and k >- n. For example, if f is a Baire function on R, the condi-
tion on paths that f converge on them is such a condition. That is, in more
formal language, the set r defined by the condition that lim f() exist is
a set of the stated type. The probability that an h-path from satisfies a con-
dition F, that is, that the sample path is a point of r, is well-defined, if ( H,
and defines a function of which is h-regular.

THEOREM 2.1. If, for some point e H, almost no h-path salisfies a specified
condition F on the final character of paths, then, if hi is positive and regular on
R, h/h1 has the limit 0 on almost every hl-path from satisfying condition I’.

Since the theorem is trivially true if h(() 0, we suppose in the proof that
h(() > 0. We shall prove this theorem as an application of a simple in-
equality between h-path measures and hi-path measures. Let r be a set
in ((t, (2, "") space determined by a condition of the form ((, (+,) e

A where A is a Borel set of the product space R’n X X R’n+, Then,
if ph() is the probability that a sample h-path from ( lies in r,., where we

suppose that ( e Rn we see that

ph() f f l,.th(, Rn d?f]o) .h(,m--I, Rn+m,
Am
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Here A’ is the subset of Am for which I’=0 h(+k)hl(+k) > 0. In proba-
bility notation, this inequality can be written in the form

(2.4) ph() E h (z+) h()’
where has the value 1 when a sample seqence of z, z+ lies in A
and has the value 0 otherwise. Now h/h is positive and h-superregulr,
and therefore has a limit x along almost every h-pth from , so that

E{x}h($)(2.5) p()
h()

M:ore generally, it follows from this special inequality that the inequality is
even true if F is any set in (1, ., ...) space, in the Borel field determined
by restrictions of the form k e A, where A is a Borel subset of R, and k => n.
In particular, if ph() 0, the truth of the theorem becomes obvious.
As an application, take h 1, and suppose that u is a regular function,

0 u -<_ 1, with limits 0 or 1 on almost every 1-path from each point of R.
Then, according to the theorem, 1/hl has the limit 0 along almost every
hi-path, from a point of R, on which u does not have the limit 0 or 1. In
particular, if h u, and if u() 0, this means that u has limit either 0 or 1
along almost every u-path from . Since, as we have already proved, the
first limit is possible only with probability 0, u has the limit 1 along almost
every u-path from . M:ore generally, the same argument shows that, if

e R, and if S is a Borel set of numbers with the property that the bounded
positive regular function u has a limit in S on almost all 1-paths from , then
u will have a limit in S (less the origin if the origin is in S) along almost every
u-path from .

3. h-minimal functions

We shall call a function u on R h-minimal if it is positive and h-regular, and
if any other h-regular function u on R, satisfying the inequality 0 -_< u -<_ u
on H, is a constant multiple of u on H. All functions on R will be considered
0-minimal. If u vanishes identically, it is trivially h-minimal. If h 1, an
h-minimal function will be called minimal. If u is h-minimal, if h is positive
and regular, and if uh vanishes whenever hi vanishes, then uh/h is h-minimal.

If u is h-minimal, and if H is not connected, then u either vanishes identi-
cally on H or vanishes identically on all but one connected open component
of H. For this reason R has usually been supposed connected in discussing
h-minimal functions in the classical special cases.

THEOREM 3.1. An h-regular function u is h-minimal if and only if the mem-
bers of the class D’h are all constant on the open support of uh.

Let U be the open support of u. If 0

_
ul _-< u on H, and if ul is h-regular,

then u/u is (uh)-regular, and is bounded on UH. Hence Ul/U is in the class
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Duh. It follows that, if all members of this class are constant functions on
UH, Ul const, u on UH. Since this equality is trivially true on H UH,
we find that ul const, u on H, so that u must be h-minimal. Conversely,
if u is h-minimal, and if v is a (uh)-regular function, bounded on UH, then, if
c is a strictly positive bound of Ivl on UH, the function (v -t- c)u/(2c) is
h-regular and -<u on H. It follows that (v 4- c)u is a constant multiple of u
on H, so that v is a constant function on UH. More generally, if v is any
member of Duh, it is the limit of a sequence of (uh)-regular functions, each of
which is bounded on UH (obtained by modifying v on UH so that v becomes
the member of D whose limits on (uh)-paths are those of v changed to 0
when at least n in modulus). Hence v is a constant function on UH, as was
to be proved.

