
MAPPINGS ON ,S INTO ONE-DIMENSIONAL SPACES

BY M. K. FORT, JR.

Throughout this paper, P is the cartesian plane, S is the unit circle in P,
D is the closed disk in P whose boundary is S, and Y is a metric space. Two
theorems concerning homotopy properties of mappings on S into Y are proved
in this paper.

IEMMA 1. Iff" S "- Y is inessential, then there exists a continuous extension
F"D Y off such that none of the components of the inverse sets F-l(y), y e Y,
separates the plane P.

Proof. Let f:S --’ Y be inessential. Then, there exists a continuous
extension g"D -- Y of f. We define A to be the set of all components of sets
g-(y), y Y. It is well known that A is an upper semicontinuous decomposi-
tion of D. If a and b are members of A, we define a < b to mean that a is
contained in a bounded component of P b.
Leta, b, and c be members of A and supposea < band b < c. Then,

a c fl and b ,, where and are bounded components of P b and P c
respectively. Since c is connected, must be simply connected. It follows
that/, being a bounded component of P b, is contained in . Thus a ,
and a < c. This proves that < partially orders A.

Next, suppose that a, bl, and b. are members’of A, a b, and a b2.
We will prove that either bl _-< b2 or b -< b. There exist bounded com-
ponents and/, of P b and P b respectively such that a / and
a t. If t and have a common boundary point p, then p e b a b and
b b.. Otherwise, either tl f. or t: 1. In the first case, bl c /
and b < b., and in the second case, b t and b <: b.
Let aeA. By Zorn’s lemma, there exists beA such that a -< b and b

is maximal with respect to the relation <. It follows from the result proved
in the preceding paragraph that such a maximal b must be unique.
Now let x e D. There is an element a e A such that x e a, and there is a

unique maximal b e A such that a -< b. We define F(x) g[b]. We must
show that F has the desired properties.
For a e A, we define a* to be the union of a and the bounded components

of P a. Each such a* is a continuum which does not separate the plane.
The set {F-l(y)I y Y} is seen to be the same as {a*la maximal in A}.
This latter set is easily proved to be upper semicontinuous, since A is, and

Shence F is continuous. If x e and x e a e A, then a is maximal in A, and
F(x) g[a] g(x) f(x). This proves that F is an extension of f.
A dendrite is a locally connected continuum which does not contain a simple

closed curve. A space is contractible if and only if the identity mapping of
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the space into itself is homotopic (in the given space) to a constant mapping
on the space.

LEMMA 2. If K is a dendrite, then K is contractible.

Proof. Let K be a dendrite. Then, there exists a sequence A1, A., :.. of
arcs in K and a set E of end points of K such that

and

where p is one of the end points of A, and (diameter A) - 0 as n -- .(See [4], p. 89.)
Let T IJ=A for n a positive integer, and let T0 {p} We now

define a retraction r of K onto T for each nonnegative integer n.
If x e K T, there exists a unique point x* in K which can be joined to x
by an arc, all of whose points except x* are in K T. We define
r(x) x* for x eK T, and r(x) x for x e T.

It is easy to see that the sequence r0, r, of mappings converges uni-
formly to the identity mapping on K.

For each positive integer n, there is a homeomorphism h on [0, 1] onto A,
such that h(1) p. We define

x, if x e T_

R(t,x) x, ifx h(s) for somes, s 1;

h(t), ifx h,(s) for somes, 0 s < .
Finally, we define

x, for 0;
C(t,

R(2t 1, r(x)), for 2- < 2-+1.
It is easy to verify that the function C is a homotopy which contracts K onto
the point p.

EOREM 1. Let f be a mapping on S into a one-dimensional spe Y.
Then, f is inessential if and only if there exists a dendrite K and mappings f
and f such that:
()
(2) maps S onto K, and
(3) f is a light mapping on K into Y.

