SOME EXTREME VALUE RESULTS FOR INDEFINITE HERMITIAN MATRICES¹

BY M. MARCUS, B. N. MOYLS, AND R. WESTWICK

1. Introduction

Let A be an n-square complex Hermitian matrix, and let x_1, \dots, x_k be an orthonormal (o.n.) set of vectors in the unitary n-space V_n . In this paper we consider the following two functions:

(1.1)
$$\varphi(x_1, \cdots, x_k) = \prod_{j=1}^k (Ax_j, x_j),$$

(1.2) $\psi(x_1, \dots, x_k) = E_2((Ax_1, x_1), \dots, (Ax_k, x_k)), \qquad k \leq n.$

 $E_2(y_1, \dots, y_k)$ is the second elementary symmetric function of the indicated variables. The problem is to determine the extreme values of the functions φ and ψ as the vectors x_1, \dots, x_k vary in V_n subject to the restriction

$$(x_i, x_j) = \delta_{ij}.$$

To do this, we examine the structure of extremal sets x_1, \dots, x_k in terms of invariance under A. We shall consistently use the term "extremal set" to denote a set of extremal vectors, i.e., vectors for which the extreme values of φ and ψ occur. The problem of the minimum for φ when A is nonnegative Hermitian has been solved by K. Fan [4] and later generalized by Amir-Moéz [1]. The maxima for both φ and ψ are contained in [7]. The minimum for ψ , again with A nonnegative Hermitian, has been solved by A. Ostrowski by means of Schur-convex functions [8]. In this paper we will assume that Ahas both positive and negative eigenvalues. The usual techniques do not seem to generalize readily from the case of positive matrices.

2. Invariance results

LEMMA 1. If A is nonsingular, then an extremal set for φ spans a k-dimensional invariant subspace of A.

*Proof.*² By the continuity of the inner product it is clear that we may select y_1, \dots, y_k satisfying $(y_i, y_j) = \delta_{ij}$ such that

(2.1)
$$\min \varphi = \varphi(y_1, \cdots, y_k).$$

² This proof is similar to that of Lemma 1 of [7] in which A is assumed positive definite Hermitian.

Received October 18, 1956.

¹ The work of the first two authors was partially sponsored by the United States Air Force Office of Scientific Research. The work of the first author was partially completed under an NRC-NBS Postdoctoral Research Associateship 1956–1957 at the National Bureau of Standards, Washington, D. C. The work of the third author was sponsored in part by the National Research Council of Canada.

If the subspace $L(y_1, \dots, y_k)$ spanned by the y_j is not invariant under A, then we may assume without loss of generality that there exists a unit vector z in the orthogonal complement L^* of L such that

$$(2.2) (Ay_1, z) = \rho \neq 0.$$

Define the set y_j' , $j = 1, \cdots, k$, by $y_1' = (1 + t^2 | y_j')$

$$y'_{1} = (1 + t^{2} | \rho |^{2})^{-1/2} (y_{1} - t\rho z)$$

$$y'_{j} = y_{j}, \qquad j = 2, \cdots, k,$$

where t is a real number. It is clear that y'_{j} is an o.n. set. Set

$$m(t) = \varphi(y'_1, \cdots, y'_k).$$

Then

$$\dot{m}(o) = -2 |\rho|^2 \prod_{j=2}^{k} (Ay_j, y_j).$$

In view of (2.1) and (2.2), we conclude that

$$\min \varphi = \varphi(y_1, \cdots, y_k) = 0.$$

Let u_1, \dots, u_n be a set of o.n. eigenvectors of A corresponding respectively to the eigenvalues $\lambda_1, \dots, \lambda_n$. Then for $1 \leq i_1 < \dots < i_{k+1} \leq n$

$$\begin{split} \varphi(u_{i_1}, u_{i_3}, u_{i_4}, \cdots, u_{i_{k+1}}) &= \lambda_{i_1} \prod_{j=3}^{k+1} \lambda_{i_j} > 0, \\ \varphi(u_{i_2}, u_{i_3}, u_{i_4}, \cdots, u_{i_{k+1}}) &= \lambda_{i_2} \prod_{j=3}^{k+1} \lambda_{i_j} > 0. \end{split}$$

Consequently $\lambda_{i_1} \lambda_{i_2} > 0$ for any i_1 and i_2 . This implies that A is definite, completing the proof for min φ . The argument for max φ is the same.