THEOREM: 3.2. If U is h-minimal, one of the following two assertions is true.
(a) u is not in the class D (afortiori is is unbounded on H) and has the

limit 0 on almost every h-path from each point of H.
(b) There is a strictly positive number a such that 0 <- u <-_ a on H, that u

has one of the limits O, a on almost every h-path from each point of H, and that
u()/a is the probability that the limit is a.

Since u is positive and h-regular, it has a limit along almost every h-path
from each point of H. M:oreover, if ui() is the expected value of this limit,

Dh"ul() <- u() and ul e Since u is h-minimal, u is a constant multiple c of
u onH. If u is not in the classDt,c < 1. But uiand uhave the same
boundary limits. Hence ul 0 on H, and we are in case (a). On the other
hand, if u e D, and if is a strictly positive constant, min [u, ti] has a stochastic
boundary function with stochastically ramified Dirichlet solution u having
this stochastic boundary function, and for which 0 _-< u u on H. Then
u c u on H, for some constant c. If u 0, there is nothing to prove.
Otherwise c > 0, and, if ti is sufficiently small, c < 1. It follows that, if
ti is sufficiently small, the only limits of u on almost any h-path from a point
of H are 0, /c a. Since u e D, u() is the expected value of its limit along
h-paths from , and the theorem is now completely proved.

COROLLARY. In case (b), if v is positive and h-superregular on R, and if c is
the infimum of av/u on the open support of uh, then v has the limit c on almost
every h-path from a point of H on which u has the limit a. In particular, c 0

if is h-minimal and is not a multiple of u on H.

(We stress that the theorem and corollary are not essentially more general
as stated than for the special case h 1. They are stated this way only to
facilitate reference and to avoid later misunderstanding.) To prove the corol-
lary, let v be the function in Dh with the same limit as v on almost every
h-path from a point along which u has the limit a, and the limit 0 along almost
every other h-path from the point. Let v be the function in D with the
same stochastic boundary function as rain [v, ti]. Then v u/a on H, so
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that, for some constant cl, v cl u on H, and v => v _>- v on H. It follows
that, for large i, cl does not depend on i, and va has the limit cl a on almost
every h-path, from a point of H, on which v has a limit =<i and u has the
limit a. Hence v has the limit c a on almost every h-path from a point of H
on which u has the limit a, and v >= v c u on H. Then the first assertion
of the corollary is true, with c c a. If v is h-minimal, either v v c u
on H or v 0, so that the second assertion is also true.

THEOnEM 3.3. If U is h-superregular and positive, and if h is minimal, then
u has the limit inf, h() on almost every h-path from each point of H. In par-
ticular, h has the limit sup, h() on almost every h-path from each point of H.

Let ul bc the member of D with the same stochastic boundary function as
u. Then u =< u. According to Theorem 3.1, the members of the class D
are constant on H, and the first assertion of the theorem is now obviously
true. If u l/h, we obtain the second assertion of the theorem as an im-
mediate consequence of the first.
On comparing Theorems 3.2 and 3.3 we see how differently h behaves on

1-pths and on h-paths. We have already remarked that h-paths go to the
parts of R where h is not small, and this fact is particularly clear when h is
minimal.

THEOEM 3.4. Let v and v. be h-minimal, and suppose the following"
() v vanishes on H whenever v does;
(b) . is not a multiple of v on H.

Then v/v is unbounded on the open support of vl h, and has the limit 0 on almost
(very (vi h)-path from a point of this open support.

in fact, v,/v is (v h)-minimal because v is h-minimal and (a) is true. V[ore-

over, if v/v is bounded on the open support of v h, v _-< const, v on H, using
(). But then v is a multiple of v on H, since v is h-minimal. Since this
conclusion is false, according to hypothesis (b), v:/vi is not bounded on the
open support of vl h, and the theorem now follows either from Theorem 3.2 or
or Ihcorc n 3.3.

