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1. Introduction

A function f will be said to be in the local domain of the linear operator l at
the point s, (in symbols: f e D(I, s)), if f and If are defined and continuous in
some neighborhood of s. Similarly, the domain D(I, I) of for the interval
I consists of all f such that f and f are continuous in I.
The differential operator

d(1.1) I aD28 + bD8 + c, a > O, D8 d
enjoys the following obvious properties"

(1) Local character: If f(s) 0 for all s in a neighborhood of the point So,
then f e D(I, So) and tf(So) O.

(2) I is nontrivial: To each point s of the interval of definition there exists
an f e D(, s) such that f(a) 0 and f(s) O.

(3) Weak minimum property: Let f e D(I, s) be nonnegative in a neigh-
borhood of s and f(s) O. Then f(s) >= O.

In other words, if the point s is both a zero and a local minimum for f, then
f(s) >= O. For the pure differential operator I aD28 bD (where a > 0)
the property (3) may be sharpened to

(3’) Strong minimum property: If f D(I, s) has a local minimum at s,
then If(s) >- O.

Various problems have led the author to derive the general form of linear
operators in one dimension having these properties [1]. The class of such
operators forms a natural generalization of the classical second order dif-
ferential operators. It has been shown elsewhere, [1], [2], [3], that their use
has considerable advantages. The use of the new canonical form renders the
theory more satisfactory and at the same time simpler; it achieves an un-
expected unification and is more adapted for many applied problems.
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It is the purpose of this paper to present an improved derivation of a
canonical form of operators with the properties (1), (2), (3) and to provide
additional information on various points.
The problem may be viewed under two different aspects. It is easily shown

that the equation [u 0 admits of at most two independent solutions (pro-
vided independence is defined as in footnote 3). For certain purposes it is
natural to postulate the existence (at least locally) of two independent solu-
tions, and the general form of our operators can then be derived with ease.
If [ has the strong minimum property (3’), one of the two solutions may be
taken as the constant function, and the other is automatically strictly mono-
tonic. It may be used to reparametrize the,interval of definition in such a way
that the general solution of [u 0 is a linear function.
The crucial Section 3 contains the derivation of a canonical form DD

of our operators with this additional property; Section 4 reduces the general
case of operators with the strong minimum property and two independent
solutions to the simple case of Section 3. The analogous problems for opera-
tors with the weak minimum property are treated in Sections 7 and 8 leading
to the canonical representations (8.1) and (*). These four sections are inde-
pendent of the remainder of the paper.

Unfortunately, when only the properties (1), (2), (3) (or (3’)) are postulated,
the equation u 0 need not have any solutions. The nonexistence may be
due to two conditions"

(a) The original operator may be defined on too small a domain.
(b) The operator behaves essentially as a first order operator (the case of

a vanishing coefficient a in (1.1)).
In case (a) the definition of i[ may be extended, without violating the

postulated properties (1), (2), (3), in such a way that the preceding theory
applies to the extended operator. This is the less elegant part of the deriva-
tion and is contained in Sections 5 and 9, respectively, for operators with the
strong and weak minimum property.
The singular (or first order) points at which the degenerates into a first

order operator are described intrinsically in Definition 2.2, and are treated in
Section 6. They may, but need not, be isolated points, but the regular points
always form an open set.

Section 10 contains three illustrative examples.

2. The operator DD
In a fixed interval I: oo =< x_ < x < x+ -< oo let m be a strictly increasing

function continuous on the right"

(2.1) m m(x) lim m(x - h);
h40

it is not required that m be bounded at either end. The difference
m(y) re(x) (where x < y) should be thought of as a measure of the half-open
interval (x, y].
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If m is continuous, the interval I may be parametrized by m instead of x,
and differentiation with respect to m is in this case defined in the familiar
fashion. For a discontinuous m we adopt the same definition with the agree-
ment to consider increments only over closed intervals. Thus, if g is a func-
tion defined in I such that the right and left limits g(x-4-) and g(x-) exist for
each x I, we define the right derivative of g with respect to m by

(2.2) D+ g(x) lim
g(Y’ g(x-

y re(y-4-) re(x- )’
provided, of course, the limit exists. The left derivative D-g is defined
symmetrically. Clearly at a point of discontinuity of m

(2.3) g(x-4-) g(x-)D+ g(x) D g(x)
m(xA-) m(x-)

and a differentiable g is continuous at each point of continuity of m.
We now define an operator which will prove to be the natural generalization

of aD A- bD..

