
INVARIANT WEDDERBURN FACTORS

BY E. J. TAFT

The Wedderburn principal theorem for a class of algebras states that if an
algebra modulo its radical is separable, then it contains a subalgebra with the
same structure as the difference algebra. We wish to investigate the problem
of when such a subalgebra is invariant under a group of operators on the
algebra. The natural setting for this question is that of the extensions of
an algebra. In section 2, conditions are given on the groups and algebras
considered, which guarantee the existence of such subalgebras. In section 3,
a special case of the main theorem for alternative algebras is used to give a
proof of the Wedderburn principal theorem for Jordan algebras of charac-
teristic not two. In section 4, a uniqueness theorem is given for a special
case" self-adjoint Wedderburn factors of an associative algebra over a field
of characteristic zero.
The author would like to express his appreciation to Professor Nathan

Jacobson who suggested these problems and acted as thesis advisor during
the preparation of this material.

1. Preliminaries

Let 1 denote a (finite-dimensional) not necessarily associative algebra over
a field q). The concept of an extension of ?l is found in [4], and we assume
familiarity with the discussion given there. The extension (, a) of l with
kernel may be represented by the diagram

o"
0- --* 1 --, 0.

Recall that a is a homomorphism of 3 onto 1. If ’ {01, the extension is
said to be singular. If is nilpotent, the extension is said to be nilpotent.

is segregated in if contains a subalgebra ’ such that ’ - ,
?I’ --- /, and I’ n {0/. Such a subalgebra 9.1’ of will be called a
Wedderburn factor of . 9.1 is segregated if it is segregated in every extension.
We will say is semi-simple if it is the direct sum of simple algebras with

nonzero squares, and define the radical of i as the minimal ideal 9t such that
I/9l is semi-simple. (See [1], [7].) We say I is separable if it is semi-simple
and remains so under extensions of the base field (or that the centers of its
simple components are separable field extensions of the base field).

Before proceeding to introduce group operators, we recall here the Wedder-
burn principal theorem, which has been proved for several classes of algebras"

If ?I is an algebra with radical 9 such that / is separable, then ?l con-
tains a subalgebra such that 1 + 9?, n 9 0, _-- ?I/9.
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Since 0-- 9 -- ?I I/9 -- 0 is an extension of I/, where is the
natural homomorphism of I onto t/9, is a Wedderburn factor of I.

All the algebras considered are finite-dimensional over the base field.

2. The main theorem

Let (!, ) be an extension of the (not necessarily associative) algebra I.
Let @ be a group. If 9.I and ! are @-modules, and is a @-homomorphism,
we say (!, ) is a g0-extension of !ft. If is segregated in (!, ), such that a
subalgebra of ! isomorphic to S can be chosen to be a @-module, then we
say S is @-segregated in (, (r). ?I is @-segregated if it is @-segregated in every
@-extension.

)ROPOSITION 1. Let I be a @-algebra over, where @ is a finite group whose
order is not a multiple of the characteristic of. Let (!, or) be a singular @-ex-
tension of I in which I is segregated. If the elements of @ induce either auto-
morphisms or anti-automorphisms in and !, then is @-segregated in

Proof. Let be the kernel of a. Let the order of @bet. Let pbe a
particular embedding of in !. We wish to show that p’ (l/r) ",a
is a @-embedding of in

is a two-sided g-module under the compositions a.k p(a)]% and
k.a lop(a) for a e I, k e . By Z’(I, ) we denote the derivations of
into . If g e Z’(, ), then it is easy to see that p -. g is an embedding of

in !. Conversely, if p g is an embedding of in !, and g has range
in , then g e Z’(I, ). Use is made here of the assumption {0}.

--1Let e@. Then vp-1embeds in. But vp p (p
Hence p pv-1 e Z’(, ) for any e.@. Since Z’(, ) is linear,

(l/r) ,a (p vpv-) e Z’(I, ).
Hence

and

--1 Z!p (lr),, ,p, (, )

embeds
--1Finally we note that p’ (l/r), yp is a @-mapping.

Then
Let re@.

Hence p’l is a @-invariant Wedderburn factor in !, Q.E.D.
We now wish to extend Proposition 1 from singular extensions to general

extensions. The procedure will be to pass first from singular extensions to
nilpotent extensions, and thence to the general case. To effect this passage,



INVARIANT WEDDERBURN FACTORS 567

we will restrict the discussion to a class C of algebras defined by identities,
such that the algebras in C satisfy the following three conditions"

(I) If e C, 9 a nonzero nilpotent ideal in I, then there exists an ideal
91 in I such that

(a) 91 c 9, (b) 9 .
If is a @-module, then 9 is required to be a @-module.

