PAIRS OF MATRICES OF ORDER TWO WHICH GENERATE FREE GROUPS ${ }^{1}$

by K. Goldberg and M. Newman

Throughout this paper $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ will denote rational integral unimodular matrices of order two which are not of finite period.

Let us say that an element of a matrix is dominant if it is larger in absolute value than any other element of the matrix.

Our object is to prove the following theorem:
Theorem. If a_{12} is dominant in A and b_{21} is dominant in B, then A and B generate a free group.

The first result in this direction was due to I. N. Sanov [1] who proved that $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and A^{T} generate a free group. The methods used in this paper are derived from Sanov's proof of his result.

More recently J. L. Brenner [2] has shown that $A=\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$ and A^{T} generate a free group for all real $m \geqq 2$.

These results were brought to our attention by Professor Brenner and a generalization was suggested by O. Taussky-Todd.

1. Two lemmas

We find it convenient to separate the proof of the theorem into two parts which are described by the lemmas below.

We define $A^{n}=\left(a_{i j}^{(n)}\right)$ and $B^{n}=\left(b_{i j}^{(n)}\right)$ where n is an integer.
Lemma 1. If $a_{12}^{(n)}$ is dominant in A^{n} and $b_{21}^{(n)}$ is dominant in B^{n} for all $n \neq 0$, then A and B generate a free group.

Lemma 2. If a_{12} is dominant in A, then $a_{12}^{(n)}$ is dominant in A^{n} for all $n \neq 0$.
If A has trace t and determinant d, then the fact that A is not of finite period is used only to imply that $t \neq 0$ for $d=-1$ and $|t| \geqq 2$ for $d=1$.

The fact that a_{12} is dominant in A implies $\left|a_{12}\right|-2,\left|a_{11} a_{22}\right|-1$, $\left|a_{11}\right|-\left|a_{21}\right|$ and $\left|a_{12}-a_{11}\right|-\left|a_{22}-a_{21}\right|$ are all nonnegative: $\left|a_{12}\right|$ is at least 2 because at least one other element is not 0 , neither diagonal element vanishes because then $\left|a_{12}\right|>1$ would divide the determinant $d= \pm 1, a_{21}$ is the least element because $\left|a_{11} a_{22}-a_{12} a_{21}\right|=1$ and $\left|a_{12}\right|-\left|a_{i i}\right| \geqq 1$, and

[^0]the last inequality follows from $\left|a_{11}\left(a_{22}-a_{21}\right)-a_{21}\left(a_{12}-a_{11}\right)\right|=1$ when $\left|a_{11}\right|>1$, and for $\left|a_{11}\right|=1$ by an enumeration of cases.

2. Proof of Lemma 1

Suppose $|x| \geqq|y|, x \neq 0$, and set

$$
\begin{equation*}
(x y) A=\left(x^{\prime} y^{\prime}\right) . \tag{1}
\end{equation*}
$$

We shall show that $\left|y^{\prime}\right| \geqq|x|$ and $\left|y^{\prime}\right| \geqq\left|x^{\prime}\right|$.
First we have

$$
\left|y^{\prime}\right|=\left|a_{12} x+a_{22} y\right| \geqq\left|a_{12} x\right|-\left|a_{22} y\right| \geqq\left(\left|a_{12}\right|-\left|a_{22}\right|\right)|x| \geqq|x|
$$

Second we may choose x, a_{11}, and a_{12} positive while retaining the dominance of a_{12}. This may be done constructively by premultiplying equation (1) by $\operatorname{sgn} x=x /|x|$ and postmultiplying by the matrix diag $\left(\operatorname{sgn} a_{11}, \operatorname{sgn} a_{12}\right)$.

Then $x^{\prime}=a_{11} x+a_{21} y \geqq 0$ since $a_{11} \geqq\left|a_{21}\right|$ and $x \geqq|y|$, and $y^{\prime}=$ $a_{12} x+a_{22} y>0$ since $a_{12}>\left|a_{22}\right|$ and $x \geqq|y|$. Thus

$$
\begin{aligned}
&\left|y^{\prime}\right|-\left|x^{\prime}\right|=y^{\prime}-x^{\prime}=\left(a_{12}-a_{11}\right) x+\left(a_{22}-a_{21}\right) y \\
& \geqq\left(a_{12}-a_{11}-\left|a_{22}-a_{21}\right|\right)|y| \geqq 0 .
\end{aligned}
$$

Similarly, suppose $|y| \geqq|x|$ and set $(x y) B=\left(x^{\prime} y^{\prime}\right)$. Then $\left|x^{\prime}\right| \geqq|y|$ and $\left|x^{\prime}\right| \geqq\left|y^{\prime}\right|$.

These remarks are based solely on the dominance of a_{12} in A and b_{21} in B. Therefore if we assume that $a_{12}^{(n)}$ is dominant in A^{n} and $b_{21}^{(n)}$ is dominant in B^{n} for all $n \neq 0$, the same inequalities will hold when A is replaced by A^{n} in equation (1) and B is similarly replaced by B^{n}.

