
MARKOFF PROCESSES AND POTENTIALS II

By G. A. HUNT

The first five sections of this installment treat a situation which is related
to the one considered in the first installment, pages 44 to 93 of this volume,
iust as the potential theory of the Laplacian in a region is related to the
theory of the Newtonian potential in the whole of Euclidean space. The
following section shows the relative theory to be in a sense complete; and the
last section sketches a slight extension--or rather another interpretation--of
the main theorems.
The numbering continues that of the first installment. References such as

[1] are to the list at the end of the first installment.

10. Terminal times

The simple terminal time S, which serves only to produce convergence,
will now be replaced by one defined in terms of a positive function a and a
set A. Loosely speaking, the new terminal time is the moment a wandering
particle is destroyed, if there is probability a(r)dr that the particle, having
reached the point r safely, is destroyed in the subsequent time interval dr
and if in addition the particle is sure to be destroyed the instant it touches A.
To be precise, let a be a positive function measurable over the field ( and

let A be a nearly analytic set. Given a process X and a positive random
variable Zx, independent of the process and having the density function
e for positive , define Rx(O) to be the infimum of the strictly positive r

for which at least one of the statements

(10.1) X(r, ) e A, a(X(a, o)) da >= Zx(o),

is true, with the understanding that Rx() is infinite if there are no such r.

We shall say that Rx is the terminal time assigned to X by a and A, with
Zx as auxiliary variable.

Let T be a stopping time for X, with as auxiliary field, and suppose that
X, Zx, 8 are independent and that 2’, the set where T is less than Rx, has
strictly positive probability. Take Y to be the process

Y(T, ) X(T -t- V(), ), >= 0, e ’,

defined over the probability field 2’, and take R y to be the restriction of
Rx T to 2’. Straightforward calculation shows that R y is in fact that
terminal time assigned to Y by a and A, the auxiliary variable being the
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restriction of

Zx fo
r

a(X(’r)) dr

to 2’. It is this property that distinguishes the terminal times defined by a
and A from an arbitrary family of stopping times.
A system 92 of terminal times assigned in this way to the various processes,

with one auxiliary variable for each process, is said to be determined by a
and A, with the Zx as auxiliary variables. The simple terminal time Sx may
be considered the system determined by the constant function ), and the
empty set, with S as auxiliary variable. A system determined by an arbi-
trary positive function and the empty set was studied in detail in 4.
The auxiliary variables usually will not be specified, for the choice is of

consequence only when several systems are discussed at the same time. If
they are held fast, each terminal time of the system decreases as a increases
or as A increases. There is even a certain continuity in the variation. As
the pair (a, A) increases to (a’, A’) through a sequence of values, a terminal
time decreases to the corresponding one of the system determined by (a’, A’).
A similar statement for decreasing (a, A) requires some additional hypothesis;
it is true, for example, if A is held fast and the functions a are bounded.

It is worth making a few remarks that will not be used in the paper. If A
is empty and a bounded away from 0 and , the equation

fo": a(X(-)) d" Z=

holds, so that the auxiliary variables can be recovered from the terminal
times. Next, altering A by a negligible set, or redefining a on the union of A
with an approximately null set, changes each terminal time in 9 only on a
set of probability null. Finally, the results of the following sections hold
also for limits of the systems defined above. An example of such a limit is
given by uniform motion on a line, a particle having an even chance of passing
the origin or being destroyed there. It is likely that the broader class can
be described axiomatically and that it is the proper basis for a relative theory,
but we shall consider only the systems defined constructively.

Let Rr be the time assigned to a process starting at a point r. The zero-
one law implies that Rr vanishes with probability either 0 or 1; if the proba-
bility is 1, then r is said to be regular for .

It is sometimes convenient to replace A by A’, the set formed by adjoining
to A all points regular for 9. Doing so changes each terminal time of the
system only on a set of probability null, a trivial alteration for our purposes,
and after the replacement one can say, for almost every 0, that either
is infinite or one of the two statements

nx
(10.2) X(Rx(oo), ) e d’, a(X(r, o)) d.r Zx(o),

is true.
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Before deriving further properties of systems of terminal times, we shall
extend one or two results of the simple theory. Suppose the auxiliary vari-
ables of to be independent of the simple terminal time S--that is to say,
for each process X, the triple X, Zx, S is independent--and define the kernel
H(r, ds) by the formula

(10.3) H(r, D)--- 5)IR < S, Xr(Rr)e D},

with R the terminal time assigned to a process X starting at r.

PROPOSITION 10.1. If the function is excessive relative to S, then H q has
the same property and nowhere exceeds q. If f is a positive function vanishing
outside A, then H Uf coincides with Uf.

First assume the parameter h of the simple theory to be strictly positive.
It suffices then, by Proposition 5.3, to prove the first assertion when is the
potential of a positive function f. Given r and , take R’ to be the infimum
of the a greater than r for which one of the statements

Xr(o-) e A, a(Xr(a)) da >= Z,

is true, Z being the auxiliary variable used in defining R. Clearly R’ de-
creases to R as r -- 0; also, one may consider R’ "r to be the terminal
time assigned to the process X(a + r), where a is the time variable. Conse-
quently, as r - 0,

where t’ is the set on which S exceeds R’, increases to

H Uf.(r) do f(X((r)) dz,

where 2" is the set on which S exceeds R,. The first assertion is now proved
for strictly positive parameter, and it follows for vanishing parameter by a
passage to the limit.
The second assertion is proved by rewriting the integral defining Uf.(r) as

in the proof of Proposition 4.2. The same argument shows that H Uf
increases as a and A increase; the statement remains true when Uf is replaced
by ny function excessive relative to S.
The transformation L is defined in the same manner as L in 8. If the

parameter is strictly positive and . is a measure excessive relative to S,
choose a sequence of measures . whose potentials increase to ; the potentials
tH U increase with n and do not exceed ; and L is taken to be their
limit. The transformation L is defined for vanishing parameter in the same
way as L. The next proposition summarizes the properties of the trans-
formation, the proofs being the same as those in 8.
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PROPOSITION 10.2. L leaves invariant the class of measures excessive relative
to S and preserves majorization. If , increases to , then L increases to
L .
We shall say that 9 and a second system (R), determined by b and B, are

relatively independent if, for every process X, the triple (X, Zx, Z’x) is inde-
pendent, Zx and Z being the auxiliary variables of the two systems. If 9?
and are relatively independent and if Tx is the minimum of Rx and Sx,
then the family of times Tx is in fact a system determined by a -t- b and
A u B, and it is said to be the minimum of 9 and (R); the verification is left
to the reader. The auxiliary variables of are not always uniquely defined,
nor are they usually independent of the auxiliary variables of 9 and . So
the direct method of forming the minimum must at times be replaced by the
construction of a system defined by a -t- b, A u B, and a new set of auxiliary
variables.
One device in reducing the complexity of a proof is to regard 9 as the mini-

mum of two systems, the one determined by a and the other by A.
There is an important relation connecting two relatively independent

systems of terminal times 9 and (R) with their minimum . The notation
is chosen to agree with the most frequent specialization, but should not be
confused, for the moment, with the notation of preceding sections. Let
H,(r, ds) be the transition probabilities relative to (R),

(10.4) H(r, D)-= (p{ r < St, Xr(r) e D},

X being a process starting at r and Sr the time assigned to it by (R); let K,(r, ds)
be the transition probabilities relative to ; and let H(r, do., ds) be the family
of measures on the product space I X 5C defined by the formula

(10.5) H(r, C, D) (P R < t.r Rr e C, Xr(Rr) D

with I the interval 0 -< r < . On separating the sample paths into three
classes according to the relative magnitudes of R and St, one obtains the
equation

H,(r, D) K,(r, D) + J[xe(10.6)

where Iv is the interval 0 -_< o. < r.

H(r, do-, ds)H,_(s, D)

+ (P{Rr r < &, X,(r) e D},
The last term on the right vanishes

except for countably many values of r, so that the equation becomes

(10.7) U V -t- H U

after integration on r. Here the kernel U is

(10.8)
U(r, D) =-- fo H(r, D) dr

&o fo " X(Xr(r)) dr,
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with x the characteristic function of the set D; the kernel V is defined similarly
in terms of ; and the kernel Ha is

Ha(r, D) =--- Ha(r, I, D)
(10.9)

(PIRr < St, Xr(Rr)eD}.