(II) If I e C, then the radical of is nilpotent.

(III) If , 3 e C, and is a semi-simple ideal of , then there is an ideal
( in 3 such that B I @ . If is a @-module, is required to be a
@-module.

Condition (I) will be used to pass to the nilpotent extensions, and (II),
(III) used to pass to the general case. The argument is essentially that
given by Hochschild in [4], pages 64-65, and we sketch it here.

THEOREM 1. Let C be a class of finite-dimensional algebras defined by iden-
tities whose members satisfy conditions (I), (II), and (III). The following
discussion refers to algebras in C. Let l be a segregated @-algebra, where @
is a finite group whose order is not a multiple of the characteristic of the base
field . Assume that each element of @ induces either an automorphism or an
anti-automorphism in and its @-extensions. Then I is @-segregated.

Proof. I is @-segregated in singular extensions, by Proposition 1.
(a) Let (, ) be a nilpotent @-extension of I with kernel . We show

I is @-segregated in nilpotent extensions by induction on the dimension of .
If dim 0, there is nothing to prove. Suppose dim n, and the result
holds for nilpotent extensions with kernels of dimension less than n.

Let 1 be the ideal given by condition (I). z induces e of 3/ onto I
with kernel/. By (I), 0 -*/1-/- t --. 0 is a singular @-exten-
sion of . By Proposition 1, 3/1 @ /, where [ is a @-subalgebra
of /. has the form /, where is a @-subalgebra of 3. Let r

be a @-homomorphism of onto I with kernel. Then (, r) is a @-exten-
sion of I with nilpotent kernel 1 such that dim < dim . Hence, there
is a @-subalgebra I of such that @ , /1 I. Then clearly

(9 . Hence is @-segregated in nilpotent extensions.
(b) Let (!, a) be any @-extension of ?I with kernel . Let 9 denote the

radical of !. If ! , is nilpotent, and the result follows from (a).
Hence assume , and consider the semi-simple algebra !/.
( + )/9 is a @-ideM of /9 and hence is semi-simple. Let n .
Then ($ + )/ _-- /9. 9 is a nilpotent @-ideal in !, /9 is a semi-simple
@-ideal in /9, and --- !/ --- (!/)/(/9).By condition (III), there is a g0-ideal of !/9 such that . ) has
the form /9, a g0-ideal in !. Let be a @-homomorphism of onto
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?I with kernel . By (a), there is a @-subalgebra ?I1 of such that
/1 @ 9. Then it is easy to see that ! ?I1 $, so that ?I is g0-segre-

gated, Q.E.D.
Now let C be a class of algebras, as above, for which the Wedderburn

principal theorem is true. Let ?I be a @-algebra in C, @ as in Theorem 1,
and let be the radical of . Then 0 -- 9 -- 9.I ---. ?1/9 -- 0 is a segregated
@-extension of I/, provided ?I/9 is separable. Hence /9 is @-segregated
in .
We now give some examples of classes C for which Theorem 1 applies,

and for which the Wedderburn principal theorem is known.

1. Alternative (and hence associative) algebras. For condition (I), set
9 Tt2. The radical of an alternative algebra is nilpotent, so (II) holds.
If ?l is a semi-simple alternative ideal in , then ?I has an identity e, and
!00 in the Peirce decomposition of ! with respect to e is the desired com-
plementary ideal of in !, so that (III) holds. The Wedderburn principal
theorem for alternative algebras is proved in [10], the result holding for
arbitrary characteristic.

2. Jordan algebras. For (I), set 91 9.19 + , see [9]. (II) is also
satisfied in this case. As for condition (III), !0(e) in the Peirce decomposi-
tion of ! with respect to e (see [2] or [5]) is the desired complementary, ideal
for .I. (!l/(e) 0.) Inthe next section, the Wedderburn principal theorem
is proved for Jordan algebras of characteristic different from two.

3. Lie algebras of characteristic zero. For these algebras, the term "nil-
potent" in condition (II) and the above discussion is to be replaced by "solv-
able". Then the results will be valid. The square of an ideal is an ideal by
the Jacobi identity, so that (I) holds. As for condition (III), set (0: /),
the annihilator of /in . The Wedderburn principal theorem (Levi theorem)
for these algebras is well-known (e.g. [11]).