If h never vanishes, it is natural to inquire under what conditions the
h-regular function 1/h is uniquely determined by its limits on h-paths, that is,
when this function is in the class D. This question is answered by the fol-
lowing theorem, which implies among other things that, if h is minimal, never

vanishes, and is not identically a constant, 1/h is never in the class D.
THnORn 3.5. If h never vanishes, the function 1/h is in the class D if and

only if h has a strictly positive limit on almost every l-path .from each point of R.

DBy definition of D, 1/h if and only if 1/h on R, R, is uniformly
integrable with respect to the measures t(, R, -), t(, R, .), for each
point of R. That is, (uniformly as n varies with e Rn)
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0 lira Ji 1 t,(, Rn d) lira f t(, R,, d)/’h()
(3.1)

lira P{h[zn(w)] a’]/h().
e0

Now h has finite limit on almost every l-path from ,
(3.2) lim h(zn) x,

nd it is clear that the condition (3.1) is cquiwlent to the condition that x
wnishes with probability 0.

In the following theorem, we suppose that R is immersed in a compact
separable space R R’, in which R has boundary R’.

THEOREM 3.6. In case (b) of Theorem 3.2, there is a point of R’ with the
property that the probability that an h-path from in H has the point as a limit
point is h()/a.

To see this, let A be the union of sequence of closed subsets of R’, nd leC
p(, A) be the probability that an h-pth from in H on which u has the limit
a has limit point in A. Then, pplying the evaluation in Theorem 3.2(b),
p(., A) u/a. The function p(-, A) is h-regular, and has the limit 1 on al-
most every h-path from point of H with the two stated properties, the limit
0 on almost every other. In fact this function is the stochastically ramified
Dirichlet solution corresponding to these prescribed limits. Since u is h-
minimal, it follows thtxt p(., A) cu on H, for some constant c l/a.
Applying the Corollary to Theorem 3.2, we find that, if p(, A) > 0, then
p(, A) u()/a. Hence, either p(., A) 0 or p(., A) u/a. Since R’
is compact, trod sicme

p(, U7 A ) E7 p(., A),

there must be t point ’ on R’ with the property that p(., A) u/a, for
every open (relative to R’) set containing ’. Hence p(., {’}) u/a, and
this concludes the proof of the theorem.

Essentially this theorem, although stated nonprobabilistically, nd in the
case when R is Green space and the regular functions are the harmonic
functions, was obtained by Nam [6].
Theorem 3.6 can be used to exclude the possibility of bounded minimal

functions in many applications. For example, suppose that h l, that R
is an open connected set of Euclidean N-space, N 2, and that R’ is its rela-
tive boundary. Then, if the regular functions arc the harmonic functions,
the probability paths from a point of R cn be taken as the ordinary Brownian
pths from the point, up to their first meeting with R’, if any. Alternatively,
in keeping with the present study, the point z, on R, is the first point in which
Brownian path meets R’,, where n is so large that the initial point lies in

R,. In this application, case (b) of Theorem 3.2 cannot arise unless the point
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at is boundary point of positive harmonic measure, because each finite
boundary point has zero harmonic measure. (In probability language, this
corresponds to the fact that almost no Brownian path ever passes through a
specified point of N-space.) This result on minimal harmonic functions is
due to Naim [6]. Actually in applications like this, what is proved is far
stronger than that there are no bounded h-minimal functions, namely that
there are no h-minimal functions in the ordinarily far larger class Dh.

Before concluding our study of minimality, we make a few remarks con-
necting this subject with convexity. The class of positive h-regular functions
on R, with value 1 at a specified point of H, is a convex set, and it is trivial to
verify that the extreme points of this set (considering the functions only on
H) are the h-minimal functions. The class of h-regular functions u on R
satisfying the inequality 0 =< u -< 1 on H is also convex, and we shall now
prove the following theorem.

TIEOREt 3.7. The function u is an extremal of the convex set of positive
h-regular functions <= 1 if and only if it is a function in the set whose limit on
almost every h-path from each point of H is either 0 or 1.