For ψ it is not true that *any* extremal set spans an invariant subspace of A; however we have

LEMMA 2. There exists an o.n. set y_1, \dots, y_k such that (i) $L(y_1, \dots, y_k)$ is an invariant subspace of A; (ii) $\psi(y_1, \dots, y_k) = \min \psi$.

 $x_1' = x_i$

Proof. Let x_1, \dots, x_k be a minimizing set for ψ , and assume there exists $z \in L^*(x_1, \dots, x_k)$ such that ||z|| = 1 and

 $(Ax_1, z) = \rho \neq 0;$

then set

$$x'_{1} = (1 + t^{2} | \rho |^{2})^{-1/2} (x_{1} - t\rho z)$$

$$j=2,\cdots,k$$

for t a real number. Then setting

$$m(t) = \psi(x'_1, \cdots, x'_k),$$

we have

$$\begin{split} m(t) &= (Ax'_1, x'_k) \sum_{j=2}^k (Ax_j, x_j) + E_2((Ax_2, x_2), \cdots, (Ax_k, x_k)) \\ &= (1 + t^2 |\rho|^2)^{-1} \left((Ax_1, x_1) - 2t |\rho|^2 + t^2 |\rho|^2 (Az, z) \right) \sum_{j=2}^k (Ax_j, x_j) \\ &+ E_2((Ax_2, x_2), \cdots, (Ax_k, x_k)). \end{split}$$

450

Hence

$$\dot{m}(o) = -2 |\rho|^2 \sum_{j=2}^k (Ax_j, x_j).$$

If $\sum_{j=2}^{k} (Ax_j, x_j) \neq 0$, then, since $\min \psi = \psi(x_1, \dots, x_k)$, we must conclude that $\rho = 0$ and hence that $L(x_1, \dots, x_k)$ is invariant under A. If

$$\sum_{j=2}^{k} (Ax_j, x_j) = 0,$$

then if z is any unit vector in $L^*(x_2, \cdots, x_k)$,

$$\psi(z, x_2, \cdots, x_k) = E_2((A x_2, x_2), \cdots, (A x_k, x_k)).$$

Hence if $L(x_2, \dots, x_k)$ is invariant under A, we may choose $z \in L^*(x_2, \dots, x_k)$ to be a unit eigenvector of A, and hence $L(z, x_2, \dots, x_k)$ is invariant under A. Consequently we assume that

$$(Ax_2, v) = \rho_1 \neq 0,$$

where $v \in L^*(x_2, \dots, x_k)$ and v is a unit vector. Define

and note that x'_2 , x''_2 , x_3 , \cdots , x_k form an o.n. set. Define

 $K(t) = (1 + t^{2} | \rho_{1} |^{2})^{-1} \{ 2t | \rho_{1} |^{2} + t^{2} | \rho_{1} |^{2} ((Ax_{2}, x_{2}) - (Av, v)) \},\$

and we may readily verify that

$$(Ax'_{2}, x'_{2}) + (Ax''_{2}, x''_{2}) = (1 + t^{2} | \rho_{1} |^{2})^{-1} \{ (A[x_{2} - t\rho_{1} v], x_{2} - t\rho_{1} v) + (A[t\bar{\rho}_{1} x_{2} + v], t\bar{\rho}_{1} x_{2} + v) \}$$

= $(Ax_{2}, x_{2}) + (Av, v).$

Also,

$$(Ax'_{2}, x'_{2}) = (1 + t^{2} | \rho_{1} |^{2})^{-1} \{ (Ax_{2}, x_{2}) - 2t | \rho_{1} |^{2} + t^{2} | \rho_{1} |^{2} (Av, v) \} = (Ax_{2}, x_{2}) - K(t),$$

and

$$(Ax_2'', x_2'') = (1 + t^2 |\rho_1|^2)^{-1} \{t^2 |\rho_1|^2 (Ax_2, x_2) + 2t |\rho_1|^2 + (Av, v)\}$$