COROLLARY. Theorem 1 is valid for C the class of associative, alternative,
or Jordan algebras, or Lie algebras over a field of characteristic zero.

3. The Wedderburn principal theorem for Jordan algebras

In this section, we shall make use of the results of the preceding section
to give a proof of the Wedderburn principal theorem for Jordan algebras over
fields of characteristic not two. A proof is given for characteristic zero in
[9]. We will use the reduction given there to the case where the radical 9
of the Jordan algebra .I has square zero, I contains an identity u, the base
field is algebraically closed, I/9l is simple. In [9], the five possibilities for
the split algebra 9.I/9l are considered separately, and a caleulational proof

The proof in [9] is valid for characteristic 2. For [6] implies that there are no
new split algebras of characteristic p 2, and the calculations in [9] involve only char-
acteristic 2. (See Bull. Amer. Math. Soc. vol. 61 (1955), p 475.)
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involving structure-lifting is given for each case. Here we use this result
for split algebras of degree two, and start with .I/9 having degree larger
than two. This case is taken care of by means of a structure theorem of
Jacobson, [5], and Theorem 1 of the last section. So essentially we have
reduced the four cases (classes A, B, C, E) to a single case, thereby saving
a considerable amount of calculation. As for / a simple Jordan algebra
of degree one, this can now be handled using a recent result of Jacobson, [6].
Such algebras are one-dimensional, and hence I/ is of the form, idem-
potent. Raising to an idempotent z in , we get z , since clearly
(z) n {0}.

Let / be of degree n larger than two, with W .
Then it can be shown, ([2], [5]), that / contains elements {i}, j 2,
3, ..., n, such that

(1) u u,

(2) - 4(g + ) for j 2, 3, n.Ujl

By [9], we may write u e e2 e, where e ’s are orthogonal
idempotents, and e . For a fixed j, , is a reduced
algebra of degree two, and is a subalgebra of /. Let I be
the Peirce decomposition of with respect to the {e}. Let, be the radical
of ,+(1) + + . Then (** + 1 + )/ , +
1 + (see [9], (4.3)). Since we are assuming the result for such differ-
ence algebras of degree two, we can find a subalgebra of 1
with the same structure as 1 , and which contains el and e
(see [9], section 6, lemma 6.3). Hence the relations (1), (2) may be "raised"
to for a fixed j, and hence for all j 2, 3, n.
Now referring to Theorem 9.1 of [5] and the remark on page 36 there, we

conclude that H(), the Jordan algebra of all n n hermitian matrices
over an alternative algebra with involution d d*. Let be the radical
of . Using the results of section 2 for @ the group of order two consisting
of the identity and involution of , we may write , where is
a self-adjoint separable subalgebra of .
Now let S(), R() be the subalgebra of consisting of those matrices

all of whose entries lie in and respectively. Then it is not hard to see
that R() , the radical of , and that S() + R() is a Wedder-
burn decomposition of . (Use is made of Theorem 7.1 of [5].) This com-
pletes the proof of the Wedderburn principal theorem for Jordan algebras
whose characteristic is different from two.

4. Orthogonol coniugocy and the uniqueness theorem for
self-od]oint Wedderburn factors of on ossociotive olgebra

We assume familiarity with the Malcev theorem for Wedderburn factors
of an associative algebra, [8], which states that if the algebra modulo its
radical is separable, then any two such factors are conjugate by an element
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1 z, where z is in the radical. Here we will show that any two self-adjoint
factors in an associative algebra I with involution are conjugate by an orthog-
onal element. Since use is made of the exponential of a derivation, our
result is limited to the case of characteristic zero.
We assume familiarity with the notions of exponential of a nilpotent

derivation, and the adjoint mapping of I into its Lie algebra of derivations.
In particular, if z is in the radical 9 of , then exp z is regular (in I1, the
algebra obtained from I by adjunction of an identity, if necessary), and
exp(Ad z) is coniugation by exp z.
We extend the involution a -+ a* of I to [ by setting (al)* al for

a e. An element a of I1 is slcew if a* -a, self-adjoint if a* a, and
orthogonal if aa* 1 a*a.
Let z be a skew element in 9. Then exp z is clearly an orthogonal element

of I, and Ad(exp z) is conjugation by an orthogonal element.
If is a self-adjoint (i.e. * ) Wedderburn factor of I, and a is orthog-

onal in t, then ’ a*a is another self-adjoint Wedderburn factor in
It is the converse that we wish to prove. Hence we make the following
definitions"

DEFINITION. An automorphism of which is given by conjugation by
an orthogonal element of is called an orthogonal conjugacy of A. Two
subalgebras and of are orthogonally conjugate if there is an orthogonal
conjugacy of carrying onto .
The relationship of orthogonal conjugacy is an equivalence relation among

the subalgebras of since the orthogonai conjugacies form a group.