Now consider an arbitrary product of powers of A and B :

$$
T=A^{s_{0}} B^{s_{1}} A^{s_{2}} \cdots \quad \text { with } s_{n} \neq 0 \text { for } n=1,2, \cdots
$$

We may assume that $s_{0} \neq 0$. Write

$$
(1 \quad 0) A^{s_{0}}=\left(x_{0} y_{0}\right),\left(x_{2 n} y_{2 n}\right) B^{s_{2 n+1}}=\left(x_{2 n+1} y_{2 n+1}\right)
$$

and

$$
\left(x_{2 n-1} y_{2 n-1}\right) A^{s_{2 n}}=\left(x_{2 n} y_{2 n}\right)
$$

By our comments above, if $\left|x_{2 n-1}\right| \geqq\left|y_{2 n-1}\right|$, we will have $\left|y_{2 n}\right| \geqq\left|x_{2 n-1}\right|$ and $\left|y_{2 n}\right| \geqq\left|x_{2 n}\right|$, so that $\left|x_{2 n+1}\right| \geqq\left|y_{2 n}\right|$ and $\left|x_{2 n+1}\right| \geqq\left|y_{2 n+1}\right|$ and so on. Since we begin with the vector (100) we have by induction

$$
\left|y_{0}\right| \leqq\left|x_{1}\right| \leqq\left|y_{2}\right| \leqq \cdots \leqq\left|x_{2 n-1}\right| \leqq\left|y_{2 n}\right| \leqq\left|x_{2 n+1}\right| \leqq \cdots
$$

But $\left|y_{0}\right|=\left|a_{12}^{\left(s_{0}\right)}\right| \geqq 2$ so that either $\left|x_{n}\right|$ or $\left|y_{n}\right|$ is greater than 1 for every n. It follows that $\left(x_{n} y_{n}\right) \neq\left(\begin{array}{ll}1 & 0\end{array}\right)$ for every n, and therefore $T \neq I$.

Thus no nontrivial product of the powers of A and B can reduce to the identity which proves that A and B generate a free group.

3. Proof of Lemma 2

Let t be the trace and d the determinant of A. We may assume $t \geqq 0$, since otherwise A may be replaced by $-A$. We may assume $a_{12} \geqq 0$, since for $\varepsilon= \pm 1$ the similarity

$$
\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & 1
\end{array}\right)^{-1} A\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
a_{11} & \varepsilon a_{12} \\
\varepsilon a_{21} & a_{22}
\end{array}\right)
$$

takes a_{12} into εa_{12} and leaves t unchanged. Suppose that $\mu= \pm 1$ is fixed but arbitrary. Set

$$
\Delta_{n}=a_{12}^{(n)}-\mu a_{11}^{(n)}
$$

(The discussion is the same for the three remaining cases). Then

$$
\begin{aligned}
& \Delta_{0}=a_{12}^{(0)}-\mu a_{11}^{(0)}=-\mu, \\
& \Delta_{1}=a_{12}^{(1)}-\mu a_{11}^{(1)}=a_{12}-\mu a_{11},
\end{aligned}
$$

and

$$
\Delta_{n+1}=t \Delta_{n}-d \Delta_{n-1}, \quad n \geqq 1 .
$$

We see that always $\Delta_{1} \geqq 1$. Assume first that $t \geqq 2$. Then

$$
\Delta_{2}=t \Delta_{1}-d \Delta_{0} \geqq 2 \Delta_{1}+d \mu \geqq \Delta_{1} .
$$

Thus if $\Delta_{n-1}>0$ and $\Delta_{n} \geqq \Delta_{n-1}$, then $\Delta_{n}>0$ and

$$
\Delta_{n+1}=t \Delta_{n}-d \Delta_{n-1} \geqq 2 \Delta_{n}-\Delta_{n-1} \geqq \Delta_{n} .
$$

Therefore $\Delta_{n}>0$ for $n \geqq 1$ and so

$$
\begin{equation*}
a_{12}^{(n)}>\left|a_{11}^{(n)}\right|, \quad n \geqq 1 \tag{2}
\end{equation*}
$$

If $t \leqq 1$, so that $t=1$, then $d=-1$. Here

$$
\Delta_{2}=t \Delta_{1}-d \Delta_{0}=\Delta_{1}+\Delta_{0}=\Delta_{1}-\mu
$$

If $\Delta_{1} \geqq 2$, then $\Delta_{2} \geqq 1$, and Δ_{n} is clearly positive for $n \geqq 1$. If $\mu=-1$, then $\Delta_{2} \geqq 2$, and here also Δ_{n} is positive for $n \geqq 1$. Thus we need only consider $\mu=1$ and $\Delta_{1}=1$. This however leads to a contradiction; a_{12} can not be dominant in this case, and so (2) is always true. If we note in addition that $a_{11}^{(-n)}=d a_{22}^{(n)}, a_{12}^{(-n)}=-d a_{12}^{(n)}, a_{21}^{(-n)}=-d a_{21}^{(n)}, a_{22}^{(-n)}=d a_{11}^{(n)}$, then the proof of Lemma 2 is complete, and so the theorem is proved.

References

1. I. N. Sanov, A property of a representation of a free group, Doklady Akad. Nauk SSSR (N.S.), vol. 57 (1947), pp. 657-659 (Russian).
2. J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris, vol. 241 (1955), pp. 1689-1691.

National Bureau of Standards
Washington, D. C.

[^0]: Received October 3, 1956.
 ${ }^{1}$ The preparation of this paper was supported in part by the Office of Naval Research.