It is clear that ech is kernel in the sense of 3.
The notation of the relative theory will now be fixed. The positive func-

tion a nd the nearly nlytic set A re held fst, nd 9x is system of terminal
times defined by a -}- h nd A, with h positive prmeter. Most of the
ssertions to be mde re quite independent of the auxiliary variables of
9x, nd in the proofs we my choose ny convenient set. In prticulr,
x my be considered the minimum of 0 nd the simple terminal time S
provided Sx nd 9 are tken to be relatively independent.
The transition probabilities relative to 9x are denoted by KX,(r, ds),

(10.10) K(r, D) P - < RX X(r) D},

where RX is the time ssigned to process X starting t r; they obviously
stisfy the equations

KK K+,(10 11)

(10.12) KX e .
The corresponding kernel for potentials is VX(r, ds),

VX(r, D) K(r, 1)) dr

(10.13)
=-- doo fo X(Xr(T)) dr,

where x is the characteristic function of D. An integration by parts, or the
proper specialization of (10.7), gives the relation

(10.14) kr, D) VX(r,D) a e ,V.(r,D) dr.

valid for a greater than -h. This relation may also be written

(10.15) V

If g is a system relatively independent of {Rx, the kernel KX is defined to be

(10.16) K(r, D) (P{ Tr < RX X(Tr) D}.

We write KXs, however, if Z is determined by the set E and the null function
The kernel N is defined to be

(10.17) NX(r, D) =-- 6’{ R < Sx, Xr(Rr) D},
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where 9 and the simple terminal time Sx are assumed relatively independent.
On specializing 9, (R), % in relation (10.7) to 9, Sx, 9x, we obtain

Ux Vx + NU,
where U is the kernel for potentials relative to Sx. If X is strictly positive,
the equation may be written

(10.18) Vx Ux- NxUx,
for then Ux is bounded. This relation enables one o carry over many results
from the simple to the relative theory.

Let X be he set of points in 3C which are no regular for 9; the set is in-
dependent of the parameter, since a point is regular for 9x if and only if it
is regular for 9. The function KX(r, D) wnishes identically in X, r, D unless
r belongs to . Also, VX(r, D) vanishes identically in },, r if D is disjoint from. In verifying the las ssertion we assume, as we may, that A includes he
complement of 3C; then, by Proposition 10.1,

VX(r, D) UX(r, D) NXU. (r, D) 0,

for strictly positive. The assertion for vanishing parameter is a conse-
quence, because Vx increases to V as }, decreases to 0.

It is necessary to arrange the points of according to their regularity for
x. For this purpose, take to be the function

RX being the time assigned to a process X starting at r, and the simple terminal
time S being independent of the system {Rx. This function is excessive rela-
tive to S, by Proposition 10.1. We define a, for fl less than 1, by the in-
equality < ; the set a itself comprises the points where is less than 1.
The a increase with/, their union is a, nd each one is nearly Borel and
nearly open in the sense of 7. For fixed/, the set a decreases s h increases,
but the collection of sets a, with 0 <= f < 1, does not vary with ),. To see
this, let Z be a positive random variable which is independent of S
of {R nd which has the density function },e-x for positive z. Then RX my
be considered the minimum of R, and Z, and a simple computation shows that, is precisely the set a, where , is fl h - },. The result shows inciden-
tally that is the empty set unless fl exceeds h/(1 q- ).

PROPOSITION 10.3. Given and fl, one can find two numbers, "y less than
1 and a strictlj positive, so that the probability of the joint event

RX
exceeds a for every r belonging to

Let /and a be subject to the restrictions mentioned, and let r be a point
of a}. Take T to be the minimum of a and the time Xr hits the complement
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of 5Cx, take ft’ to be the set where T is less than a, and let Y be the process
Xr(r -t- T) defined over the probability field ft’. It is clear that (Y(0))
is at least /almost everywhere on ft’ and that Ry, the time assigned to Y by
9x, may be taken to be the restriction of RXr T to ft’, the auxiliary variable
being chosen properly. Matters being so, the extended Markoff property,
with stopping time T, implies that

{r -> } _--< { => , V _-> } + ’{R > }.

The proof is completed by first choosing a less than (1 )/4 and so small
that the left member of the inequality exceeds (1 )/2, then choosing ,
so close to 1 that the second term of the right member is less than (1 )/4.
The choices are possible, because the inequalities

({Rkr < S < , ({Rsk < S y,

respectively imply the inequalities

{ RXr > 2 __> e", (P {R> a} < 1 -,
l_e-.

The full notation of the relative theory has been explained, but in practice
the symbol will be omitted except when the parameter is varied. The sym-
bols H and U will have the same meaning as in 3-9, with the same value
of the parameter as in the relative theory. Note that the kernel N, which
relates U to the kernel V of the relative theory by equation (10.18), is defined
in terms of 0 and Sx. Note also that the sets are defined only for less
than 1, so that to say a set is included in some is the same as to say it is
included in for some less than 1; and the truth of such a statement does
not depend upon the value of .

11. Excessive functions

A positive function is excessive relative to 9 if it is measurable over the
field ( and if K, increases to as r decreases to 0. In this section and the
next two, excessive stands for excessive relative to 97, Xr is a process starting
at the point r, and Rr is the time assigned to it by

If b is excessive relative to the simple terminal time S, the function which
coincides with b on 5C and vanishes elsewhere is excessive relative to 9?. A
system of terminal times, relatively independent of 9?, determines two ex-
cessive functions,

(11.1) O(r) 6’{ Tr -< Rr, Rr >
where T is the time assigned to Xr by . We shall omit the proofs, which
are quite simple, for the assertions are implied by later more general state-
ments. The last two functions will be denoted by E and OE when is de-
termined by the set E and the null function.
Two circumstances make the relative theory more difficult than the simple

theory of 3-9. The function which is 1 on and 0 elsewhere may not be
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a potential, and the time 9? assigns to a process may coincide on a set of strictly
positive probability with the time the process hits a given set. There is
accordingly a complication in detailhfor example, sets which are included
in some x and have compact closure replace sets with compact closure, and
a statement concerning all r usually becomes one concerning the r preceding
the time assigned to a process by 97, or perhaps preceding the time the process
leaves 3C. The statement of a proposition may require a further qualification
or its proof an additional argument or two, on leaving the simple theory, but
these are elaborations of the old pattern. In presenting the relative theory I
shall therefore state the definitions and principal theorems, giving a proof only
when it differs substantially from the corresponding one of the simple theory.
The remarks at the beginning of 5 are still valid. The potential relative

to 9? of a positive function f is the function Vf,

Vf.(r) [, Kf.(r) dr

(11.2)

so that, if and are relatively independent,

(ll.a) K Vf.(r) =- doo f (X(r)) dr,

with f’ the set where T, the time assigned to X by , is less than R,.. The
next proposition is a consequence of these equations, the behavior of a system
of terminal times as the determining set and function increase, and the reason-
ing of the first few pages of 4 and 5.

PROPOSITION 11.1. The potential Vf of a positive function f is excessive and
depends only on the restriction of f to . Let be relatively independent of 9
and determined by b and B; then K Vf is excessive relative to , nowhere exceeds
Vf, coincides with Vf if f vanishes outside B, and increases to Kz, Vf if b and B
increase to b’ and B’ through sequences and if ’ is determined by b’ and B’.

If f is bounded and X strictly positive, one may write

(11.4) Vf Uf NUf,

according to (10.18). The second term on the right is excessive relative to
the simple terminal time S, by Proposition 10.1 or 11.1, so that Vf is nearly
Borel measurable andrather exceptionally--Vf.(X(r)) is continuous on
the right for all with probability 1.
The analogues of the first two propositions of 5, which have the same proof

as before, give the following approximation theorem.

THEOREM 11.2. If is strictly positive and excessive relative to , there
is a sequence of positive bounded functionsf whose potentials Vf, increase to .
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It follows that an excessive function is nearly Borel measurable and that
K behaves as if were a potential.

It is now proved, just as in Proposition 5.5, that

inf __< (r) =< sup ,
if is excessive and the point r is regular for E but not for 9?,mthat is to say,
if r belongs to 34 and is regular for E. This result and the beginning of the
proof of Theorem 5.6 show that, given a strictly positive number a and
process X whose initial distribution is concentrated on 34, one can find
stopping time T for X which is strictly positive with probability 1 and which
has the property that

(X(r)) -(X(O)) _-< a for 0 <= r < T.

In repeating the argument with the original process replaced by X(r T),
one must neglect the 0 for which X(T(co), co) lies outside 34. The latter half
of the proof of Theorem 7.2 of [7], on being modified accordingly, yields the
continuity of (X(r)) on the right only up to the moment the process leaves
34. The proof of finiteness of (X(r)) carries over for r less than the terminal
time; here the terminal time may be replaced by a somewhat greater time, as
we shall see in a moment, but usually it may not be replaced by the time the
process first leaves 34. Consider, by way of example, uniform motion to the
right on the reals, taking a null, A the origin, the function which vanishes
to the left of the origin and is infinite elsewhere. That the time a process
leaves 34 usually cannot be increased, in the statement about continuity on
the right, becomes clear on considering Brownian motion on the line, taking
A to be a closed interval and to be 0 in the interval and 1 outside. These
results are summed up in the next theorem.

THEOREM 11.3. Let be excessive relative to 9, X a process, R the time
assigned to it by 9, and T the time it hits the complement of 34. Then , is nearly
Borel measurable; ,(X(r)) is with probability 1 continuous on the right in the
interval [0, T); and (X(r)) is with probability 1 finite in the interval [0, R),
provided the expectation of (X(0)) is finite.