If u is an cxtrcmal function in the class, not vanishing identically, and if
i is strictly positive, define ul as the h-regular function in the class Dh, de-
fined arbitrarily on R H, with the same limit as u along almost every h-
path from each point in H, if the limit is =<6, and the limit 1 along almost
every other h-path from . We write u in the form

(:.3) u u + (1 ) u u
1-6

Unless u has the form described in the theorem, 6 can be chosen so small that
u() > u() at some point of H, and the above expression for u then contra-
dicts the hypothesis that u is extremal. Conversely, if u has the property
described in the theorem, and if u tl u + t uz, where u, u are members
of the convex class in question, and 0 < t, t -t- t l, then u and uz must
both have limit 1 [0] on an h-path along which u has the limit 1 [0]. Hence
u, Ul, and u, as bounded functions with the same stochastic boundary func-
tion, are identical on H, so that u is extremal.

4. The probability of hitting a set

In this section we shall assume that R has a boundary R’ and that R u R’
is compact and separable. Let A be a closed subset of R’, or a countable
union of such sets. Then, if e H, the probability u (() that an h-path from
( has a limit point on A is well-defined. The function ua, defined arbitrarily
on R H, is h-regular, and, if ( e H, has limit 1 [0] on almost every h-path
from ( with limit point on A, limit 0 on almost every other h-path from .
In fact u is the stochastically ramified Dirichlet solution determined by this
boundary behavior.
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In order to be able to connect the probability and PWB analysis of the first
boundary value problem even more closely than in [4], we shall sometimes
impose another hypothesis on R and on the regular functions we are con-
sidering. This hypothesis will enable us to calculate u. In the typical
application, our h-paths from can be replaced by continuous, or at least right-
continuous paths, and what we have called z is the first point in which an
h-path from meets R’. In such an application, it is useful to consider the
probability u() that an h-path from meets an open set G, after leaving .
Under the usual hypotheses, this probability defines an h-superregular func-
tion of , h-regular on R less the closure of G, equal to 1 on G. Moreover
the function has the limit 0 along almost all h-paths, from a point of H,
which do not meet G near R’, the limit 1 on almost all other h-paths from the
point. This function is the equilibrium potential of G in potential theoretic

hstudies. We need the existence of uo for G the intersection of R with a neigh-
borhood (relative to R u R’) of any specified closed subset of R’, and it does
not appear that our present hypotheses are sufficient to imply the existence
of this function. From the point of view of the first boundary value (Dirich-
let) problem, uo is obtained by solving the Dirichlet problem for h-regular
functions on R less the closure of G relative to R, with boundary value 1 on
the boundary points of G in R, and 0 at other boundary points. The solution

hyields u in R less the closure of G relative to R. The function u is then de-
fined as 1 in G, and is defined at the boundary points of G in R to be h-super-
regular in R. Alternatively, the function uo can be found, in many applica-
tions, by solving a Dirichlet problem for regular functions rather than for
h-regular functions. In fact, let v be the solution of the Dirichlet problem for
regular functions in R less the closure of G relative to R, with boundary value
h on the boundary points of G in R, and 0 at the other boundary points.
The function v is defined as h in G, and is defined at the boundary points of G
in R to be superregular in R. Then u v/h. Either of these two pro-
cedures can be carried out, for example, if R is a Green space and if the reg-
ular functions are the harmonic functions.

Rather than attempting to add hypotheses to insure the existence of u(,

we shall simply formulate its existence as a hypothesis, as follows. This
hypothesis will never be presupposed without explicit mention.

J’. If G is an open subset of R, which is the inlersection with R of a neighbor-
hood of a closed subset of R’, there is a function u on R with the following pro-
perties:

(a) u( is h-superregular on R, h-regular on H less the common part of H
and the closure of G.