= (Av, v) + K(t);

thus

 $(Ax'_{2}, x'_{2})(Ax''_{2}, x''_{2}) = (Ax_{2}, x_{2})(Av, v) + K(t)((Ax_{2}, x_{2}) - (Av, v)) - K^{2}(t).$ Combining these results, we have

$$\begin{split} \psi(x'_2, x''_2, x_3, \cdots, x_k) &= E_2((Ax'_2, x'_2), (Ax''_2, x''_2), (Ax_3, x_3), \cdots, (Ax_k, x_k)) \\ &= (Ax'_2, x'_2)(Ax''_2, x''_2) + ((Ax'_2, x'_2) + (Ax''_2, x''_2)) \sum_{j=3}^k (Ax_j, x_j) \\ &\quad + E_2((Ax_3, x_3), \cdots, (Ax_k, x_k)) \\ &= (Ax_2, x_2)(Av, v) + ((Ax_2, x_2) + (Av, v)) \sum_{j=3}^k (Ax_j, x_j) \\ &\quad + E_2((Ax_3, x_3), \cdots, (Ax_k, x_k)) + K(t)((Ax_2, x_2) - (Av, v)) - K^2(t) \\ &= \min \psi + K(t)((Ax_2, x_2) - (Av, v)) - K^2(t). \end{split}$$

Now

$$\dot{K}(0) = 2 |\rho|^2, \quad K(0) = 0,$$

and hence if $(Ax_2, x_2) \neq (Av, v)$, we conclude that $L(x_2, \dots, x_k)$ is invariant under A. If $(Ax_2, x_2) = (Av, v)$, then

$$\psi(x'_2, x''_2, x_3, \cdots, x_k) = \min \psi - \{2t \mid \rho_1 \mid^2 / (1 + t^2 \mid \rho_1 \mid^2)\}^2$$

< \min \psi

for $t \neq 0$. This completes the proof.

3. The extreme values

Let R_k be the k-dimensional space of k-tuples over the reals. Let $\lambda_1 \geq \cdots \geq \lambda_k$ be any set of k real numbers, and let $\lambda = (\lambda_1, \cdots, \lambda_k) \epsilon R_k$. For $y \epsilon R_k$ we define the convex set $M(\lambda)$ as the totality of points y satisfying

(3.1)
$$\sum_{j=1}^{k} y_j = \sum_{j=1}^{k} y_j$$

and
(3.2)
$$\sum_{s=1}^{r} y_{i_s} \leq \sum_{j=1}^{r} \lambda_j, \quad 1 \leq i_1 < \dots < i_r \leq k, \quad 1 \leq r \leq k-1.$$

LEMMA 3. The extreme values of the function

(3.3)
$$g(y) = \prod_{j=1}^{k} \lambda_j$$

defined on $M(\lambda)$ occur in the set of numbers

(3.4)
$$\left\{\prod_{j=0}^{q-1} \left(\frac{\lambda_{k_{j+1}} + \cdots + \lambda_{k_{j+1}}}{k_{j+1} - k_j}\right)^{k_{j+1} - k_j}, 0\right\},$$

where the k_j are any integers satisfying

$$0 = k_0 < k_1 < \cdots < k_q = k.$$

Proof. First note that if y is such a point that

$$y_{j} = \frac{\lambda_{k_{0}+1} + \dots + \lambda_{k_{1}}}{k_{1} - k_{0}}, \qquad j = 1, \dots, k_{1},$$
$$y_{j} = \frac{\lambda_{k_{1}+1} + \dots + \lambda_{k_{2}}}{k_{2} - k_{1}} \qquad j = k_{1} + 1, \dots, k_{2},$$
$$\vdots$$
$$y_{j} = \frac{\lambda_{k_{q-1}} + \dots + \lambda_{k_{q}}}{k_{q} - k_{q-1}}, \qquad j = k_{q-1} + 1, \dots, k_{q},$$

then $y \in M(\lambda)$. Since g(y) is of the form (3.4), we see that these are achievable values on $M(\lambda)$. The remainder of the proof is an induction argument on k. For k = 2 the result is clear. Assume the theorem for all integers less than k. If z is an interior point of $M(\lambda)$ such that g(z) is an extreme value of g, then there exists a multiplier μ such that

$$rac{\partial g}{\partial y_j}=\mu, \qquad \qquad j=1,\,\cdots,\,k$$

452

for y = z. Thus

(3.5)
$$\prod_{i \neq j} z_i = \mu, \qquad \prod_{i=1}^k z_i = \mu z_j$$

Summing on j and using (3.1), we have

$$k\prod_{i=1}^k z_i = \mu \sum_{i=1}^k \lambda_i,$$

and substituting in (3.5), we have

$$\prod_{i\neq j} z_i \left(\sum_{i=1}^k \lambda_i - k z_j \right) = 0, \qquad j = 1, \cdots, k.$$