DEFINITION 2.1. We say that a function f is in the domain D(, I) of the
operator l D, D, in the interval I if:

(i) The right and left derivatives f+ D+ f and f- Df exist and

f+(x) lim f+(y) lira f-(y)

f-(x) lim f+(y) lim f-(y)
y

for each x e I.
(ii) D,D+ f exists and is continuous in I.

The definition (2.2) implies that DmD+ f is identical withDmD-f and we shall
write

(2.5) lf D,Df D,nD-f D,D+f.
Clearly our definition applies equally to any subinterval of I.

LEMMA 2.1. The operator I D,D, has the properties (1), (2), (3’).

Proof. Only (3’) requires comment. Suppose that f e D(I, x) has a local
minimum at the point x. Then f-(x) <- 0 and f+(x) >= O. It follows now
from (2.4) that f+ cannot strictly decrease in any neighborhood N of x as
would be the case if ?if < 0 in N.
The converse of this lemma is true in the sense that the operators of the

form l D,D are essentially the only ones with the properties (1), (2),
(3’). An exception occurs only in connection with singular points, where

To reduce aD + bD, to the canonical form D,D, choose for x an increasing solution
ofaDxA-bDx 0. ThenaD,-4- bD aD,wherea > 0if a:> 0. Now putm
fa-1 dx.
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has the character of a first order differential operator. To give an intrinsic
characterization of such points note that a function f in the domain of has
strong regularity properties and, in particular, cannot oscillate widely. More
precisely, we have

LEMMA 2.2. Let l have properties (1), (2), (3’). Suppose that f e D(, x0)
and f(xo)
and xo x <- xo in each of which f is strictly monotonic.

Proof. Assume the assertion to be false, that is, suppose that there exists
sequence of points x -+ x0 such that f has a local maximum at x and a local
minimum at x..+. By the strong minimum property (3) we have
If(x,) <= 0 and If(x+) >- O, and the assumed continuity of f requires
therefore that If(xo) 0, against hypothesis.

According to this lemma the relation If(xo) > 0 implies that either f is
strictly monotonic in some neighborhood of x0, or f has a local minimum at
xo. In the special case of a first order differential operator bD with
b > 0, the relation ?If(xo) > 0 implies that f is increasing, but for an honest
second order operator If(xo) > 0 is possible both for increasing and for de-
creasing f. These remarks will explain the

DEFINITION 2.2. Let I have the properties (1), (2), (3’). The point xo
is regular for .I if D(?I, Xo) contains both an increasing and a decreasing f such
that f(xo) > O.
A point which is not regular is called a first order point.

Theorem 6.1 shows that at first order points I reduces to a first derivative.
In the absence of first order points ?I is of the nature of a second order dif-
ferential operator. This is seen from the following two basic theorems con-
cerning operators with the strong minimum property (3’).

THEOREM 2.1. Suppose that in an interval I: s_ s s+ the operator ?I has
the properties (1), (2), (3’) and that all points of I are regular.

There exist in I a strictly increasing continuous function x and a strictly in-
creasing right-continuous function m such that ?If D,Df for eachf in a local
domain of

The variable x may be used as scale parameter for I (so that I: x_ x < x+)
and is determined uniquely up to a trivial linear transformation x --+ px
const. For given x the "canonical measure" m is determined up to an irrelevant
additive constant.

Note that may be defined on a small domain whence DD may be a
proper extension of .
A different aspect of the situation is covered by

THEOREM 2.2. The assertions of the preceding theorem remain valid if the
condition that all points be regular is replaced by the following:
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To each s I there corresponds a neighborhood N of s such that in N, there
exist two linearly independent solutions u of Iu O.

3. A special case

We shall prove the most interesting special case of Theorem 2.1 directly and
then reduce the general case to it.

TIEOnEM 3.1. Suppose that ?I is defined in the interval I" - <- x_ <
x < x+ <-_ o and has properties (1), (2), (3’). Suppose furthermore that

(3.1) 1 0, x 0.

Then there exists in I a strictly increasing right-continuous m such that
If DmDf for each f in a domain of I. This m is determined up to an it-
relevant additive constant.

The proof will be based on the following

LEMMA 3.1. Adhering to the conditions of the preceding theorem, let If be
continuous and strictly positive. Then f is convex downward.

Proof. Let p and q be constants, and define u by u(x) f(x) px q.
Then lu If > 0 so that u can have no local maximum in I. If xl < x2
are two zeros of u, then u must be strictly negative in the interval
and hence the graph of f lies below each of its chords.