The minimum of two excessive functions is now easily seen to be excessive.
The discussion of the semimartingale defined by an excessive function and

a process will be given in detail, for it differs a good deal from the one in 5.
Suppose that Y(r, oo) is a positive function on the product space I

with I the interval 0 =< r < oo, that it is a decreasing function of r, and that
the expectation of Y(0, c0) is finite. Let (ff,),r be any increasing family of
subfields of Y, and define Y’(r) to be the conditional expectation

Y’(r) g{Y(r)

The family (Y’ (r), ff) is then a lower semimartingale, for Y’ (r) is measurable
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over L, by definition, and

g{Y’(r) ff} g{Y(r) ff}

<= g Y(o-) Y, Y’(), <T.

Now let X be strictly positive, f a positive bounded function, X a process, R
the time assigned to it by 9, and define

R)

where e(r, R) is 1 if r < R and 0 otherwise. Taking G to be the field gen-
erated by the random points X(), with not exceeding r, one has

(11.5) Y’(r) (P{R > IL}Vf.(X(r)).
With this specialization, Y(r) is continuous in r, and Y’(r) can be shown to
be continuous on the right with probability 1 if the proper version of the
conditional probability is chosen. The context suggests that this fact, or
perhaps even Theorem 11.3, is a consequence of martingale theory and general
properties of the Y(r) and

It is necessary to analyze the conditional probability in the last equation;
in the discussion we shall permit X to have any value and write simply a
instead of a + . Let R’ be the time X hits A, and let R" be the terminal
time assigned to X by a and the empty set, with auxiliary variable Z the one
used in defining R. Since R is the minimum of R’ and R",

(11.6) (P{R > r[ Y,} e(r,R’)exp a(Z()) d

is one version of the conditional probability. The factor e(r, R’) is obviously
continuous on the right in r, and we shall prove that the exponential is with
probability 1 continuous in the interval 0 -< r < T, where T is again the
time X hits the complement of 5C. Indeed, the exponential is discontinuous
only at a number o with the properties

a(X()) d < oo, a(X(a)) de for a > O,

and for each o there is at most one such number. Let ft’, the set of 0 for which
such a number p(o) exists, have strictly positive probability, and consider
the process X(r if- p(oo), o) defined over ft’. It is easily seen that the term’real
time assigned to this process by a and the empty set vanishes with probability
1, even identically so if the auxiliary variable is the restriction to ft’ of the
random variable Z a(Z()) d. Foralmost all o in ft’ the point X(p(oo),
is therefore regular for the system defined by a, so also for 9, and the assertion
concerning the exponential is proved. In the remainder of the section we
shall assume, as we may, that every point regular for belongs to A. Then
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p(o) is at least as great as R’(o) for almost all 0 in a’. Let us extend p to all
of f by taking p(co) to be the infimum of the r for which the exponential van-
ishes; p(o) may be less than R’(0) if o is not in ’. The right member of
(11.6) is, with probability 1, continuous on the right for all T, and even con-
tinuous and strictly positive for r less than p and R’.
The family of random variables defined by (11.5) remains a semimartingale,

even f6r vanishing X, when the potential Vf is replaced by any function
excessive relative to 97, for which the expectation of (X(0)) is finite; the
semimartingale is separable, for almost all the sample functions are continuous
on the right, by Theorem 11.3 and what has just been proved. As a conse-
quence of the last paragraph and the behavior of semimartingales, the function
(X(r)) almost certainly is finite and has finite limits from the left, so long
as r is less than p and R’. This statement is slightly stronger than the last
one in Theorem 11.3. It is also true that (X(r)) has, with probability 1,
a finite limit as r increases to the minimum of p and R’, provided the ex-
ponential factor does not decrease to 0. The last event can happen only if
both o(co) and R’(co) are infinite or if o(co) is finite and o not in f’; for almost
all such o, the terminal time R"(0) is strictly less than p(o). It follows that,
with probability 1, the function (X(r)) has a finite limit as r increases to
R, the terminal time assigned to the process by

Suppose the expectation of (X(0)) to be infinite, and let T be the mini-
mum of R and the time X hits the set where is finite. With probability 1,
the function (X(r)) is infinite for 0 -< r < T, is finite for T < r < R, and
has finite limits from the left for T < r -< R. The proof is like one in 5.

PROPOSITION 11.4. Let be the minimum of the relatively independent sys-
tems and , and let b be excessive relative to . Then the function which
coincides with on 3C and vanishes elsewhere is excessive relative to 9.

In the proof we assume, as one easily sees we may, that is bounded. For
each r and r the transition measure N,(r, ds) relative to majorizes K,(r, ds),
and, for r in N, the mass of the second measure increases to 1 as r - 0. Con-
sequently K, k nowhere exceeds ; thus, Kr is a decreasing function of r,
because the kernels Kr form a semigroup. And, for r in X,

lim K, .(r) lim N .(r) (r),
r-->0

because k is bounded. For points outside there is nothing to verify.
A set E is said to be approximately null relative to 9 if V(r, E) vanishes

identically, negligible relative to if, for every process and with probability
1, the time the process hits E is at least as great as the terminal time assigned
to the process. The second property implies the first, by the argument at
the end of 5, and a set is certainly negligible relative to 9 if it is included
in A. The place of a point regular for a set E or for a system of terminal
times is taken, in the relative theory, by one regular for E or but not
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for 9?. If E is a nearly analytic set such that every point which is regular for
E is also regular for , then almost all sample paths of a process meet E at
most countably many times before hitting the complement of X. If E is
nearly analytic, the points belonging to E but either regular for or not regu-
lar for E form a set which is approximately null relative to . An excessive
function is determined by its values outside a set approximately null relative
to 97, and the set where an excessive function is infinite is negligible relative
to 9 if and only if it is approximately null relative to 9?. These statements
are proved just as were the corresponding ones in the simple theory.
We shall discuss next some properties of excessive functions that were not

considered in the simple theory. Let be excessive relative to , and let
be a system relatively independent of 9? and determined by (b, B). Clearly,
Kz increases with b, B, and . It also decreases as a and A increase, since
the kernel K decreases. In this statement is taken to vanish outside the
set N of the moment and to be excessive for the least values of a and A con-
sidered; it is then excessive for the other values of a and A, according to the
preceding proposition. If the pair (b, B) increases to (b’, B’) through a se-
quence, Kz increases to K, q, where ’ is a system determined by (b’, B’);
one has only to use Theorem 11.3, supposing all the systems to have the same
auxiliary variables. A similar statement for (b, B) decreasing, or for (a, A)
varying in either sense, requires an additional hypothesis.

Let and ’ be systems determined by the pairs (b, B) and (b’, B’). We
shall say that dominates ’ if b nowhere exceeds b’ and B is a subset of
when these conditions are satisfied and the two systems have the same
auxiliary variables, every terminal time of is at least as great as the corre-
sponding terminal time in ’. On the other hand, is said to majorize
if the two systems are relatively independent and if each terminal time of
is, with probability 1, at least as great as the corresponding one in ’; this is
evidently so when B’ includes both B and the set where b is strictly positive.
The terms will be used sparingly.
The treatment of what may be called combinatorial properties should be

compared with the one by Choquet in II 7 of [3].
Suppose 97, , 1, to be relatively independent, that is to say,

process and the auxiliary variables corresponding to it in the several systems
always form an independent family. Define kernels by the formula

K(i,...,k)=-Ke; (R)----min{,,...,}, 1 <__ i < < k =< n.

We shall study the quantity

Ar(, 1 "’’, n) --Kz .(r) (-1)’K(il,...,i,).(r),
l<_mn

where 9 is excessive relative to . The properties of A are summed up in the
next theorem, in which r is to be restricted by the requirement that all terms
in the sum are finite.
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THEOREM 11.5. The quantity Ar( 1, "’", n) is symmetric in the
It vanishes if r is regular for or if one of the i majorizes . The inequalities

(11.7) 0 __-- nr(:, c "’", :n) ---- (fl(r),

hold generally. The inequality

(11.9) Ar(, 1,’", ,) -<_ Ar(’, ;,’’"
holds if dominates ’ and dominates for each i.