Hence g(z) = 0 or $g(z) = \left\{ \left(\sum_{i=1}^{k} \lambda_i \right) / k \right\}^k$ and both of these types are included in (3.4). Now suppose z is not an interior point of $M(\lambda)$. Then one of the inequalities (3.2) is an equality. That is, for some $\omega = \{i_1, \dots, i_r\}, r < k$, we have

(3.6)
$$\sum_{s=1}^{r} y_{i_s} = \sum_{j=1}^{r} \lambda_j$$

for y = z. We consider the extreme values of g on the set defined by (3.1), (3.2), and (3.6). Set

$$h(y) = \prod_{s=1}^r y_{i_s},$$

where the indices i_1, \dots, i_r are precisely those in ω . For any subset $x_1, \dots, x_t, 1 \leq t \leq r$, of y_{i_1}, \dots, y_{i_r} ,

(3.7)
$$\sum_{j=1}^{t} x_j \leq \sum_{j=1}^{t} \lambda_j.$$

Hence by (3.6), (3.7), and the induction hypothesis, h(y) has extreme values of the form (3.4) with k replaced by r and involving only $\lambda_1, \dots, \lambda_r$. On the other hand, set

$$m(y) = \prod_{j \notin \omega} y_j,$$

and by (3.1) and (3.6)

$$\sum_{j\notin\omega} y_j = \sum_{j=r+1}^k \lambda_j$$

Let $v_1, \dots, v_t, 1 \leq t \leq k - r$, be any subset of $\{y_j\}_{j \notin \omega}$. Then

$$\sum_{s=1}^r y_{i_s} + \sum_{j=1}^t v_j \leq \sum_{j=1}^{r+t} \lambda_j,$$

and hence

$$\sum_{j=1}^t v_j \leq \sum_{j=r+1}^{r+t} \lambda_j .$$

Again, by the induction hypothesis, the extreme values of m(y) are of the form (3.4) using $\lambda_{r+1}, \dots, \lambda_k$ and k - r in place of k. It follows that numbers of the form (3.4) are bounds on the extreme values of g(y) = m(y)h(y), and since these are achievable values, the induction is complete.

Remark. Lemma 3 has an interesting geometric interpretation. The set $M(\lambda)$ can be described as follows. Consider $H(\lambda)$, the convex hull of the k! points $P\lambda$ as P runs over all k-square permutation matrices. It is known that $H(\lambda) = M(\lambda)$ (see [9]). However, for completeness we recapitulate the brief proof of this fact. For if $y \in M(\lambda)$, there exists a permutation matrix P for which $(Py)_j \ge (Py)_{j+1}, j = 1, \dots, k-1$. It is clear that $Py \in M(\lambda)$. By

a result in [5; p. 49], $Py = S\lambda$, where S is a k-square doubly stochastic matrix. Hence $y = P^{-1}S\lambda$, and $P^{-1}S$ is clearly doubly stochastic when S is. By a result of G. Birkhoff [2], $P^{-1}S$ is a centroid of permutation matrices. It follows that $y \in H(\lambda)$. Conversely if $y \in H(\lambda)$, then y is a centroid of the points $P\lambda$, and each $P\lambda \in M(\lambda)$. Thus $H(\lambda) = M(\lambda)$.

Lemma 3 asserts that the maximum and minimum signed volumes of the k-dimensional parallelopiped bounded by the planes $x_j = y_j$ and the coordinate planes $x_j = 0$ as y varies over the polyhedron $H(\lambda)$ are of the form (3.4). It seems interesting to ask the same question for a more general elementary symmetric function than (3.3). Lemma 4 answers this for $E_2(y_1, \dots, y_k)$. Of course, if $\lambda_j > 0$ for $j = 1, \dots, k$, then $H(\lambda)$ consists of points all of whose coordinates are positive. In this case both Lemma 3 and Lemma 4 follow for the minimum at least by using the concavity of $E_r^{1r}(y_1, \dots, y_k), 1 \leq r \leq k$, where E_r is the r^{th} symmetric function of the indicated variables [6].

Lemma 4.