(b) 0 =< uo _-< 1 on H, and uo has the value 1 at every point of GH.
h(e) If H, ua has the limit 1 on almost every h-path from which meets

G infinitely often, the limit 0 on almost every other h-path .from .
(d) If u is positive and h-superregular on R, >=1 on G, then u >= u on H.
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We shall not need this hypothesis for every G, but only for a sequence of
such sets, corresponding to any prescribed closed boundary set A, whose closed
(;overs shrink to A. Let be a neighborhood (relative to R u R’) of the
closed subset A of R’, and suppose that 1 D D"’, flO A. Iet

" > u > Let(I R. Under hypothesis J, (d) implies that u(
u be the limit of the sequence. Then u is h-regular on R, and 0 u 1.
Hence u has a limit on almost every h-path from a point of H, and this limit
must be 0 for almost every such path with no limit point in A. Let u. be
the function defined at the beginning of this section. Since is at least
equal to the expected value of the limit of uo, on h-paths from (,

IIence
(4.2) u() u(), $ e H.

Since u() is equal to the expected value of the limit of u on h-paths from ,
and, as we have seen, this limit is 0 on lmost every h-path which has no limit
point in A, whereas the limit is at most on other h-paths,

(4.3) u() u(), e It.
Hence , u;(4.4) u lim

on H. It is this result vhich plays an essential role below.
In the following, we write ua instead of ua. Let Ha be the open support

of u. According to an application of Theorem 2.1 mad(; in Section 2, u
has the limit 1 on almost every ua-path from a point of Ha. Another ap-
plication of Theorem 2.l (with F the condition that a path have no limit point
in A and that ua have limit 1. on the path) shows that almost every ua-path
from a point of Ha has a limit point in A. Nmv let B be a union of a sequence
of closed subsets of R’, and define ua.,(8) as the probability that a l-path from
8 has a limit point in A and also one in B. Then ua., is regular, and has
limit 1 on almost every l-path, from each point 8 on R, with t limit point in
each set, and has limit 0 on almost every other l-path from 8. From now on
we assume that H, is not the null set. Then v u./u. is ua-regflar, and
v(8), for e Ha, is the probability that a l-path from 8 has a limit point in
B, if it is known to have one in A. We now prove that this probability is
the probability that a ua-path has a limit point in B. To prove this, we need
only prove that v has the limit 1 on almost every ua path from , with a limit
point in B, and that v has limit 0 on almost every other ua path from 8.
Now the condition F that u., does not ht-ve the limit 1 on a path, and that
the path has a limit point in A and one in B, has probability 0 if the paths
are l-paths from a point of R. Hence, applying Theorem 2.1, 1/ua has the
limit 0 on almost every ua-path, from , point of H, satisfying P. That is,
almost no ua-path satisfies P, and, in view of the properties of these paths,
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this means that v has the limit 1 on almost every uA-path, from a point of
HA, with a limit point in B. The other half of the assertion on the limits of
v along uA-paths is proved by another application of Theorem 2.1, in which P
is the conditions that uA,, does not have limit 0 on a path, and that the path
has a limit point in A but not in B.

5. The PWB method

In this section ve shall again assume that R has a boundary R’, and that
R u R’ is compact and separable. We can then apply the PWB method to
the first boundary value problem for regular functions on R. This was done
in [4], :nd various interrelations between the PWB results and probability
boundary value limit theorems were obtained.

In exactly the same way, since, as we have seen in Section 2, the maximum
principle M(R, R’) is satisfied, the PWB method can be applied to the first
boundary value problem for h-regular functions on R. The situation is no
different from that when h 1, if h never vanishes. If h may vanish, the
only difference is that we consider functions on H instead of on R, and R’
is accordingly replaced by the intersection of R’ and the boundary of H rela-
tive to l/, u R’. The rest of the boundary becomes irrelevant. Just as in
the ease h 1 treated in [4], if a boundary function is PWB resolutive, the
corresponding PWB solution u is a member of the class D, f is constant on
the limit set of almost every h-path from a point of H, and this constant is
the limit of u on the h-path.
We now go into this analysis in more detail. Let f be a function defined

on R. Then f determines upper and lower I?WB solutions, h-regular if they
are tinite on a dense subset of H. (The assertions in [4] on p. 56 in this con-
nection are overoptimistic.) If these two solutions are finite and equal, f
is I)WB res()lutivc. In particular, if f is the characteristic function of a set
A, we denote by v the upper PWB solution for f. If A is closed, it is clear
that v. >= u on H, where u is the function defined in Section 4, and that
there is equality under hypothesis J".
Wc shall need the following properties of v.

h, h(a) v <- v,, if A C B.

for B ()pen relative to R’ and B D A(b) v is the infimum of v
(c) I.f A UA, where A A ..., then v lim,.vA.