Suppose first that }, is strictly positive and that is the potential of the
positive bounded function f. One can then write

K(i, ..., l).(r) do f(X(r)) dr,

where X is a process starting at r, R is the time assigned by , T’ is the mini-
mum of the times assigned by , , k, and 2 is the set where T’ is
less than R. This expression leads to the equation

ZAr(, 1, ..., n) d0 f(X(r)) dr,

where T* is the maximum of the times assigned by the various systems ’T is the time assigned by , and It* is the set defined by the inequalities
T* < T < R; the argument is precisely the one used to derive the formulas
of Poincar6 for the probabilities of composite events. All the assertions of the
theorem are now obvious, except perhaps the last inequality, and that becomes
so when one takes the auxiliary variables of corresponding systems to be the
same. It is also clear that A increases if f is increased or if 9 is replaced by a
system which dominates
The theorem is proved for an arbitrary excessive function, but with X still

strictly positive, by a passage to the limit using Theorem 11.2. The results
carry over to vanishing because KXz, for example, increases to Kz as }, -- 0,
and because a function which is excessive for one value of ), is excessive for
all greater values. The proof is now complete.
For a moment, while discussing an inequality already used in 6, we shall

write K() instead of Kz. Consider a sequence of systems i determined
by the pairs (b, Bi), and let be a system determined by the sum of the
b and the union of the Bi. If the i arc relatively independent, a terminal
time in may be taken to be the infimum of the corresponding ones in the
systems . Let and
dominates for each i. Under these hypotheses, one has the inequality

(11 10) K(),.(r) K(’),.(r) < [K().(r) K(.).(r)]

provided the second term on the left is finite, so that the expressions make
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sense. Assume first that X is strictly positive and that is the potential of
the positive bounded function f. There is no loss of generality in supposing
the to be relatively independent and the auxiliary variables of , : to be
the same as those of ’, P. When this is done, the inequality can be written

do f(X(T)) dT,

where X is a process starting at r, T is the time assigned by , R is the
minimum of the times assigned by and , ft is the set on which T is less
than R, and T, R’, a’ have similar meanings. The inequality in this form
is nearly obvious since T, for example, may be taken to be the infimum of the
T. The proof is completed in the same way as that of the theorem. Another
proof, based on the positiveness of ZXr(, C’l c2), is given in Choquet’s memoir.

12. Special sets

In this section we suppose the sets to be defined by giving X the value 0,
although any positive value would do as well. The index , it will be recalled,
runs over the positive numbers strictly less than 1.
A set is said to be special if it is nearly open, has compact closure, and is

included in some 3C the last condition is a kind of uniform separation from
the complement of ,. These sets take over the role of open sets with compact
closures, the intersection of one of the latter sets with some : being indeed
the simplest example of a special set. The details of the relative theory de-
pend upon the way special sets are defined; the definition we have given works
well if the transition probabilities are sufficiently regular.

PROPOSITION 12.1. Under hypothesis (C) of 9, for every special set D
there is another special set D’ such that V(r, D’) is bounded awayfrom 0 on D.

We shall first prove a preliminary assertion: For every compact set F and
every number a less than 1, there exist an open set G with compact closure and
a strictly positive number p such that the sample paths of a process starting
at a point of F remain in G until time p, with probability at least a. The
parameter h is to have a strictly positive value during the proof, and
number less than 1 that will be fixed at the end.

Consider the potential Uf as f runs through a sequence of positive functions
in e() which increase everywhere to . The potential belongs to e(),
under (C), and increases everywhere to 1; the convergence is therefore uniform
on F. Choose f so that Uf exceeds , at all points of F and is bounded by 1
everywhere. The function H Uf tends uniformly to Uf as p -- O, for

Uf H Uf Hf dr _-< pmaxf,

and we fix p so that Hp Uf also exceeds , on F. Take G to be the set where
Uf exceeds 7/2. Given a process X starting at a point r of F, let T be the
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minimum of p and the time the process first leaves G. Then

_> >Uf.(X(T)) doo Uf.(r)

and the integrand is bounded by //2 on the set where T is less than p.

sequently,
Con-

elT >

The preliminary assertion is now proved by choosing , suitably.
Let D be a special set. Proposition 10.3 and what has just been proved

imply the existence of another special set D’ and a strictly positive number a

with the following property" If Rr is the terminal time assigned to a process
Xr starting at a point r regular for D, then the probability of the joint event

Rr > , X(r) e D’ for r

is at least a. This result, which is stronger than the proposition, will be
needed occasionally. It implies the proposition, of course, for V(r, D’) must
be at least a on D.
The parameter h was required at times to be strictly positive in the simple

theory. This condition is more than is needed, and we shall replace it in the
relative theory by one or the other of the following conditions.

(D) Let D be a special set, X a process, and ’ the set where the terminal time
assigned to X by is infinite. Then, for almost all o in ’, the point X(v, w)
lies outside D for all sujciently large -.

(E) The function V(r, D) is bounded in r whenever D is a special set.

The first asserts that almost all sample paths of a process finally leave a
given special set, either because they are terminated or because they wander
to infinity; the second asserts that the sample paths of a process spend, on the
average, a finite time in a special set. Both statements are true if }, is strictly
positive. For many transition measures they are true even when h, a, A
all vanish; instances are the transition measures of Brownian motion in three
dimensions or higher, and those leading to Riesz potentials in two dimensions
or higher. Later in the section we shall discuss the verification of (D) and
(E) when the transition measures are ergodic.

THEOREM 12.2. Let (D) or (E) hold, and let be excessive relative to
Then there are positive functions f whose potentials Vf increase to

We shall prove in a moment that there is a sequence of positive functions
g such that Vg is bounded for each n and increases with n to infinity at every
point of . The finiteness of the potentials implies thatK Vg -- 0 as -- .
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The function , the minimum of and Vg,, is excessive and increases to
as n becomes large. Also, the potential of ( K n)/r increases to n

as r -+ 0, by the proof of Proposition 5.2. The theorem follows from these
two facts.
The existence of the functions g is clear under (E), and the following argu-

ment proves their existence under (D). Let x be the characteristic function
of a special set D, and define b by the formula

where X is a process starting at the point r and R is the terminal time assigned
to X. The integral within the curly brackets is strictly positive with prob-
ability 1, if r belongs to D, so that is strictly positive in D. On the other
hand, the integral is finite with probability 1 for every r, under hypothesis
(D), so that b is less than 1 everywhere. The finiteness also justifies the
following calculations, which are like those in the proof of Proposition 4.4.

where ft is the set on which R exceeds
the last expression can be written

d

d

By the simple Markoff property,

dr fe K(r, ds);(s)[1 (s)]

v[(1 )x].

Thus (1 )x is a positive function whose potential is bounded on ae and
strictly positive on D. The existence of the functions g is now clear, for aC
is the union of countably many special sets.

Since (1 )x is strictly positive on D, the calculation shows incidentally
that (D) very nearly implies (E). If ae is discrete, a special set comprises
only finitely many points, so that then (D) does in fact imply (E).
The next two propositions are the extensions of Propositions 4.4 and 6.6.

The proofs are omitted, as they differ only trivially from the former ones.
Let g be a system determined by the positive function h and relatively

independent of 9?. Given a positive function ,, define by the formula

b(r) . q(X(T))

where X is a process starting at r and 2" is the set on which T, the time as-
signed by g, is less than R, the time assigned by 9.

PROPOSITION 12.3. Suppose that q is bounded and that, for every process X
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and with probability 1, the integral h(X(r)) dr is finite.
tential, relative to 97, of the function ( )h.

Then is the po-

The hypothesis on h is satisfied, in particular, if either (D) or (E) holds and
if h is bounded and vanishes outside a special set.

PROPOSITION 12.4. Let (D) or (E) hold, let E be a nearly open set, and let
be excessive relative to 9. Then there are positive functions f,, each one vanishing
outside E, whose potentials Vf, increase to

The following proposition gives a sufficient condition for the truth of (D)
in terms of the simple and relative kernels for potentials.

PROPOSITION 12.5. Statements (C) and (E) together imply (D).

Let D be a special set, X a process starting at the point s, and R the terminal
time assigned to X. Choose the special set D’ and the strictly positive number
a so that the joint event (12.1) has probability at least a whenever r is regular
for D. Now, define a sequence of stopping times for X by taking T1 to be the
time X hits D and T+I to be the infimum of the r greater than T q- a for
which X(r) belongs to D, with the understanding that T+I is infinite if there
are no such v. We must prove that ’, the set where all T. are less than R,
has probability null. To do this, consider the inequality

x(x(,))
(12.2)

s(T, R) d x(X(r)) dr,

where x is the characteristic function of D’, the function e(a, r) has the value
1 or 0 according as a is less than r or not, and T’. is the minmum of T+ and
R. The point X(T,) is almost surely regular for D if T is finite, the factor
e(T, R) depends on the behavior of the process only infinitesimally past the
time T., and T,+ is at least T q- a if T is finite. Hence each term of the
sum is at least a2(p{ft’}, by the extended Markoff property and the choice
of a and D’. It follows that ft’ has probability null, because the first member
of (12.2) is finite under (E). Only the fact that V(s, D’) is everywhere finite
has been used in the proof, not the full strength of (E).
The remainder of the section deals with verifying (D) and (E) for a certain

class of transition measures. A more detailed treatment for Brownian motion
in the plane is to be found in [10], where it is also proved that the classical
Green’s tunction of a domain coincides with the kernel for potentials relative
to the system of terminal times defined by the complement of the domain.
The notation is that of the simple theory, the parameter X appearing as a

superscript.
The transition measures are said to be ergodic if0, is identically i whenever
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B is a Borel set and not approximately null, that is to say, if almost all
sample paths of every process meet such a set.