Proof of Theorem 3.1. By property (2) there exists a function g such that
g > 0 in some neighborhood of an arbitrarily prescribed point x0. In this
neighborhood g is convex. An arbitrary f e D(i[, x0) may be represented as a
difference, f (f - tg) tg fl f: of two functions f, and choosing
sufficiently large we shall have ?Ifi> 0 in some neighborhood N of x0. It
follows that f is convex in N, and hence the one-sided derivatives f+ and f-
exist everywhere in N and satisfy the continuity requirement (2.4). Since
x0 is arbitrary, it follows that f+ and f- exist and satisfy (2.4) for each x e I
and f D(?I, I).

Suppose now ths f 8nd 9g y 8re continuous 8nd positive in the
intervs1 I0 I. Then

(3.2) (x) g+(x)

defines a strictly increasing right-continuous function defined in I0.
Let be a real parameter nd consider the function

(3.3) ut f- tg.

Two functions ui are clled independent in an interval I0 if a nontrivial relationship
pu q- pu. 0 does not exist in any subinterval of I0. See example (c) of Section 10
concerning this convention.

We denote by bold face x the function whose value equals x for each x, and by 1
the function which equals 1 everywhere. No new symbol was thought necessary for the
zero function.
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If

(3.4) < min
(x)

.,o (z)’
then Iut is strictly positive in I0, and the convexity of ut implies that its right
derivative increases. In other words, (3.4) implies that

(3.5) f+(2) -f+(l) > t{g(2) g(l +)},

If > max O(x)/7(x), the inequality in (3.5) is reversed. Thus the increment
of f+ is an interval function with the mean value property

(3.6)

This being the property on which the construction of the Riemann-Stieltjes
integral is based, we conclude that

(3.7) f+(:) f+(1"4-)
Jl+ "(x)

dg(x).

Finally, putting

(3.s) m f
(3.7) takes on the form

(3.9) f+() f+(l+) ],+ ?lf.dm.

This is the integrated version of [f DD, f, and we have proved Theorem
3.1 locally: to each x e I there exists a neighborhood N, such that in it

If DD,f for each f in the domain of /. A glance at (3.9) shows that the
weight function m is determined up to an irrelevant additive constant.
To prove the theorem in the large, choose among these N, denumerably

many, say Ik, k 0, +/- 1, +/-2, which cover the interval I and such that
Ik has an overlap with Ik-1 and I+, but no other interval Ik. It is then
clear that, starting from I0, the free additive constants in 11,1_1, I., I_s,
can be adjusted so that the definitions of m agree in the common
parts I I+1, and Theorem 3.1 is thus proved.

4. Proof of Theorem 2.2
In this section I is assumed to have properties (1), (2), (3’) and to be defined

in the interval I: s_ < s < s+. We shall reduce Theorem 2.2 to Theorem 3.1.

LEMMA 4.1. To each s I there corresponds a neighborhood N, with the
following property: If u is a function such that ?Iu 0 in N, and u(sl) u(s)
for two points 31 < s in N, then u const, in the interval (s s).

Proof. We take for N, any interval around s for which there exists an f
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such that [j’> 0 in Ns. Property (2) guarantees the existence of such a
neighborhood. Suppose the assertion false, e.g. that u(sl) u(s) < U(So) e
for some So such that sl < so < s and t: > 0. Put for abbrevittio
F f q- ue--lu, where is a constant exceeding the oscillation of f i N,.
Thet F(so) > F(s) for i 1, 2, and hence the maximum of F in (Sl, s) is
attained at an interior point although ?IF ?If > 0. This cotradicts the
property (3’).

LEMMA 4.2. If 1 is in the domain of l, the ?ll O. Otherwise ? may be
extended by defining )11 0, and the thus extended operalor has again
properties (1), (2), (3’).

Proof. The futmtios 1 and -1 have a local minimum at each point, ad
the minimum property (3’) therefore requires that 011 0. If l is not in the
domain D(?I, s), let D’ be the set of all functions of the form f + cl where
f e D(?I, s) and c is a constant. The representation f + cl is obviously unique,
and f + cl has extrema at the same places as f. It is therefore possible to put
?.[(f + el) ?If without violating any of the three requirements (1), (2), (3’).

]EMMA 4.3. Suppose that to each s I there corresponds a neighborhood
N: of s such that in N: there exist two independent solutions u of lu O.

Then there exists in I a strictly increasing continuous x such that x O.
Furthermore ?I1 O. If in some interval I the function u satisfies [u O,
then u px ql where p and q are constant.