The proofs of the first two properties are immediate. The proof of the third
only slightly less so (see [1]). In fact, if ( e H, if v is in the upper class for
the characteristic function of A, and if we take into account the elementary
properties of h-supcrregular functions, we find that the function

lim v. -b min [Z[v v,J, 1]
is :m h-superregular fun(;tion in the upper (.’,lass for the chara(;teristic function
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of A. Since the sum can be made arbitrarily small at
h hthat lim.v v on H, and the reverse inequality is trivial.

Note that u has properties (a) and (c), but not (b).

it follows

TItEOREM 5.1. Under jl, if A is a subset of R’, the upper [lower] t’WB
solution at in H for the characteristic function of A is the infimum [supremum]
as B varies of the probability that an h-path .from has a limit point [its ltmit set]
in the open relative to R [closed] subset B of R’ containing [contained in] A.

h ._.)Since u for A a closed subset of Rt, this theorem is true for A closed
as far as the upper PWB solutions are concerned. V[oreover u v if
A is the union of a sequence of closed subsets of R, because the property (b)
of v is also enjoyed by u. In particular, u v if A is open relative to R’.
In view of property (c), the upper PWB solution v is as described in the
theorem, and the description of the lower PWB solution is obtained from the
fact that the lower PWB solution for the characteristic function of A is 1
less the upper ])WB solution for the characteristic function of R’ A. Note

1 for A thethat, without the use of J, all that can be proved is that u <- vA,
union of a sequence of closed subsets of R.
The condition of this theorem becomes very simple when A is closed. In

fact in this case the conclusion of the theorem implies that the upper [lower]
PWBt solution at is the probability that an h-path from has a limit point
[its limit set] in A. This characterization thus gives the following result,
to be strengthened in Theorem 5.4.

THEOREM 5.2. Under J, the characteristic function of a closed subset of R’
is PWBh resolutive if and only if, for each point of H, almost every h-path from
that has a limit point in A has all its limit points in A.

This theorem has an important consequence. The class of 1)WB rcsolu-
rive boundary functions is linear, and is closed under uniform convergence
and monotone bounded convergence (see [4]). Hence R’ is strongly PWB
resolutive if and only if the characteristic function of each closed subset of R’
is PWBh resolutive. Hence R’ is strongly PWB resolutive if and only if al-
most every h-path from a point of H that has a limit point on any specified
closed subset of R’ has all its limit points in the set. If we apply this result
to a sequence of finer and finer partitions of R’, we obtain the converse half
of the following theorem. The direct half was proved in [4].

THEOREM 5.3. If R’ is strongly PWB resolutive, almost every h-path from a

point of H is convergent. Conversely, under hypothesis J, if almost every h-path
.from a point of H is convergent, R’ is strongly PWB’ resolutive.

We shall now apply the general notion of capacity, due to Choquet [2].
hIf is a point of H, u() vA() defines a function of the compact subset

A of R’. In Choquet’s terminology, this function is a capacity of order
a. In fact u() defines what Choquet calls [2, p. 209] a "fundamental
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scheme of the capacities of order (". [His E is our Rt, his F is our measure
space on which the h-paths from are defined, his A is the set of points (, )
of E ( F for which the h-path generated by has the point of R’ as limi
point.] According to Choquet’s definitions, the capacity of an open (relative

hto R’) set A is then also our u() v(). The exterior capacity of any sub-
set A of R’ is the infimum of the capacity of open relative to R’ sets including
A, and this is v(), according to property (b) of upper PWB solutions, as
stated above. The interior capacity of A is the supremum of the capacities
of closed subsets of A. The fact that h(()v(() defines a capacity has already
been noted, in the ease of harmonic functions on a Green space, by Naim
(see [6]). The factor h(() is of course immaterial.
The interior and exterior capacities of A have simple probability interpre-