PROPOSITION 12.6. The transition measures are ergodic if and only if U(r, B)
is identically infinite in r for every set B which is not approximately null. If
the transition measures are ergodic and if E is nearly analytic and not negligible,
theno is identically 1.

Suppose first that the transition measures are ergodic and that B is not
approximately null. Take E to be the set where Ul(s, B) exceeds 2a, with a

strictly positive and so small that E is not empty. The set E is nearly open,
therefore not approximately null, and Ul(s, B) is at least 2a if s is regular for
E. Take p so large that

P(s, > aB) dT

whenever s is regular for E. Now, given a process X starting at the point
r, let T1 be the time X hits E, and let T+I be the infimum of the r greater
than T -k p for which X(r) belongs to E. All the T are finite with prob-
ability 1, because E includes a Borel set which is not approximately null.
We have, writing x for the characteristic function of B,

oo

and each term in the sum is at least a, as one sees by the extended Markoff
property. So U(r, B) is identically infinite.

In the rest of the proof we assume U(r, B) to be infinite for all r whenever
B is not approximately null. A preliminary result concerning a nearly open
set E will be derived first. Let Cx be the function

CX(r) 1--exp{--fox
where x is the characteristic function of E and X is a process starting at r.
Proposition 4.4, this function satisfies the equation

By

Ux{(1 -x)x}
if }, is strictly positive. On letting }, decrease to 0 and noting that x increases
to 0, which is bounded by 1, we obtain

U{(1 )x} -< 1.

This inequality and the hypothesis at the beginning of the paragraph imply
that k is 1 at all points of E, excepting perhaps an approximately null set; the
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exceptional set is empty, however, since it is also nearly open. The function
0 has the value 1 also at points which are regular for E. Thus, if r is regular
for E, the .integral x(X(r)) dr is infinite with probability 1, so that for
almost all co the point X(r, o) belongs to E for certain arbitrarily large
values of r.

Let F be compact and not approximately null. The function UX(r, F) is
strictly positive for all h and r, under the present hypotheses, and for each
strictly positive ), it is bounded and has F for a determining set. The function
q) exceeds some multiple of Ui(r, F), according to the part of Theorem 6.11
proved without using (B), so that it too is strictly positive. Let E be the
nearly open set where1 exceeds 2a, with a a given strictly positive number,
nd choose p so that a process starting at a point regular for E hits F by time
with probability at least a. Given such a process X, define a sequence of

stopping times by taking To to be null and T+ to be the infimum of the r

greater than T -- for which X(r) belongs to E. The T are all finite with
probability 1, by the preceding paragraph, and repeated use of the extended
Markoff property shows that

(I)(r) => a(1- a) 1,

if r is the point at which X starts. Since E increases to 3C as a decreases to
0, the function0 must be identically 1.

Let us now assume only that F is nearly analytic and not negligible. Since
does not vanish identically, there is a strictly positive a such that the

set E where exceeds 2a is not empty. Clearly, E includes a set which is
compact and not approximately null, so that almost all sample paths of an
arbitrary process meet E. The argument of the preceding paragraph, with
E fixed and r any point of 3C, shows that0 is identically 1. The proposition
is now completely proved.

It follows at once from the proposition that (D) holds if the transition
measures are ergodic and the set A is not negligible, for then every terminal
time of the system is finite with probubility 1. The condition that A is
not negligible may be replaced by the condition that a is strictly positive on a
set which is not approximately null.

PnOeOSTON 12.7. Statement (E) holds if the transition measures are ergodic,
if A is not negligible, and if, for every compact set F, the intersection F is
empty for sujciently small but strictly positive.

In the proof we shall take a and h to be null, for doing so only increases
the terminal times. Let N(r, ds) be the transition probabilities relative
to the system of terminal times defined by A , with strictly positive.
By the definition of , there are strictly positive numbers a and p such that
the sample paths of a process starting at a point outside meet A by time
with probability at least a; on the other hand, every point of is regular
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for a. Consequently, Np(r, ae) is bounded by 1 a, so that

N,+p(r, ae) f N(r, ds)N,(s,

_<_ (1 a) sup N(s,

It follows that N(r, ae) decreases exponentially as r increases and that the
total mass of W(r, ds), the kernel for potentials relative to the system deter-
mined by A u a, has a bound independent of r.
Given a compact set F, choose strictly positive so that . and F are dis-

joint. We shall prove V(r, F) to be bounded by majorizing it in terms of
W(r, ae).
Let X be a process starting at the point r, and define a sequence of stopping

times by taking To to be null, T2+1 to be the infimum of the r greater than
T,.. for which X(r) belongs to ,, and T to be the infimum of the r greater
than T_I for which X(r) belongs to F. If F is not approximately null,
all these times are finite with probability 1; the reader may suppose F to be so
restricted, since otherwise there is nothing to prove, but the following calcu-
lations are not disturbed by the stopping times being infinite. The T tend
to infinity with probability 1, for else the function (X(r)) would not have
limits from the left with probability 1. We shall also need T’, the infimum
of the r greater than T for which X(r) belongs to A u
Let be the measure

(B) {X(T,.)B, T < R},

where R is the time X hits A. A process starting at a point of F hits A at
or before the time it hits a, with probability at least ill(1 fl); for, if , is
this probability, one obtains the inequality

,+ (1 -) => 2
on classifying the paths that hit A before time S according o whether they
hit A or A first. Now, the measure is concentrated on F, for n
strictly positive, so that the mass of + does not exceed/3/(1 -/3) times the
mass of v, by the extended Markoff property and what has just been proved.
Therefore the mass of , he sum of all the , has a bound independent of r.
By the extended Markoff property,

V(r, F) do x(X(r)) dr

52 R)d 
T2n

<-- -’, fc W(s, F),, (ds)
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--< (3C) sup W(s,

where x is the characteristic function of F and (, r) has the value 0 or 1
according as exceeds r or not. The last member has a bound independent
of r, by the preceding results, and the proof is complete.
We have in fact proved a little more than (E), for F is an arbitrary compact

set.
The hypothesis that A is not negligible may be replaced by the hypothesis

that a is strictly positive on a set that is not approximately null. Only a few
details of the proof need be changed.

In many examples the function is lower semicontinuous. Then one
need not state explicitly the hypothesis that F and are disjoint when
is small. For is strictly positive everywhere, so that it takes on a strictly
positive minimum on the compact set F if it is lower semicontinuous; and/
may be taken to be any number less than the minimum. There is a similar
argument if (C) holds and if A includes an open set. The function then
majorizes some potential ulf, with f a positive continuous function having a
compact support included in A, and the potential is strictly positive and
continuous.

13. Two theorems on excessive functions

The principal results of 6 will now be extended to the relative theory. E
denotes a nearly analytic set and a function excessive relative to ; only the
supplementary hypotheses on E and will be mentioned.

PROPOSITION 13.1. If all points of E n are regular for E, then Ks q is the
least function which majorizes on E and is excessive relative to

The proof is like that of Proposition 6.1.

THEOREM 13.2. If (D) holds, then KEe coincides, except perhaps at the
points belonging to E n but not regular for E, with the infimum of the func-
tions which majorize q on E and are excessive relative to

It suffices, according to remarks like those in 6, to prove that the infimum
does not exceed KE at any point of outside E. We shall suppose, with-
out losing generality, that E is included in ; for a function excessive rela-
tive to 9 vanishes outside ,, and replacing E by its intersection with has
no effect on KE e.

Suppose first that E is included in some special set D and that the restriction
of e to E is bounded. The first part of the proof of Theorem 6.4 remains
valid, if the sets A are replaced by their intersections with D, and establishes
the theorem under the additional hypotheses.
The next proposition, which takes the place of Proposition 6.5, follows from

the restricted form of the theorem and the fact that every subset of is the
union of countably many sets, each inchlded in a special set.
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PROPOSITION 13.3. Let E be a nearly analytic subset of , and let "E vanish
at the point r outside E. Then there is a function which is excessive relative to, infinite at every point of E, and less than 1 at r.

Suppose next that is finite at every point of E. Choose an increasing
sequence of special sets Dk which exhaust ,, and let Ek be the part of E n Dk
where is less than ]. The second part of the proof of Theorem 6.4 carries
over without change.

Finally, an arbitrary excessive function is treated as in the last part of the
former proof, with the help of Proposition 13.3.
We shall now prepare the way to discussing the analogue of Theorem 6.11

PROPOSiTiON 13.4. Let be a positive function such that the inequality
K <= b holds for every -. Then K b increases as r decreases; and b, the
limit as - ---> O, is excessive relative to , nowhere exceeds b, and coincides, vith
except on a set which is approximately null relative to

The fact that the kernels K form a semigroup implies at once that K
increases as r decreases; so is excessive and nowhere exceeds . In proving
that differs from b only on an approximately null set, we shall assume to
be strictly positive; this is permissible, because is unchanged and the kernels
K are diminished when h is increased.