Proof. I the intersection N8 a N the functions u are monotonic in the
weak sense by virtue of Lemma 4.1. If need be, let us extend in accordance
with the preceding lemma by setting ?ll 0. Let s s, be two arbitrary
poits of N. a N:, and put v u u(sl)l. Thc (using the letter ?I for
the extended operator) ?lv.i 0, and hence v v(s:)v v(s)v is a so-
lution of Iv 0 such that v(s) v(s:) 0. By Lcmma 4.1 then v 0 i
the interval (s, s:), and, since s and s are arbitrary, v 0 in N
Thus there exists a linear relationship between u, u:, and . It follows that- was in the domain of the original (unextended) operator . Furthermore,
u and u bebg independent, there exists a limar combination x p ul -- p. u..,
which is independent of 1 and therefore strictly monotonic, say increasing.
To prove the lemma "in the small", suppose that the function u satisfies

?lu 0 in some subinterval I’ N N. In this interval also
u- px- ql satisfies Av 0, and the constants p, q may be chosen so
that v(s) v(s). It follows then from Lemma 4.l that v vanishes
(s, s.), and thus u px + ql.

It remains to prove the lemma "i- the large." For that purpose choose
:.mong the intervals N a N doubly infinite sequence, say-.., I_, I0,
Ix whose union covers I and such that L overlaps I_ and I+, but no
other interval I.. We have shown that in each I there exists a strictly
icreasing function x satisfying ?Ix 0. In I0 we put x x0. Iu the
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intersection I0 n I1 we have x pl xl -k q 1, and we use this equation as
definition of x throughout I1. Then Ix 0 in the union I0 u I, and x is
strictly increasing. Proceeding in this way by induction we construct

U=_ I, andstrictly increasing solution x of .lx 0 defined in the union
hence in I. Finally, if u 0 in some interval I’ c I, then in each I n
the function u is of the form u p x -b q 1. Since I and I+ overlap, we
have p p+, q q+, and the lemm is proved.
To complete the proof of Theorem 2.2 we have merely to observe that the

conditions (3.1) of Theorem 3.1 hold in consequence of the preceding lemma.

5. Proof of Theorem 2.1
We shall again reduce this theorem to Theorem 3.1. As in the preceding

section we suppose that is defined in the interval I: s_ < s < s+ and has the
properties (1), (2), (3’). We denote by s the function which at each point
s equals s.

LEMMA 5.1. Suppose that in an interval Io c I one has Is >-_ O. If
f decreases and If > 0 in Io, then the graph of f, as a function of s, is convex
downward.

Proof. We refer to the proof of Lemma 3.1 replacing the scale parameter
x by s. We have then u If p. All chords are inclined downward,
whence p < 0 and .Iu > 0. Thus the argument of the original proof applies
in the present case.

LEMMA 5.2. Let So be a regular point. A neighborhood N of So can be para-
metrized by a parameter x (a continuous strictly increasing function of s) in such
a way that whenever If is continuous in some subinterval of N, the one-sided
derivatives D+ f and Df exist and satisfy the continuity conditions (2.4).

Proof. By Definition 2.2 of regular points we can find a neighborhood
N of So in which there exist an increasing function x and a decreasing function
v such that Ix > 0 and v > 0. These functions are strictly monotonic (see
Lemma 2.2). We choose x as a local parameter in N. In terms of it N be-
comes the interval x < x < x, and in N we have

(5.1) x / __> 0, v > 0, vS.
To prove the lemma it suffices to show that (5.1) implies the following: if
lf is continuous in the open interval N’ c N, then in any closed subinterval
N" N’ the function f admits a representation as the difference of two convex
functions of x.

gt IILet N"xl < x < x and "xl < x < x Since I is strictly positive
nd v strictly decreasing in N, we may choose the real parameter so large
that for F f -k tv we shall have F > 0 in N’ and F(x’) < F(x). It

I!
follows then that F decreases in N’. In fact, if x < x < x. < x., then the
maximum of F in the interval (x, x) cannot be attained at an interior point
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since there IF > 0. This maximum is not attained at the right endpoint
F PP\x since F(x) < x. ). Hence the maximum is attained at the left end-

point x, and thus F decreases in (xl, x ). By Lemma 5.1 both F and v are,
as functions of x, convex, and since f F tv, the assertion is proved.

Completion of the proof. Using the notation of the last lemma define in N a
new operator * by

(5.2) *f If .D-f
This operator I* has again the characteristic properties (1), (2), (3). The
local character is obvious. That I* is nontrivial is seen from the fact that v
being decreasing we have D-v <- 0 and hence *v >- v O. Finally, at u
place of a local minimum of f we have D[f <= 0 and therefore ?I*f >= ?If >- 0
for each f in the local domuin of *.