tations. The interpretation of the exterior capacity v() has already been
given in Theorem 5.1. The interior capacity of A is simply the supremum
as B varies of the probability that an h-path from ( has a limit point in the
closed subset B of A. There is then a countable sum F of such sets such that
the interior capacity of A is the probability that an h-path from has a limit
point in F. It is easily seen that the interior capacity of the set A (as the
supremum of a lattice of h-regular functions) is h-regular, and that the set F
can be chosen to be the same for all ( in H.
The lower PWBh solution at for the characteristic function of the set A

is then, in view of Theorem 5.1, at most equal to the interior capacity of A.
In fact, in the above notation, the two are equal if and only if there is a union
F UF, of a sequence of closed subsets of A, such that the interior capacity
of A is the probability that an h-path from ( has a limit point in F, and that
almost every h-path from ( with a limit point in F has its limit set in some F.
Now Choquet proved that the class of eapaeitable subsets of R’, that is,

the class of those sets for which the interior and exterior capacities are equal,
is a class which includes the Borel, and even the analytic, subsets of R’, at
least in our ease, in which the initial domain of definition is the class of closed
sets of a compact separable space. Hence, if A is a Borel subset of R’, we
have new descriptions of the upper and lower PWB solutions of its characteris-
tic function. The description above of the interior capacity of A is now a
description of the value of the upper PWB solution at (. Since the lower
PWB solution is 1 less the upper PWB solution of the characteristic function
of its complement, we find that the lower solution at ( is the infimum as B
varies of the probability that an h-path from ( has its limit set in the open
relative to R’ set B D A. In fact there is a set G which is the intersection of
a sequence of such relatively open sets, such that the lower PWB solution at
( is the probability that an h-path from ( has its limit set in G.
We have restricted A to be a Borel set above, because we used the eapaei-

tability of both A and R’ A. If both are analytic, they are both neces-
sarily Borel sets.

Using these results, we now prove the following extension of Theorem 5.2.
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THEOREM 5.4. Let f be a function defined on R’. Then, if f is PWB
resolutive, f is constant on the limit set of almost every h-path from each point of H.
Conversely, under hypothesis jh, if f is a bounded Borel measurable function on
R’, and if f is constant on the limit set of almost every h-path from each point of
H, f is PWB resolutive.

The direct half of this theorem was proved in [4]. In the converse state-
ment, the boundedness condition can be weakened in various ways. For
example, without it the function obtained by cutting off f when Ill >= n,
say by redefining it as 0 at such points, satisfies the stated conditions and
so is PWBh resolutivc. To prove the converse, we remark that it is sufficient
to prove it for f the characteristic function of a Borcl set, because f is the uni-
form limit of a sequence of linear combinations of such characteristic func-
tions, each satisfying the conditions of the theorem. Finally, if f is the char-
acteristic function of the Borcl set A, our hypothesis means that almost every
h-path from each initial point $ of H determines a limit set either contained
in A or in R’ A, and we see at once from the analysis of lower and upper
solutions for f, as made above, that f is then PWB resolutive.
As an application of the preceding theorems, consider the case in which the

regular functions are the solutions of the heat equation (see [3]). In this case
and in similar cases, the probability paths are given in the first place, and the
regular functions must be defined in terms of them, not the other way around.
The probability paths are usually given, as in this case, as continuous paths
(although actually, under appropriate hypotheses, right continuity is enough
for the analysis to be made) which finally leave every compact subset of the
defining space R. Let D be an open subset of R, with compact closure, and
let be a point of D. Then there is a first point z in which a path from
meets the boundary D’ of D. The point z, which we denote by z(, D), de-
pends on the path. It is a random variable whose distribution on D’ is the
measure (, D, .). In the application we are discussing, if D has certain sim-
ple geometrical properties described (incorrectly) in [3] it can be taken as one
of the regular sets of our basic definition of regularity, and all our hypotheses
are satisfied. In other applications, no sets need be distinguished as regular
sets, and we can simply define a function as regular if it is equal at each point
of each open set D with compact closure to the corresponding t average over
D’. This gives a slightly different basic structure to the development of the
theory of regular functions, but the difference does not affect the study of the
first boundary value problem on R itself, as long as R is still by hypothesis the
union of a monotone sequence R, n >= 1} of open sets, with R having a
compact closure contained in Rn+. Moreover j1 is trivial to verify, the
function u being defined at as the probability that a 1-path from meets
G at some time after leaving . The boundary limit theorems and those on
resolutivity are valid, and in fact the paths can either be taken as the con-
tinous given ones, or, in the notation of this paper, if e Rn, z,, can be taken
as z(, R). In particular, this means that, in our heat equation and more
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general similar cases, if D is any open subset of R, with compact closure, and
if D, like R above, is the union of a nested sequence of its open subsets, the
boundary D’ is strongly PWB resolutive. In fact, if the original continuous
paths for R from a point of D are shortened by dropping z(, D) and all
later points, these paths become the appropriate paths for D. Moreover such
a path converges to a point of D’, and in fact to z(, D). Thus Theorem 5.3
is applicable to show that D’ is strongly PWB resolutive.