First, suppose to be bounded. Then

V lim (VK,.)-- lim V(K)= V,
-0

all terms being finite, so that the assertion is proved. Now, let b be un-
bounded, and take to be the minimum of and n. It is clear that k also
satisfies the hypothesis of the proposition; so coincides with b. approxi-
mately everywhere, by what has already been proved. Consequently b’, the
limit of as n --+ , coincides with V approximately everywhere. It is also
excessive, being the limit of an increasing sequence of excessive functions;
it is majorized by ; and

->_ ’ ->__ K >= K’, > 0.

The proposition is proved by letting r decrease to 0 here.
A good deal of the discussion of determining sets in 6 was irrelevant to

Theorem 6.11. We shall now say that closed set F in 3C is a determining
set for a function 9, excessive relative to , if Ko 9 coincides with 9 whenever
G is a neighborhood of F. Simple examples show that an excessive function
may have a least determining set which is compact and disjoint from

Hypothesis (B) implies that Ka K KE whenever G is a neighborhood
of the nearly analytic set E, as one can see from the discussion of the hypothesis
in 6. Thus, under (B), a closed set F is always a determining set for
Given a function 9, excessive relative to 9, let be the infimum of the

functions which majorize 9 on some variable neighborhood of E and are exces-
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sive relative to 9. By Proposition 13.1, one can alternatively define E to be
the infimum of Ko o as G ranges over the open neighborhoods of E.

THEOREM 13.5. Let (B) hold, let E be an analytic set, and let o be finite
approximately everywhere relative to . Then coincides, except perhaps at
points belonging to 3 n E but not regular for E and at points outside E where
o is infinite, with the supremum of the functions which are excessive relative to, have a compact determining set included in E, and are majorized everywhere
by . If E is open, there are no exceptional points, and is the same as K.

Let G be an open neighborhood of E and let b be an excessive function which
nowhere exceeds and has a closed subset of E for a determining set. Then

K >_- K =,
so that majorizes p and hence the supremum mentioned in the theorem.
This part of the proof makes no use of (B) or of the finiteness of .

If E is open, E coincides with K by the second definition of. On the
other hand, K is the limit of K as F runs through an increasing sequence
of compact sets which exhaust E, by Theorem 11.3, and the function K
has F or a determining set by (B). So the last sentence of the theorem has
been proved, without using the restriction on .

It is also clear that E maiorizes K if E is an arbitrary analytic set, so
that

(r) >= (r) >= Ko.(r) (r)

if r is regular for E. Since KE o.(r) is the limit of K .(r) as F runs through
a certain sequence of compact subsets of E given by Proposition 2.1, the
assertions of the theorem concerning points of E have been proved.

Suppose now E to be compact, and choose a decreasing sequence of open
neighborhoods Gn of E whose closures are compact and shrink to E. The
functions K decrease everywhere to, which is therefore measurable over
the field a. Since E satisfies the hypotheses of Proposition 13.4, it coincides
approximately everywhere with an excessive function . We shall prove
that has E for a determining set and that has the same value as at
every point outside E where is finite. Thus, for compact sets, we shall
prove a little more than is stated in the theorem.
The function maiorizes Ko, since the latter is an excessive function

nowhere exceeding. Consequently,

(s) >= (s) >= (s) >= Ko.(s) (s)

if s is regular for E, so that (s) and (s) are the same.
Let G be any open neighborhood of E. The equation

Ko KKvnO
holds for large n, because G finally includes G,, and one obtains, on passing
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to the limit using dominated coavergence,

(13.1) (s) Ka
at every point s where E is finite. This equation will be used to prove that

and k have the same value at a point s outside E where E is finite. In
the proof we assume G to be chosen so that s does not belong to the closure
of G. Let X be a process starting at s, T the time X hits G, T’ the infimum
of the greater than r tor which X() belongs to E, and gt’ the set where T’
is less than the terminal time assigned to X and X() lies outside G for
less than r. It is clear that 2’ increases to the set where T is less than the
terminal time, as r -- 0, and that T’ coincides with T on 2t. Also,

and, as r -- 0, the integral increases to K E.(s), which is the same as q(s).
Consequently, agrees with k at s.

Let r be a point at which is finite and which either lies outside E or is
regular for E. The measure Ke(r, ds) attributes no mass to the set where

differs from , so that (13.1) implies

(r) Ka .(r).

This equation must hold everywhere, since it holds approximately every-
where and both members are excessive. Consequently, k has E for a de-
termining set. The proof for a compact set is now complete.
The proof for an analytic set makes use of Choquet’s extension theorem.

Let r be a point at which is finite, and consider s(r) as a function of the
anMytic set E. The function is finite, being bounded by (r). It is Mter-
hating of order infinity, as one sees from Theorem 11.5 and the second defini-
tion of s. It is continous on the right in E, by the second definition. If E
is open, then s(r) is the supremum of s(r) as F ranges over the compact
subsets of E, by what has already been proved; and the restriction that E
be open may be omitted, according to the theorem of Choquet. Now fix
an analytic set E and a point r outside E at which s(r) is finite. It may be
ssumed, without loss of generality, that (r) is also finite; for s(r) is finite,
G being some open neighborhood of E, and (s)E is the same function as s.
This being so, choose the compact subset F of E so that s(r) is close to (r).
The number .(r) coincides, according to the preceding paragraph, with the
value at r of an excessive function which nowhere exceeds and has F for g

determining set. The proof of the theorem is now complete.
I have not been able to prove that the function s is measurable over the

field a, or that the theorem holds for nearly nalytic sets, without further
restrictions on the transition measures. It will be observed, too, that the
theorem extends one of the versions mentioned at the end of 6, rather than
Theorem 6.11 itself. We shall therefore indicate the straightforward version
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of Theorem 6.11. Let X be a process starting at the point r, T the time X
hits E, R the terminal time assigned to X, and define

+E(r> f lim (X(r))do-t- fa q(X(T))d.

Here the set 2’ comprises both the 0 for which

T(w) < , T() < X(T(), o) e E,
X(-, o) is continuous at

and the for which T(o) and R(o) are infinite and the path X(o) meets every
neighborhood of E. The set 2" comprises the o for which T() is strictly
less than R(w) and either X(T(), o) does not belong to E or X(r, 0) is not
continuous at T(w). The existence of the limit in the first integral was proved
just before Proposition 11.4. The function E is easily proved to be excessive
relative to 9, hence measurable over a, even for E only nearly analytic. If

is bounded, then and agree except at the points belonging to E but not
regular for E. And under (B) the function E coincides, except on the same
set of points, with the supremum of the bounded functions which are exces-
sive relative to , nowhere exceed q, and have a compact subset of E for a
determining set. The proofs are like those in 6.

14. Excessive measures

A measure , defined on the field a and vanishing outside , is said to be
excessive relative to 9 if (D) is finite for every special set D and if " majorizes
K for every r. It follows, as in 8, that K increases to i" as decreases
to 0, provided is excessive, and that the class of excessive measures is closed
under the operations discussed at the beginning of 8.
The potential relative to of a measure is the measure tV, which remains

the same when t is replaced by its restriction to . The potential is excessive
relative to if it is finite on special sets; in particular, it is excessive if (E)
holds and is bounded. The potential determines if (E) holds and is a
bounded measure concentrated on :. The proof is the same as that of
Proposition 7.1 for h strictly positive. If h vanishes, we use (10.15) to write

f.(14:.1) 17" V e-ll,r K, dr,

both measures on the right being finige on special sets because (E) holds;
ghus V determines V, hence iself.
The proeetion, relative to 9, of the measure on he nearly analytic se

E is the measure K. The class comprises hose measures eoneentrated
on X whose proieetions on special segs are bounded. Such measures are
obviously finite on special sets. Their potentials have the same propery if
(E) holds; for V.(D) and K V.(D) have the same value, and ghe second
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is finite, if D is a special set, because K. is a bounded measure and V(r, D)
a bounded function. When (C) holds, a measure t belongs to if it is concen-
trated on and if its potential is finite on special sets. To see that K is
bounded, D being a special set, choose a special set D’ as in Proposition 12.1
so that V(r, D’) is bounded below by a strictly positive number a on D,
hence at every point of 3C which is regular for D; then

K.() <= _1 K V.(D’) =< _1 V.(D’),

the lst member being finite by hypothesis. Thus, when (C) and (E) both
hold, mesure belongs to 9 if nd only if its potentiM is finite on speciM
sets.

PROPOSITION 14.1. If (E) holds, a measure t* in is determined by tV.
The proof is the same as the proof of Proposition 7.6, except that the

sequence of open sets G is to be replaced by an increasing sequence of special
sets whose union is

Suppose that is excessive relative to 9 and that K.(D) -- 0 as r -whenever D is a special set. A calculation like the one proving Proposition
5.2 shows that the potential of ( K)/T increases to ’. This result and an
argument like the one proving Proposition 8.2 give the next theorem.