It is clear from the definition that I*x 0, and Lemma 4.2 shows that
either I’1 0 or we are free to supplement the definition of * by setting
l*l 0. The conditions (3.1) of Theorem 3.1 are then satisfied, and we can
apply this theorem to describe the structure of /*. It is true that ?I*f need
not be continuous since D-f muy huve jumps. However, in consequence of
the continuity conditions (2.4) and the continuity of/, it is clear that for each
f in its domain l*f is continuous on the left, and that even the right limits
exist at each point. The proof of Theorem 3.1 applies under these circum-
stances without change and shows that there exists function such that
*f D,Df. If then in N we define the operator

(5.3) / D,D -t-/D,

we see that l is, in N, an extension of l.
We wish to apply Theorem 3.1 to reduce t to the canonical form

(5.4) D,D.

For that purpose we require in N a strictly increasing function u satisfying
u 0. Introducing u as local parameter in N we get (5.4) as an immediate
consequence of Theorem 3.1. To construct the desired function u, we use the
familiar method of successive approximations to show that the differential
equation
(5.5) D-v -t- t3v 0

admits, in N, of a positive solution v. (This v is continuous except, perhaps,
at points of discontinuity of u.) Clearly u .f v dz is a strictly increasing
solution of u 0 (defined up to a linear transformation u --. pu + ql).
We have thus proved Theorem 2.1 "in the small", namely that to each

regular point so e I there corresponds a neighborhoodN in which tf DDf
for each f in the domain of ?I. To show that a similar representation holds
"in the large" throughout I we have merely to repeat the concluding argument
of the last section.
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6. Singular points
We proceed to show that at irregular points l degenerates into a first order

differential operator.

THEOnEM 6.1. Suppose that in the interval I: s_ s s+ the operator 1 has
the properties (1), (2), (3’).

Then there exists in I a strictly increasing continuous function x such that for
each nonregular point s e I either

(6.1) f(s) D+ f(s) for all f e D(I, s)
or
(6.2) If(s) D+ f(s) for all f e D(?I, s).

This theorem was fornulated so as to reveal the salient features in the
simplest manner. Actually the proof will automatically provide further in-
formation embodied in the following

AMPLIFICATION. If S is an irregular point, then exactly one of the following
five mutually exclusive situations prevails:

For f e D(I, s) the relation f(s) > 0 implies that:
(i) f is strictly increasing near s;
(ii) f is either increasing or has a strict local minimum at s, each possibility

actually occurring for some f;
(iii) f has a strict local minimum at s;
(iv)-(v) same as (i), (ii) with "increasing" replaced by "decreasing."
In the cases (i) and (v) we can replace (6.1)-(6.2) by

(6.3) f(s) +/- D f(s),

where D is a two-sided derivative. In the case (iii)

(6.4) f(s) D+ f(s) D’ f(s).

Proof "in the small." We prove that to each singular point so e I there
corresponds a neighborhood N such that Theorem 6.1 and its amplification
re true when I is replaced by N.
The fact that there exist only the five types of singular points enumerated

bove is an immediate consequence of Lemma 2.2.
Let s be a singular point. For reasons of symmetry it suffices to consider

the case where ?If(so) > 0 implies that f is not strictly decreasing (types (i)-
(iii) above). In view of property (2) we may choose u neighborhood of So in
which there exists a function v such that

(6.5) ?Iv / > 0.

Then v is strictly increasing in a right neighborhood so _-< s < so + e nd
strictly monotone in the left neighborhood so e < s

_
So. We choose

e so small that (6.5) holds in the neighborhood N: so e < s < so -t- e.
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We next prove that

(6.6) f(so) (so)D+f(so)
for each f e D(?i, So).
N by
(6.7)

For this purpose we introduce the function defined in

F, (so)f

depending on the real parameter t. Clearly F e D(?i, So). If <: If(s0),
we have IFt(so) > 0 implying that F increases in a right neighborhood of
so, i.e. that F(s) > F(So) for So < s < So -+- 3. Then

(6.8)
or

(6.9)

(so) {/(s) f(so) > t{v(s) v(so) },

(so) lim ionf
f(s) -f(so) > .If(so).() (o)

For > ?if(so) the same argument yields the reversed inequality for the limit
superior, and thus (6.6) holds.

In the interval N we now introduce the strictly increasing function x de-
fined by

-jl dv
o

% const.