(3.8)
$$\min_{\boldsymbol{y} \in \boldsymbol{M}(\boldsymbol{\lambda})} E_2(y_1, \cdots, y_k) = E_2(\lambda_1, \cdots, \lambda_k)$$

(3.9)
$$\max_{\boldsymbol{y} \in \boldsymbol{M}(\boldsymbol{\lambda})} E_2(\boldsymbol{y}_1, \cdots, \boldsymbol{y}_k) = \binom{k}{2} \left\{ \left(\sum_{j=1}^k \lambda_j \right) / k \right\}^2.$$

Proof. From (3.1) we see that the right side of (3.9) is an achievable value of $E_2(y_1, \dots, y_k)$. We need only show that

(3.10)
$$E_2(y_1, \cdots, y_k) \leq {\binom{k}{2}} \{ (\sum_{j=1}^k y_j) / k \}^2.$$

This is known for $y_j \ge 0$, $j = 1, \dots, k$ [5; p. 52]. Now

$$\left(\sum_{j=1}^{k} y_{j}\right)^{2} = \sum_{j=1}^{k} y_{j}^{2} + 2E_{2}(y_{1}, \cdots, y_{k}),$$

and hence (3.10) is equivalent to

$$(\sum_{j=1}^{k} y_j)^2 \leq k \sum_{j=1}^{k} y_j^2,$$

which follows from the convexity of t^2 .

Now if the minimum value of E_2 is achieved at an interior point of $M(\lambda)$, we conclude that

(3.11)
$$\frac{\partial E_2}{\partial y_i} = \mu, \qquad j = 1, \cdots, k$$

for y this interior point and μ a constant multiplier. But (3.11) implies that

$$y_1 = y_2 = \cdots = y_k = (\sum_{j=1}^k \lambda_j)/k.$$

Hence assume that for some $\omega = \{i_1, \dots, i_r\}, r < k$, we have

$$\sum_{s=1}^r y_{i_s} = \sum_{j=1}^r \lambda_j$$

for y = z, the minimizing point. The proof now proceeds by induction on k exactly as in Lemma 3. The essential part of the argument is contained in the following sequence:

454

$$\begin{split} E_2(z_1, \cdots, z_k) &= \left(\sum_{s=1}^r z_{i_s}\right) \left(\sum_{j \notin \omega} z_j\right) + E_2(z_{i_1}, \cdots, z_{i_r}) + E_2(z_j ; j \notin \omega) \\ &= \left(\sum_{j=1}^r \lambda_j\right) \left(\sum_{j=r+1}^k \lambda_j\right) + E_2(z_{i_1}, \cdots, z_{i_r}) + E_2(z_j ; j \notin \omega) \\ &\geq \left(\sum_{j=1}^r \lambda_j\right) \left(\sum_{j=r+1}^k \lambda_j\right) + E_2(\lambda_1, \cdots, \lambda_r) \\ &+ E_2(\lambda_{r+1}, \cdots, \lambda_k) \\ &= E_2(\lambda_1, \cdots, \lambda_k). \end{split}$$

The inequality follows as before from the induction hypothesis.

4. Applications to matrices

THEOREM 1. For $1 \leq k \leq n$ the extreme values of $\varphi(x_1, \dots, x_k)$ are of the form

(4.1)
$$\prod_{j=1}^{q-1} \left(\frac{\lambda_{k_{j+1}} + \dots + \lambda_{k_{j+1}}}{k_{j+1} - k_j} \right)^{k_{j+1} - k_j}$$

where the k_j are integers satisfying $0 = k_0 < k_1 < \cdots < k_q = k$ and $\lambda_1, \cdots, \lambda_k$ is a choice of k eigenvalues of the matrix A.

Proof. By a standard continuity argument we may assume A is nonsingular. By Lemma 1 an extremal set spans an invariant subspace Lunder A. By a result of K. Fan [3: Theorem 1] and the invariance of L, we conclude that

$$((Ax_1, x_1), \cdots, (Ax_k, x_k)) \epsilon M(\lambda),$$

where $\lambda = (\lambda_1, \dots, \lambda_k)$ and $\lambda_1, \dots, \lambda_k$ is some choice of k eigenvalues of A. The theorem of Fan that we are applying here states that if B is any Hermitian *n*-square complex matrix and x_1, \dots, x_k is an o.n. set $(k \leq n)$, then

$$\sum_{j=1}^{k} \beta_{n-j+1} \leq \sum_{j=1}^{k} (Bx_j, x_j) \leq \sum_{j=1}^{k} \beta_j,$$

where $\beta_1 \geq \cdots \geq \beta_n$ are the eigenvalues of *B*. By Lemma 3 the extreme values of φ are bounded above and below by expressions of the form (4.1) or 0. However, the argument used in Lemma 1 excludes 0. Now a typical value (4.1) can be obtained by choosing