THEOREM 14.2. If (E) holds, a measure excessive relative to is the limit

of an increasing sequence of potentials relative to .
Let " be excessive relative to 9, and let E be a nearly analytic set. The

measure M " is defined in the following way, under the assumption that
(E) holds. Choose a sequence of measures whose potentials increase to
the measures p KE V increase with n, and M " is taken to be their limit.
Just as in 8, one sees thatM " can also be defined by setting

(14.2) f M f.(dr)f(r) lim f .(dr)f,,(r),

where f is an arbitrary positive function and the functions f are chosen so
that Vfn increases to K Vf, the choice being possible by Theorem 12.2. The
operator M has properties similar to those of L in the simple theory. In
particular, ME coincides with " on E, and ME increases to ME " if % in-
increases to ’. The operator will be defined generally in the proof of the
next proposition.

PROPOSITION 14.3. If E is nearly open, then ME is the least measure which
is excessive relative to and which majorizes on E.

Assume first that (E) holds. Since M coincides with " on E, one has
only to prove that ME " is maiorized by every measure which is excessive
relative to 9 and which maiorizes . on E. Now, the functions f. appearing
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in (14.2) can be taken to vanish outside E, according to Proposition 12.4;
with such a choice of the f,

f M.(dr)f(r) lim f (dr)f,,(r)

-< lim f (dr)fn(r) f M.(dr)f(r),

and the assertion is proved.
One next proves, using this result and arguing as in 8, thatM increases as, decreases, provided E is a nearly analytic set and is restricted to values for

which (E) is true and is excessive relative to .
Suppose that i" is excessive relative to 0, that (E) holds for 0, and that E

is a nearly analytic set. ThenM is defined, and we shall prove it to be the
limit of M " as , - 0. The limit measure is certainly maiorized by M
according to the preceding paragraph. If " is a potential, say V, then

M" K V= limK V lim M
),-0 -0

because K Vx increases to K V and because M " majorizes vK Vx, since

" majorizes Vx. The assertion is therefore true if is a potential. For an
excessive measure we have, writing as the limit of an increasing sequence of
potentials v V,

M limM( V) lim limM(, V)

lim lim M(v, V) lim M
X

because M(, V) increases as k decreases and as n increases.
Matters being so, we define M " to be the limit ofM " as -- 0, assuming

only that " is excessive relative to 0 and that E is nearly analytic. This
definition agrees with the original one if (E) holds for 0, and the assertion of
the proposition for vanishing k follows at once from the assertion for , strictly
positive.
The next proposition is the critical one in studying the representation of

excessive measures as potentials.

PROIOSlTION 14.4. Let (C) hold, let be strictly positive, and let (t) be a
sequence of measures on whose masses are bounded uniformly in n and whose
potentials tt V increase with n. Then t, converges wealcly to a measure con-
centrated on 3, and t, V increases to tV.
The hypothesis on cannot be replaced by (E) alone, as one sees by con-

sidering uniform motion on a line. It will be shown in Proposition 14.8, how-
ever, that a strengthened form of (E) is sufficient.
The integral f tt,(dr)q(r) increases with n whenever q is excessive relative to, because the measures V do so and because is the limit of an increasing
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sequence of potentials Vf, with f positive. According to Proposition 11.4, one
may take for e the restriction to of a simple potential Uf, with f positive.
It follows that the measures U increase with n, so that the hypotheses of
Proposition 9.1 are satisfied. Thus, converges weakly to a certain measure, and U increases to U. By Proposition 10.2, moreover, NU increases
to NU. These facts, and the representation (10.18) of V as U NU,
imply that V increases to V. It remains to prove that has no mass
outside . The inequality

f (dr) Vf.(r) f ,(dr) Vf.(r)

holds for every positive function f; and we obtain the inequality (,) _>_ ()
on letting f vary through such a sequence that Vf increases to 1 at every
point of 3. On the other hand, the total mass of does not exceed the
supremum of (3C). The proof is now complete.
There is a similar proposition for a decreasing sequence of potentials.

PROPOSITION 14.5. Let be strictly positive, let (C) hold, and let be ex-
cessive relative to . If the integrals f (dr)(r) are bounded by some number ,
as f ranges over the positive functions whose potentials Vf are bounded by 1, then

is the potential of a bounded measure.

By Proposition 14.2, there are measures on such that V increases
to ’. Now,

f ,,(dr)Vf.(r)<= f (dr)f(r)<= ,
for every positive function f whose potential is bounded by 1. On letting
f run through a sequence so that Vf increases to 1 at every point of ,, we see
that the mass of v does not exceed . The proposition is therefore implied
by the preceding one.

Let (E) hold, let " be excessive relative to , and let f and g be positive
functions. The inequality Vf >= Vg then implies the inequality (dr)f >=
f (dr)g. The assertion is trivial if " is a potential, and it follows for all
excessive measures by Proposition 14.2.

Let (C) hold, let ), be strictly positive, and let D be a special set. We shall
prove that MD " is the potential of a bounded measure, assuming of course
that " is excessive relative to 9. By Proposition 12.1, there is a special set
D’ such that the function V(r, Dp) is bounded away from 0 on D; therefore
Vg, with g some multiple of the characteristic function of Dp, maiorizes the
function I% everywhere. If f is any positive function whose potential is
bounded by 1, then K Vf is bounded by ,I%, so that

f Mo.(dr)f(r) <= f (dr)g(r).
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The preceding proposition now implies that MD " is the potential of a bounded
measure.

In the remainder of the section we fix an increasing sequence of special
sets D. with the properties that the complement of each D is nearly analytic
and that every special set is included in some D. The abbreviations

M MF, K KF, F 5C D
will be used. One may take D to be the intersection of l-1]n with G,
the G being the open sets described just before Theorem 9.4. With this
choice, all points of X not regular for F are included in D.+I so, with a dif-
ferent choice of the sequence, all points of 3 not regular for F. are included
in some Din.
The time a process X first leaves G increases to infinity with n, by the first

part of hypothesis (A). The time X first leaves X0 increases with , and the
limit as --+ 1 is with probability 1 at least as great as the terminal time R
assigned to the process, by the definition of the sets N0 and the extended
Markoff property. Thus, for one choice of the D, and hence for all choices,
the time X hits F increases with n to a limit which is with probability 1 at
least as great as R. Denote by the set where T, the time X hits F.,
is less than R, by the initial distribution of X, and by x the characteristic
function of a special set D. If (E) holds, the integral

.V.(D)

is finite; and the finiteness of this integral, together with the behavior of the
T, implies that the integrals

approach 0 as n becomes large.
If (E) holds and t is a measure in , then tK, V.(D) ---. 0 as n -, , when-

ever D is a special set. The assertion has just been proved for a bounded
measure, and it is proved generally by writing t as the sum of 1 and 2, with

1 bounded and V.(D) small.

THEOREM 14.6. Let (C) and (E) hold. Then every measure excessive
relative to can be written tV , where belongs to 9 and is a measure,
excessive relative to , which coincides with M whenever E is a nearly ana-
lytic set whose complement is included in a special set.

The assertions of the theorem and the uniqueness of the representation are
proved nearly word for word as in 9, if h is strictly positive. We shall take
this result for granted, writing tVx + to make the parameter explicit, and
deduce the theorem for vanishing parameter under the assumption that (E)
holds for 0.
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We shall encounter several times in the proof a family of measures, say, which are defined for , strictly positive, decrease with X, and are finite on
special sets. Under these conditions there is a measure with the property
that X(B) -- (B) as , -- 0, for every set B included in a special set. We
shall say that , is the limit of the measures .
The symbols , and p will denote strictly positive values of the parameter.

If p exceeds h, then
t2’V’ [t2’ + (, ),)’V’]V

by (10.15); so x, which is excessive relative to 9p, can be written PW +
according to the theorem. Thus

x + (p X)V + ,
(14.3)

V XVX V.
Consequently, the measures ,x nd ,XVX decrease, nd the mesure increases,

#Vas , decreases to 0. Let 0, a, bethe limit measures, andtake tobe a
We shall prove that V + (, + f) is the required representation of ’.
The relations

OV lim/Ovx =< lim XVx

show that uo belongs to o, because its potential is finite on special sets, and
that is a positive measure, finite on compact sets.
The measure fl is finite on special sets, being majorized by ’. One verifies

that it is excessive relative to 9 by passing to the limit in the inequality
K =< Consequently, / majorizes M fl for every nearly analytic

set E. On the other hand, M coincides with if the complement of E is
included in a special set; the inequality M/ >- follows; on passing to the
limit here, one finds that MX f majorizes ft. So the measure fl behaves
properly.

It is clear that (tx 0)Vx decreases to /. If p exceeds ),, then

(gx g0)V >__ (gx gO)VXK >_ vK.
The inequality , => ,K is obtained by letting first X, then p, tend to 0. So, is excessive relative to 0.
The measure gPV a is excessive relative to 9p, since it is the limit of an

increasing sequence of such measures according to (14.3). Hence, for p greater
than )x and for every nearly analytic set E,

0 < M(uXVx ) < XVX
the last member decreasing to the null measure as ), --+ O. It follows that
M(u V uV) decreases toM q, as ), - O.