Then D+ f(so) (so)D+ f(so), and (6.1) is proved at the point So.
More precisely, if So is of the type (i), then v is strictly increasing, and

IF > 0 implies that also F increases near So. In this case the situation is
perfectly symmetric for right and left neighborhoods, and we have not only
(6.6) but also ?if(So) (so)Df(so) and hence (6.3) with the positive sign.
Similarly, if So is of type (iii), v has a minimum at So, and Df(so)=
-fl(so)Df(so). In this case (6.4) holds. Finally, when So is of type (ii), then
v may be chosen strictly increasing, but it is impossible to strengthen (6.1) by
making a generally valid statement about the left derivative (which, however,
exists in any case; see example (c), Section 10).

Finally, note that when s e N is any other singular point, the argument
applies with the same v and x, and hence the theorem is proved for the neigh-
borhood N.

Proof "in the large." (This part of the theorem is of minor interest and is
proved for completeness only.) We proceed in two steps. First consider the
special case where all points of I are singular. We can cover I by denumerably
many open intervals N_x, No, Nx, such that in Nk there exists a
strictly increasing function xk in terms of which f =i=D f as indicated in
the theorem. Removing, if necessary, superfluous intervals, we suppose that
N overlaps N-x and N+x, but no other N. Clearly xk is determined
uniquely up to an additive constant, and we can choose these additive con-
stants in No, Nx, N_x, N:, N-s, successively in such a way that x
and xk+x coincide in the overlap N n Nk+x. Then each x is the restriction
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of an increasing function x defined throughout I, and for it Theorem 6.1 holds
true.

Next, consider the general case where I contains both regular and irregular
points. If an interval I0 c I contains only irregular points, then we have
shown that there exists an interval N I0 in which the theorem is true. In
other words, to each irregular s e I we can find a neighborhood N such that
the theorem is valid for N and the endpoints of N are regular points (or end-
points of the basic interval I). By definition the regular points form an
open set, and hence the set S of singular points is closed in I. We can there-
fore cover S by denumerably many intervals Nk such that in Nk the theorem
is true for a certain function x and the endpoints of N are regular. We may
suppose the N nonoverlapping and ordered, i.e. N0 lies entirely to the left of
N+I. Then I (iNk consists of denumerably many closed intervals (con-
taining only regular points), and Theorem 6.1 has no bearing on them: In
them x may be defined in a perfectly arbitrary manner. Thus we may in
N define x x W c and dispose of the constants cl, c-1, c, successively
in such a manner that x will be increasing in (JN. In the complementary
set we define x by linear interpolation and the theorem holds for the function
x thus defined.

7. The natural scale
We have seen that for operators with the strong minimum property (3’)

an interval I not containing first order points may be referred to a parameter
x in terms of which assumes a particularly simple form. This result will
now be extended to operators enjoying only the weak minimum property (3).
It will be shown that the equation Iu 0 can have at most two independent
solutions (provided independence is defined as in footnote 3; cf. example (c)
of Section 10). At present we shall assume that, at least locally, there actu-
ally exist two such solutions. Later on we shall remove this restriction.

THEOREM 7.1. Suppose that in the interval I: s_ < s < s+ the operator I
has the properties (1), (2), (3), and assume that to each s I there corresponds a
neighborhood N in which the equation ?Iu 0 possesses two independent positive
solutions.

Then there exist two independent functions defined in I and satisfying
throughout I the equations Ii O. If ?Iu 0 in some interval Io c I, then

u p11 P22,

where the p are constants.
The interval I may be parametrized by a variable x (a strictly increasing con-

tinuous function of s) in such a way that for two arbitrary functions and b
satisfying the equations I 0 and Ib 0 the ratio b/ is differentiable with
respect to x in any interval Io not containing a zero of . Furthermore
(7.1) O(b/)’= const.,
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or, equivalently,

(7.2)

where k const. The parameter x is defined uniquely up to a trivial linear
transformation x ----> px ql.

The proof will be based on the following

LEMMA 7.1. Let I have the properties (1), (2), (3), and suppose that in the
interval I we have > 0 and O.

Define an operator * by

(7.3) ?I*f ?I(f).

Then ?I* has the properties (1), (2), (3’).

Proof. Only the strong minimum property (3’) requires comment. The
domain of ?I* contains all f such that fff is in the domain of I. Let f be such
a function with a local minimum at the point so. The function F defined by

(7.4) F(s) {f(s) f(so) }(s)

vanishes at So and is nonnegative in a neighborhood of So. Clearly
F e D(I, So), and by the property (3) we have ?IF(so) >= O. Now