(4.2)
$$x_t = \sum_{i=k_j+1}^{i=k_{j+1}} \frac{\theta_j^{i(t-k_j)} u_i}{(k_{j+1}-k_j)^{1/2}}, \qquad t = k_j + 1, \cdots, k_{j+1}$$

for $j = 0, \dots, q - 1$, where θ_j is a primitive $(k_{j+1} - k_j)$ root of unity and u_1, \dots, u_k are o.n. eigenvectors of A corresponding to $\lambda_1, \dots, \lambda_k$ respectively. It is a straightforward calculation to verify that the vectors x_t are o.n. and have the required property. For example, if j = 0 then (4.2) becomes

$$x_t = \sum_{i=1}^{k_1} \frac{ heta_0^{i\,t} u_i}{(k_1)^{1/2}}, \qquad t = 1, \cdots, k_1$$

and

$$(x_t, x_s) = (k_1)^{-1} \sum_{i=1}^{k_1} \theta_0^{i(t-s)} = \delta_{ts},$$

where s and t are less than or equal to k_1 , and θ_0 is a primitive k^{th} root of unity. This completes the proof.

Theorem 2. For $1 \leq k \leq n$

(4.3)
$$\min \psi(x_1, \cdots, x_k) = E_2(\lambda_1, \cdots, \lambda_k)$$

(4.4) $\max \psi(x_1, \cdots, x_k) = k^{-2} {k \choose 2} \{ \max \left(\left| \sum_{j=1}^k \alpha_j \right|, \left| \sum_{j=1}^k \alpha_{n-j+1} \right| \right) \}^2 \right),$

where $\alpha_1 \geq \cdots \geq \alpha_n$ are the eigenvalues of A and $\lambda_1, \cdots, \lambda_k$ is some choice of k of the $\alpha_j, j = 1, \cdots, n$.

Proof. The fact that ψ is bounded above by the right side of (4.4) follows immediately from (3.10) and Fan's result [3]. This value is clearly achieved by making a choice of vectors x_t as in (4.2) with q = 2. To establish (4.3), we use Lemma 2 to conclude that there exists a minimizing set for ψ , x_1, \dots, x_k , that spans an invariant subspace of A. As in Theorem 1

$$((Ax_1, x_1), \cdots, (Ax_k, x_k)) \in M(\lambda),$$

where $\lambda_1, \dots, \lambda_k$ is a choice of k of the α_j . Hence by Lemma 3

(4.5)
$$\psi(x_1, \cdots, x_k) \geq E_2(\lambda_1, \cdots, \lambda_k)$$

The right side of (4.5) is clearly achievable by an appropriate choice of k o.n. eigenvectors of A.

Remark. It would be of interest to determine the extreme values of

$$E_r((Ax_1, x_1), \cdots, (Ax_k, x_k))$$

for $1 \leq r < k, r \geq 3$. The methods used here do not seem to generalize readily except when A is nonnegative Hermitian.

BIBLIOGRAPHY

- A. R. AMIR-MOÉZ, Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations, Duke Math. J., vol. 23 (1956), pp. 463-476.
- G. BIRKHOFF, Tres observaciones sobre el álgebra lineal, Univ. Nac. Tucumán. Revista A, vol. 5 (1946), pp. 147-151.
- 3. K. FAN, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. U.S.A., vol. 35 (1949), pp. 652-655.
- 4. ——, A minimum property of the eigenvalues of a Hermitian transformation, Amer. Math. Monthly, vol. 60 (1953), pp. 48-50.
- G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, *Inequalities*, 2nd ed., Cambridge University Press, 1952.
- 6. M. MARCUS AND L. LOPES, Inequalities for symmetric functions and Hermitian matrices, Canadian J. Math., vol. 9 (1957), pp. 305-312.
- M. MARCUS AND J. L. MCGREGOR, Extremal properties of Hermitian matrices, Canadian J. Math., vol. 8 (1956), pp. 524-531.

- 8. A. OSTROWSKI, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. Pures Appl., vol. 31 (1952), pp. 253-292.
- 9. H. WIELANDT, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc., vol. 6 (1955), pp. 106-110.
 - NATIONAL BUREAU OF STANDARDS WASHINGTON, D. C. THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA