MAPPINGS ON S' INTO ONE-DIMENSIONAL SPACES
BY M. K. Forrt, JR.

Throughout this paper, P is the cartesian plane, S" is the unit circle in P,
D is the closed disk in P whose boundary is S*, and Y is a metric space. Two

theorems concerning homotopy properties of mappings on S' into ¥ are proved
in this paper.

Lemma 1. If f:8' — Y is inessential, then there exists a continuous extension

F:D — Y of f such that none of the components of the inverse sets F'(y), y e ¥,
separates the plane P.

Proof. Let f:S' — Y be inessential. Then, there exists a continuous
extension g:D — Y of f. We define A to be the set of all components of sets
g '(y),y e Y. Ttiswell known that A4 is an upper semicontinuous decomposi-
tion of D. If a and b are members of A, we define a < b to mean that a is
contained in a bounded component of P — b.

Let a, b, and ¢ be members of A, and suppose ¢ < b and b < ¢. Then,
o C Band b C v, where 8 and v are bounded components of P — b and P — ¢
respectively. Since ¢ is connected, ¥ must be simply connected. It follows
that 8, being a bounded component of P — b, is contained iny. Thusa C ¥
and a < ¢. This proves that < partially orders 4.

Next, suppose that a, by, and b, are members of 4, ¢ < by, and @ < b, .
We will prove that either by =< b, or b, < b;. There exist bounded com-
ponents B; and 8, of P — b, and P — b, respectively such that ¢ C B; and
a C B:. If 8 and B; have a common boundary point p, then p € b; n by and
by = by. Otherwise, either §; € B; or B2 C 8. In the first case, by C B
and b; < b, and in the second case, b, C By and by < by .

Let a e A. By Zorn’s lemma, there exists b e A such that ¢ < b and b
is maximal with respect to the relation <. It follows from the result proved
in the preceding paragraph that such a maximal b must be unique.

Now let x ¢ D. There is an element a € A such that x e a, and there is a
unique maximal b ¢ A such that a < b. We define F(z) = g[b]. We must
show that F has the desired properties.

For a ¢ A, we define a* to be the union of a and the bounded components
of P — a. Each such a* is a continuum which does not separate the plane.
The set {F'(y) |y eY} is seen to be the same as {a* | @ maximal in 4}.
This latter set is easily proved to be upper semicontinuous, since 4 is, and
hence F is continuous. If 2 ¢S' and = ea ¢ A, then a is maximal in 4, and
F(z) = gla] = g(x) = f(x). This proves that F is an extension of f.

A dendprite is a locally connected continuum which does not contain a simple
closed curve. A space is contractible if and only if the identity mapping of
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the space into itself is homotopic (in the given space) to a constant mapping
on the space.

LemMma 2. If K is a dendrite, then K s contractible.

Proof. Let K be a dendrite. Then, there exists a sequence 4, , 4z, - - - of
arcs in K and a set E of end points of K such that
K=FEu < U An>,
n=1

and
n—1
A, n<U Aj) = {pn};
=1

where p, is one of the end points of 4, , and (diameter 4,) — 0 as n — .
(See [4], p. 89.)

Let T, = Ujo 4, for n a positive integer, and let Ty = {p1}. We now
define a retraction 7, of K onto 7T, for each nonnegative integer =.
If t e K — T, , there exists a unique point z* in K which can be joined to z

by an arc, all of whose points except z* are in K — T,. We define
ro(@) = a*forx e K — T,,and r,(x) = v forxeT,.
It is easy to see that the sequence 7y, 71, - -+ of mappings converges uni-

formly to the identity mapping on K.
For each positive integer n, there is a homeomorphism %, on [0, 1] onto 4.,
such that h,(1) = p,. We define

z, frxelna;
R.(t, x) =z, if x = h,(s) for some s, t=s=1;
ha(t), if & = hu(s) for some s, 0ss<t.

Finally, we define
z, fort = 0;

R,(2"% — 1, ra(z)), for2™™ <t =< 27",

It is easy to verify that the function C is a homotopy which contracts K onto
the point p; .

Ct, z) = {

TurorEM 1. Let f be a mapping on S' into a one-dimensional space Y.
Then, f is inessential if and only if there exists a dendrite K and mappings fi
and f» such that:

1) f=rh,

(2) fi maps S' onto K, and

(8) f2 s a light mapping on K into Y.

Proof. TFirst, let us assume that K, f1 , and f; exist having the above proper-
ties (1), (2) and (3). By Lemma 2, there exists a contracting homotopy C
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which contracts K onto a point p. We can define a homotopy H on [0, 1] X St
by letting

H(t, 2) = ,(C(t, f1(2))).

It follows that f is homotopic to a constant mapping, and hence is inessential.

Now, let us assume that f is inessential. By Lemma 1, there exists an exten-
sion F: D — Y of f such that none of the components of the inverse sets F~'(y),
y € Y, separates the plane P. We define P* to be the set whose members are
the components of the sets F'(y), ¥ ¢ Y, and the points of P — D. Then,
P* is an upper semicontinuous decomposition of P into continua, no one of
which separates P. It follows from a theorem of R. L. Moore (see [3]) that
the decomposition space P* is homeomorphic to P. We let D* be the sub-
space of P* which consists of all members of P* that are subsets of D.

It follows from the monotone-light factorization theorem (see [4], p. 141)
that there exist mappings F; and F, such that:

(1) F = F 2 F 1,

(2) F,is a mapping on D onto D*,

(3) F.is a light mapping on D* into Y.

Since F is light and Y is one-dimensional, it follows from a well known
theorem from dimension theory (see [2], p. 91) that D* is one-dimensional.
D* is a subset of the topological plane P*, and it is easy to see that if D*
contained a simple closed curve, then the interior of the simple closed curve
would also be a subset of D*. Since D* does not contain a two-dimensional
set, it follows that D* does not contain a simple closed curve. D* is a locally
connected continuum, since it is the continuous image of D, and hence D*
is a dendrite.

Now, we define K = Fy[S"]. Since K is a subcontinuum of a dendrite, it
is also a dendrite. (See [4], p. 89.)

We conclude the proof of our theorem by defining f; = F;|8' and
fg = F 2 | K .

An alternate proof (of a quite different nature) of Theorem 1 can be obtained
using results which appear in [1].

We define a mapping f on a topological space X to be locally one-to-one if
and only if corresponding to each point p of X, there is a neighborhood N of
p such that f | N is one-to-one. The notion of “locally one-to-one mapping”’
is much more general than that of “local homeomorphism”. For example, it
is possible to map a simple closed curve onto a ‘‘figure eight curve” by a
locally one-to-one mapping, but it is not possible to do this by a local homeo-
morphism.

TuroreM 2. If Y is one-dimensional and f: S' — Y is locally one-to-one, then
f s essential.

Proof. Let us assume that f is not essential. Then, by Lemma 1, f has a
continuous extension F:D — Y such that none of the components of the
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inverse sets F'(y), y ¢ Y, separate P. We define P*, D* F,, and F, as in
the proof of Theorem 1.

We now prove that D* must contain a simple closed curve ¢. There are
two cases to consider:

Case 1. Each member of D* has at most one point in common with S'.
In this case, the set ¢ of all members of D* which have one point in common
with 8" is a simple closed curve in the space P*.

Case 2. Some member of D* has more than one point in common with S
In this case, there exists an arc « which is contained in S* and which has end
points which belong to the same member of D* Since f is locally one-to-one,
it is easy to see that there is a nondegenerate arc uo which is minimal with
respect to these properties. The set ¢ of all members of D* which intersect
o nonvacuously is a simple closed curve in the space P*.

It is easy to prove that the topological disk in P* whose boundary is ¢ must
be contained in D* and hence D* is two-dimensional. This is impossible,
since F, is a light mapping of D* into the one-dimensional space Y.

Since we have obtained a contradiction, the supposition that f is not essen-
tial must be false.

The author believes that Theorem 2 is of interest, since it gives a fairly weak
local property which is sufficient for the essentiality of a mapping on S'.
E. E. Moise has constructed an example of a locally one-to-one mapping on
S* which is not essential.

CoroLLARY. If K is a one-dimensional, locally connected continuum, then the
fundamental group of K vanishes if and only if K is a dendrite.

Proof. TFirst, let us assume that K is a dendrite. It then follows from
Lemma 2 that the fundamental group of K vanishes.

Next, let us assume that K is not a dendrite. Then K contains a simple
closed curve, and there exists a homeomorphism f on 8! into K. It follows
from Theorem 2 that f is essential. Hence, the fundamental group of K
does not vanish.
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