(7.5) I*f ?IF + f(so) If,

and therefore [* has the strong minimum property (3’).
Proof of Theorem 7.1. Let N be a neighborhood of So e I such that in N

we have ui > 0 and ui 0, where ul and us are linearly independent. In
N we define 9.1" as in (7.3) putting ul. Then I*l 0, and I*(us/ul) O.
Thus 9A*z 0 has two linearly independent solutions, and Theorem 2.2
applies to ?I*. It implies that the ratio u2/u is strictly monotonic, in fact

where is the natural scale for I* in the interval N and k const.
Unfortunately this depends on the arbitrary choice of the two solutions

ui, and we require a parameter x essentially independent of this choice. A
very elementary calculation will show that the function x defined by

(7.7) x u d
80 tl

has this property. More precisely:if vi > 0 and ?Iv 0, then the functions
w v/ satisfy ?I*w 0 and are in consequence of Theorem 2.2 linear
combinations of and 1. It follows that

(7.8)
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where the ai and i are constants. Now clearly

(7.9) v d v_
o Yl

We have thus proved the theorem "in the small," namely when I is replaced
by the interval N. A simple repetition of the argument used at the end of
Section 4 shows then the validity of the theorem "in the large."

THEOREM 8.1.
f exists,

(8.1)

8. The first representation theorem

Under the assumptions of Theorem 7.1 we have, whenever

Df =hD D,. ,
Here m is a strictly increasing right-continuous function defined in I. For a

fixed choice of the scale parameter x the "canonical measure" m is determined
uniquely up to an irrelevant additive constant.

Proof. It suffices to prove the assertion for the fixed neighborhood N intro-
duced in the proof of Theorem 7.1. In consequence of Theorem 2.2 we have
in N the representation

(8.2) *f DDf
with an appropriate monotone . The scale parameter depends on an arbi-
trary multiplicative constant, and we may dispose of it in such a way that in
(7.6) we have k 1. A comparison of (7.6) and (7.7) then shows that

(8.3) D uD,
and hence (putting as before

At a zero of the last term in (8.1) is senseless, and the corresponding statement in
(8.1) should be interpreted as empty. Since 4 and h cannot vanish at the same point,
we have in (8.1) always a valid representation for [. The formal definition of the right
side in (8.1) is in all respects analogous to Definition 2.1.

Added in proof. The operator 2 defined byf D, D f - cf is always reducible to
the canonical form (8.1), but the converse is true only if 4 is sufficiently regular.
Thus if 4’ n exists and is of bounded variation (not necessarily continuous), then
the integrated version of (8.1)reduces to

(*)
1+

If.dm f-(x) f+(xl) f dn.

If n is absolutely continuous with respect to m, then (*) is equivalent to 2f
D, D f + cf with c 4-dn/dm. The case c

_
0 corresponds in the most general

case to a convex 4. For details see [2].
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Here u still depends on the choice of the solution ; to prove (8.1) we have
to show that

(s.5) m

is independent of this choice, and thus intrinsically connected with 96. For a
particular choice of > 0 let us define m by (8.5). Then the first formula in
(8.1) holds, and we have to prove that for arbitrary sl < s2 e N we have

(8.6) bd 2Dx d Dx D
The truth of (8.6) follows simply by using integration by parts remembering
that and are related by (7.1).

9. The oenera] case

Wc turn to an investigation of operators [ with the properties (l), (2), (3)
without assuming the existence of solutions of [u 0. We shall show that
a representation of the form (8.1) holds except when the interval contains
singular points. These can be characterized intrinsically by analogy with
Definition 2.2, but for simplicity of formulttions we shall be satisfied with the
following purely formal

DEFINITION 9.1.. Let [ be defined in the interval I: s_ < s < s+ and ]avc

properties (1), (2), (3). A point So e I is called of zero order if
(9.l) ?If(s0) ]f(So) for each f D(I, So).

A point So e I is of first order if there exist in a neighborhood N of So a strictly
increasing continuous function y and a continuous .(unction X such that

(.).2) ?If(s0) :i:D(f)(So) .for each f D(,I, so)

A point is regular f it is neither of zero nor of first order.

With this convention we have

THEOREM 9.1. Suppose that [ is defined in the interval I and has the proper-
ties (1), (2), (3). Suppose furthermore that all points of I are regular.

Then l can be extended to an operator as described in Theorem 8.1. (In other
words, a scale parameler x and a canonical measure m can be introduced so that
for each f in the domain of l .formula (8.1) holds, and 4, b stand in the relation
(7.1).)

Proof. It obviously suifices to show that the assertion is true for some

lmighborhood of an arbitrary point so e I. Let N be an interval around so in
which there exists a function w such that w > 0 and ?lw 0. The existence
of such an interval is guaranteed by property (2). In N we define (by anal-
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ogy with (7.3)) an operator .I* by

(9.3) *f I(fw) f Iw.