Proof. First, let us assume that K, f, and f2 exist having the above proper-
ties (1), (2) and (3). By Lemma 2, there exists a contracting homotopy C
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which contracts K onto a point p. We can define a homotopy H on [0, 1] X S
by letting

H(t, x) f2(C(t, fl(x))).
It follows that f is homotopic to a constant mapping, and hence is inessential.
Now, let us assume that f is inessential. By Lemma 1, there exists an exten-

sion F:D ---+ Y of f such that none of the components of the inverse sets F-l(y),
y e Y, separates the plane P. We define P* to be the set whose members are
the components of the sets F-l(y), y Y, and the points of P D. Then,
P* is an upper semicontinuous decomposition of P into continua, no one of
which separates P. It follows from a theorem of R. L. Moore (see [3]) that
the decomposition space P* is homeomorphic to P. We let D* be the sub-
space of P* which consists of all members of P* that are subsets of D.

It follows from the monotone-light factorization theorem (see [4], p. 141)
that there exist mappings F1 and F. such that:

(1) F F.
(2) F1 is a mapping on D onto D*,
(3) F. is a light mapping on D* into Y.
Since F. is light and Y is one-dimensional, it follows from a well known

theorem from dimension theory (see [2], p. 91) that D* is one-dimensional.
D* is a subset of the topological plane P*, and it is easy to see that if D*
contained a simple closed curve, then the interior of th6 simple closed curve
would also be a subset of D*. Since D* does not contain a two-dimensional
set, it follows that D* does not contain a simple closed curve. D* is a locally
connected continuum, since it is the continuous image of D, and hence D*
is a dendrite.
Now, we define K F[SI]. Since K is a subcontinuum of a dendrite, it

is also a dendrite. (See [4], p. 89.)
We conclude the proof, of our theorem by defining f FIS and

f.
An alternate proof (of a quite different nature) of Theorem 1 can be obtained

using results which appear in [1].
We define a mapping f on a topological space X to be locally one-to-one if

and only if corresponding to each point p of X, there is a neighborhood iV of
p such that f N is one-to-one. The notion of "locally one-to-one mapping"
is much more general than that of "local homeomorphism". For example, it
is possible to map a simple closed curve onto a "figure eight curve" by a
locally one-to-one mapping, but it is not possible to do this by a local homeo-
morphism.

THEOREM 2. If Y is one-dimensional and f: S -- Y is locally one-to-one, then

f is essential.

Proof. Let us assume that f is not essential. Then, by Lemma 1, f has a
continuous extension F:D Y such that none of the components of the
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inverse sets F-l(y), y Y, separate P. We define P*, D*, F, and F2 as in
the proof of Theorem 1.
We now prove that D* must contain a simple closed curve c. There are

two cases to consider:
Case 1. Each member of D* has at most one point in common with S1.

In this case, the set c of all members of D* which have one point in common
with S is a simple closed curve in the space P*.

Case 2. Some member of D* has more than one point in common with S1.
In this case, there exists an arc u which is contained in S and which has end
points which belong to the same member of D*. Since f is locally one-to-one,
it is easy to see that there is a nondegenerate arc u0 which is minimal with
respect to these properties. The set c of all members of D* which intersect
u0 nonvacuously is a simple closed curve in the space P*.

It is easy to prove that the topological disk in P* whose boundary is c must
be contained in D*, and hence D* is two-dimensional. This is impossible,
since F. is a light mapping of D* into the one-dimensional space Y.

Since we have obtained a contradiction, the supposition that f is not essen-
tial must be false.
The author believes that Theorem 2 is of interest, since it gives a fairly weak

local property which is sufficient for the essentiality of a mapping on S.
E. E. Moise has constructed an example of a locally one-to-one mapping on
S which is not essential.

COROLLARY. If K is a one-dimensional, locally connected continuum, then the
fundamental group of K vanishes if and only if K is a dendrite.

Proof. First, let us assume that K is a dendrite. It then follows from
Lemma 2 that the fundamental group of K vanishes.

Next, let us assume that K is not a dendrite. Then K contains a simple
closed curve, and there exists a homeomorphism f on S into K. It follows
from Theorem 2 that f is essential. Hence, the fundamental group of K
does not vanish.
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