6. The "rduite"

There has been little justification in Sections 4 and 5 for the use oi’ a general
h, since, as we have seen, there is little decrease in generality if h is taken as
the function 1, none whatever if h never vanishes. In fact what increase in
generality there is simply suggests that the basic hypotheses of [4] were un-
necessarily restrictive. The use of a general h is advantageous when several
such functions appear simultaneously, as in some of the preceding sections
and in the following.

If is positive and superregular on R, we define 4(() as the infimum at (
of the values at ( of positive superregular functions which are in the in-
tersection of R with some neighborhood of the set A. Here A is to be taken
as a subset of the boundary R’, and R u R is supposed compact and separable.
Then 4 is regular, and -< on 12. This functional of 4, introduced in a
more special context by Martin, is called, in that context, the "rduite"
of relative to A by Brelot [1]. In particular, if h is regular,
h v h _-> u h on H, and there is equality, under hypothesis jh, if A is
the union of a sequence of closed sets.

In the rest of this section, we shall suppose that Jh is satisfied. If there is a
point ( of H with h(() 0, it follows from our preceding work that ahnost
no h-path from ( has a limit point in A (or even in the intersection of a suit-
ably chosen sequence of open relative to R sets containing A). Conversely,
if A is analytic, and if almost no h-path from some point of H has a limit
point in A, then hA() 0. At the other extreme, if A is analytic, and if,
for some in H, hA() h((), then almost every h-path has a limit point in
A (and even in the union of a certain sequence of closed subsets of A). Con-
versely, if A is an arbitrary subset of R’ such that ahnost every h-path from
some point ( of H has a limit point in A, then h() h().

If ( e H, there is a closed subset A1 [A] of R such that almost every h-path
from ( has a limit point in A1 [such that h:(() h(()] and such that no closed
proper subset of A [A] has this property. In fact the existence of A fol-
lows at once from the fact that the class of sets in which A is minimal is
closed under monotone limits. Under J, a set A satisfying either of the
above conditions satisfies the other, and such a set will be called a determining
set of h relative to (. In particular, if the set contains only one point, the
point is called a pole of h relative to (. In the simplest applications, in which
a regular function which assumes it maximum value is a constant function,



36 J.L. DOOB

H R, and a determining set relative to is one relative to every point of R.
Suppose now that h is minimal, that jh is satisfied, and that A is a closed

subset of R’. Then hA is a multiple of h, hA ch, on H. To see that c 0
or c 1 are the only possibilities, we can either remark that (hA)A h
on H, or that v hA/h is h-regular, with limit 1 on almost every h-path,
from a point of H, with limit point in A, limit 0 on almost every other h-path
from the point. We deduce at once that, if hA h, there must be a point
v in A such that almost every h-path from each point of H has a limit point
in every neighborhood of 7, and so almost every such path has itself as limit
point. Thus v is a pole of h relative to every point of H. Taking A R’,
we see that every minimal function has a pole. The characteristic function
of a Borel subset of R’ is PWBh resolutive if and only if it contains either no
pole or all poles of h, and it follows that R is strongly PWB resolutive if
and only if h has only a single pole.

If h may not be minimal, R’ cannot be strongly PWB resolutive unless h
has only one determining set, relative to any specified point of H, but the
study of determining sets has not been carried beyond this point.
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