THEOREM. Let be an associative algebra over a base field of characteristic
zero. Let a --+ a* be an involution in . Let be the radical of , ([/
separable). Let be a self-adjoint separable subalgebra of ?I, and let
I - be a Wedderburn decomposition of such that is self-adjoint.
Then is orthogonally conjugate to a subalgebra of , and the conjugacy is
given by exp(Ad z), z a skew element of .

Proof. First we note that, by using the Baker-Hausdorff formula (see
[3]), it is not hard to show that mappings exp(Ad z), z skew in , are closed
under multiplication.

Let GI exp(Ad 0) I. Then trivially al . Now
suppose we have found Gi exp(Ad z), z skew in , i 1, 2, lc, such
that (R). al a2... ak

____
k. Then k is a self-adjoint separable sub-

algebra of I. We wish to construct G+I exp(Ad z+l), z+ skew in
such that k+ + Since (0} G G G will be the de-
sired orthogonal conjugacy of into .

If s e , let s t(s) + n(s), t(s) , n(s) . By the induction hypoth-
esis, wetakesek,n(s) e Ifs, se,then

(1) t(ss) t(s)t(s),
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(2) n(ss) n(s)t(s) + t(s)n(s) --n(s)n(s.),

(3) t(s*) t(s)* n(s*) n(s)*

The last equation results from , 9, being self-adjoint.
Consider 9/9+1. This has square zero, and may be considered as a two-

sided -bimodule by means of the compositions"

s.z t(s)z

s zt(s) for s e, z e, z -9+1 /9+1

By (2), n(sls2) (S).s. + s.n(s---. Hence s --> n(s) is a derivation of
into /+. Since is separable, H’(k, /+) 0 (see [4]), and
there is a z e such that

(4) n(s) (s) =- s. . s, for all s

Now I/TM has an involution, induced by that of ?I, and

(()(s))* "n(s)* by (4)

n(s)*

n(s*) by (3)

(z)(s*) by (4).
Hence
(5)
Next we show that
(6)

((i)(s))* (i)(s*)

This proves (6).

so that

Hence, by (4), we get
(7)

(i,) -().
(i*)(s) s. z- z-. s

t(s)z* z*t(s)

t(s*)*z* z*t(s*)* by (3)

(zt(s*) t(s*)z)*

(z(s*))*

z(s) by (5).

Set zk+l 1/2(z z*). Then z+l is skew in

z+ 1/2(z- z*),

(z+) (z z*)

1/2(iz + z) by (6)

iz.

for s e k.

for s .



Let Gk+l exp(Ad( -zk+l)). If s e k, then

s+’ 8(1 WAd(-z+) + ...),

where the omitted terms involve two or more multiplications by zk+ e,
so that they yield elements in +. Hence

8+1=-- (t(s) + n(8)) (1 + Ad(-z,+,)) (mod+)
= t(s) + n(s) t(s) (mod 9+)t(s)z+ + z+
-----t(8) (mod+1) by(7).

then z+ is skewHence +1 _-- + 9+1, and if we now put z+l -z+l,
in 9, and G+I exp(Ad z+) is an orthogonal conjugacy of the desired form.

This completes the proof of the above theorem. The proof also works
for 9l {0} and arbitrary characteristic not two. This theorem has the
usual two corollaries:

CooL. Any two self-adjoint Wedderburn factors of an associative
algebra over a field of characteristic zero are orthogonally conjugate by a
mapping exp(Ad z), z a sew element in the radical of I.

CoRoLv. Let be a separable self-adjoint subalgebra of the associative
algebra over a field of characteristic zero. Then may be embedded in a self-
adjoint Wedderburn factor of I.

In connection with the general uniqueness problem of two @-invariant
Wedderburn factors, where @ is group of operators, one might conjecture
that any two such factors are automorphic in the algebra by means of an
automorphism which commutes with the operators of gO. The orthogonal
conjugacy type of mapping can easily be seen to commute with the group of
order two consisting of the identity mapping and involution of the algebra.
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