Obviously l* is of local character and has the property (3). Now I*l 0,
and therefore 9.I* enjoys even the strong minimum property (3’). We have now
to distinguish three cases"

(a) At some point s e N the operator I* is trivial, that is, I* does not have
the property (2). Since l*l 0, this is equivalent to saying that I*f(s) 0
for each f e D(I*, s), or that

(9.4) tf(s) lcf(s) where lc w-l(s) Iw(s)

for each f e D(I, s). In this case s is a point of zero order.
In the absence of zero order points [* has the properties (1), (2), (3’), and

the theorems of Sections 2 and 6 apply. The next possibility is then"

(b) The operator 9.I* has properties (1), (2), (3’), but some point s e N
is a first order point. In this case there exists a strictly increasing continuous
function such that either

(9.5) I*f(s) Df(s) for each f e D(*, s),

or an analogous equation with D replaced by -D or +/-D holds. Now
(9.5) is equivalent to saying that for each f e D(I, s)

(9.6) If D f- q- -f 9.1w
W W

holds at the particular point s. Put

W- exp {f (Iw).d}(9.7)

and

(9.8)

Then (9.6) reduces to

.nd thus s is a first order point.

(c) If N contains neither zero- nor first-order points, then I* has the
properties (1), (2), (3’), nd ll points re regular. By Theorem 2.1 in this
case for each f D(9.1*, N)

(9.10) *f DDf
for some monotone functions nd u. Formula (9.3) now shows that in this
case the operator l defined in N by

(9.11) f DD f f c, c-- w-l.Iw
$V W

is an extension of (i.e. f 9Af whenever the left side is continuous).
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The argument of Lemma 2.1 shows directly that 1 has the minimum prop-
erty (3), and it is obvious that has the properties (1), (2). The classical
method of successive approximations proves the existence of a solution of the
differential equation u 0 such that U(So) a and Du(so) , where a

and are arbitrary constants. Therefore, in a neighborhood N’ of So there
exist two positive independent solutions ui of Nu 0, and in N’ Theorem 8.1
applies to N. Thus to each point So e I there corresponds a neighborhood N’
in which N has an extension N of the form described in Theorem 8.1, and
Theorem 9.1 is proved.

10. Examples

(a) Removable singularities. Let l be defined only on the set of poly-
nomials in x (even polynomials), and for each such polynomial Ip p".
Here the origin is a first order point of type (iii) in the classification of Section 6"
if p" (0) > 0, then p has a strict local minimum at the origin.

Obviously the second derivative D is an extension of N for which all points
are regular. In this sense the singularity of the origin for N is due to the fact
that 9.1 is defined on too small a domain. However, one should not jump to
the hasty conclusion that D is the "natural" or unique extension of our .
The next example shows a different extension of which appears in diffusion
theory and for which the origin is a first order point of type (ii).

(b) An isolated first order point. Let N be defined in (- , ) as follows"
for x 0 we put Nf(x) f" (x). For f to be in the domain of I at the origin
we require that f be conlinuous,

(10.1) f+(0) 0, lim f"(x) f++(0) ?If(0).
x-}0

The operator so defined has applications in diffusion theory and shares
many essential properties of the ordinary second derivative. For example, it
is easily shown that for a bounded continuous f the equation

(10.2) hF-- IF =f h > 0

has exactly one bounded solution F.
Despite their strange appearance equations (10.1) state simply that the

origin is a first order point. If we define a strictly monotonic function by
x for x >= 0 (and arbitrarily for x < 0), then (10.1) is equivalent to

?If(O) Df(O). Thus the origin is of type (ii). Note that this extends
the operator of example (a).

Equation (10.2) is the Laplace transform of the diffusion equation for the following
situation. In the half interval x < 0 we hve an ordinary homogeneous diffusion with
an absorbing barrier at the origin; in x 0 we have an ordinary diffusion with a re-

flectin barrier at the origin. If, starting from x < 0, the particle reaches the origin,
it immediately penetrates into the right half-line. Ordinarily (10.1) would be inter-
preted as "transition condition" for two separate diffusion processes.
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(c) Linear independence. Let 9.1 be the operator of example (b), and put

* X where X is a constant. Clearly * has the properties (1), (2),
(3), and the origin is a first order point for l*. Define ui by

nh(Xx) for x_-< 0
(10.4) u(x)

for x >= 0.

Then ?l*ui 0. There exists no linear combination pu - p.u which van-
ishes identically in a neighborhood of 0, but nevertheless u and u are not
independent in the sense of our definition of footnote 3.
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Iexp (Xx) for x 0
(10.3) u(x)

[cosh (Xx) for x >_- 0