Suppose now that the complement of E is included in a special set D.
We shall assume, without losing generality, that D includes all points not reg-
ular for E; it is then clear that

(14.4) vV- M(vV’) <-_ v,V <- v)V
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for every measure , with D the restriction of to D. This observation will
be applied to the potential

(14.5) gXVX #V [g + (p A)#XV /z pgV]V,
taking X less than p. Let B be included in a special set. It follows from the
last two relations and the behavior of the various measures as X varies, that
the mass assigned to B by the measure

is bounded by

(14.6)

xVx goV M(Vx V

[tP(D) t(D) + mPVO.(D)] sup V(r, B)

for all X less than p. The same expression therefore bounds the mass assigned
to B by , M% according to the preceding paragraph. On observing that
the expression (14.6) tends to 0 with p, we find that , M , assigns no mass
to B. So the two measures /and M coincide.

It is now clear that tV + (, + ) is the required representation of f. The
measure (/ + fl) is the limit of 21 f, by the remark preceding the theorem,
and this limit does not depend upon the particular choice of the sets D..
So the representation is unique. A similar argument establishes the next
theorem.

THEOREM 14.7. Let (C) and (E) hold. A measure excessive relative to
9 is the potential of a measure in 9Z if and only ifM, decreases to the null meas-
ure as n --+ .

In the next proposition, which extends Proposition 14.4, we denote by (E*)
the statement that, for every special set D, the function V(r, D) is bounded
on 3C and vanishes at infinitymthat is to say, V(r, D) can be made arbitrarily
small by requiring r to be outside a certain compact set. Clearly, (E*)
holds if X is strictly positive and (C) holds.

PnOPOSlTION 14.8. Let (C) and (E*) hold, and let (tt,) be a sequence of
measures on whose masses are bounded uniformly in n and whose potentials
,V increase with n. Then t,V increases to tV, with t a bounded measure on 5C.

Let f be the limit of the measures V. If D is a special set, then ’(D)
is finite; for V(r, D) is bounded, under (E*), and therefore p V.(D) is bounded
in n. So is excessive relative to .
We shall prove next that V(r, D) is small on the complement of some D.,

if D is a given special set. Let D be included in X, let r be outside 3C,
let T be the time a process starting at r hits D, let R be the terminal time
assigned to the same process, and let S be a positive random variable with the
density function e for positive and independent of R. Then

V(r, D) N (PiT < R} sup V(s, D)
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by the extended 1V[rkoff property, and

by the definition of the sets and the extended Markoff property. There-
fore

1-V(r, D) sup V(s, D),

so that V(r, D) is small if is near 1 and r lies outside. 0n the other hand,
V(r, D) is small for r outside a certain open set G with compact closure. So
one hus only to choose D to include the intersection of G and .
Mtters being so, let a be a bound for the masses () and c a bound for

V(r, D) on the complement of D. The relation

M .(D) lim K V.(D)

shows that M decreases to the null measure as n . It follows tha
is the potential of some measure on . Finally, is bounded because
its mass is

() sup f (dr)Vf.(r) ,
where f ranges over the functions whose potentials Vf are bounded by 1.

In Proposition 14.5 one may similarly use (E*) instead of the hypothesis
that be strictly positive. The next theorem follows immediately from
Theorems 14.6 and 14.7.

THEOREM 14.9. If (C) and (E) hold, a measure excessive relative to is the
potential of a measure in if it is majorized by such a potential.

The only assertion of importance in the last two propositions of 9 is the
weuk convergence of the measures. Such convergence, at least on , usually
does not hold in the relative theory. In many examples, of course, is
locally compact in the ordinary relative topology, and weak convergence on
cn be usserted in the extended theorems.

Versions of the results of this section can also be proved assuming (D) in-
stead of (E), the finiteness restriction on an excessive measure being changed to
require that the functions (1 )x appearing in the proof of Theorem 12.2
all be integrable. This amounts to another definition of special sets.
The analogue of Theorem 6.11 for excessive measures was not discussed in

the simple theory: We shall treat it now in the relative theory.
Given an excessive measure und u neurly unulytic set E, define . to be

the infimum of M, as B ranges over the nearly open sets that include E.
It is understood that is first defined for subsets of special sets and then
extended to be a measure; an alternative definition will make matters clear.
Choose positive function f, bounded away from 0 on every special set, so
that the integral ] (ds)f(s) is finite; the existence of f follows from the finite-
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ness of on special sets and the representation of as the union of the sets
D. Let a be the infimum of f MB . (ds)f(s), with B restricted as before, and
fix a decreasing sequence of sets B so that the integral decreases to a as B
runs through the sequence. Then ’, the limit of MB as B runs through the
B., is an excessive measure that majorizes the set function E, defined at the
moment on subsets of special sets. On the other hand, if i"(C) were greater
than E(C) for some subset C of a special set, then "(C) would be greater than
MD .(C) for some nearly open set D including E, and hence the integral
f MB .(ds)f(s) could be made less than by taking B to be D n B. with n
sufficiently large. It is now clear that , when extended to a measure, is pre-
cisely the excessive measure i". By Proposition 14.3, the measure is also
the infimum of the excessive measures that majorize on some nearly open
set including E.

Let v be a measure on E whose potential is majorized by , and let B be a
nearly open set including E. Then

vV MB(vV) <= Mn ,
so that vV is majorized by . It will be proved, under further hypotheses,
that is the supremum of such potentials vV; the statements are less general,
but more concrete, than the corresponding ones employing the notion of
determining set.

PROPOSITION 14.10. Let be a measure whose potential is excessive. Then
(V)E is the infimum of Mo(tV) as G ranges over the open neighborhoods of
E; is is also the supremum of vV as v ranges over the measures on E whose po-
tentials are majorized by V.

First suppose to be concentrated on the complement of E. If has total
mass 1, let X be a process with for initial distribution, and choose a decreasing
sequence of open neighborhoods G of E according to Proposition 2.2 so that
T, the time X hits G, decreases with probability 1 to T, the time X hits E.
Then

f tKo V.(ds)g(s) doo g(X(r)) dr,

with fl the set where T is less than the terminal time R, decreases to

f tK V.(ds)g(s)=- fu, do fr g(x(r))dr,

with 2’ the set where T is less than R, provided g is positive and integrable
relative to the measure V. This result implies that tKo V decreases to
K V as G runs through some decreasing sequence of open neighborhoods
of E, even when the mass of t is infinite. Thus the infimum of Mq(tV) is
obviously K V, and this measure majorizes (uV). By Proposition 2.1,
on the other hand, uK V increases to uKE V as F runs through a certain
sequence of compact subsets of E, which may even be taken as subsets of
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special sets, and ttK is a measure concentrated on F. The remark preceding
the proposition now implies that (V)E reduces to KE V, so that the proposi-
tion is true in this instance.

If t* is concentrated on E, then (/V) and the infimum of M(V) both coin-
cide with V, and there is nothing to prove.

Let us define the restricted projection on E of a measure in to be the
measure

uK ---= (t t*’) +
where ’ is the part of concentrated on the complement of E. It has just
been proved that (V) is the potential of pK, provided V is excessive; one
should note that K is concentrated on E if that set is closed, or more gen-
erally if it includes all points regular for E but not regular for 9l.

THEOREM 14.11. Let (C) and (E*) hold, let E be a nearly analytic subset
of 3c, and let be a measure excessive relative to . Then is the supremum
of vV as v ranges over the measures on E whose potentials are majorized by .

Let us write " as V + , according to Theorem 14.6. It suffices to discuss, since potentials have already been dealt with.
If D is a special set, then MD is the potential of a bounded measure .

To see this, consider a sequence of measures whose potentials increase to
M. . One may take the measures to be concentrated on the union of D with
the set of points regular for D but not regular for 9, replacing . by K. if
necessary; the argument proving Theorem 6.6 shows that the measures may
even be taken to have supports included in D. Proposition 12.1 and the
finiteness of on special sets together ensure that the mass of has a bound
independent of n, and the existence of follows from Proposition 14.8.

If E is included in the special set D, then clearly

E (M ) vK V,

with vK the restricted projection of v on E. The theorem is therefore true
in this instance.

It is worth going a step further, still assuming E to be included in a special
set, to prove that reduces to ME . Consider again the sequence of special
sets D introduced after Proposition 14.5, taking n so great that D, includes
E, and write

M.= v,V.

Then , is the projection of v on D if m exceeds n, so that , the part of
on E, decreases as n increases. Thus V decreases to an excessive measure

which must be a potential, say aV, according to Proposition 14.9. On the
other hand, the potential of , . increases to some excessive measure, say, so that can be written aV + . It now follows from Theorem 14.6 and
the properties of that a must be the null measure. On writing

’)KEV<
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one sees that Ms majorizes s. Since the converse relation holds trivially,
the two measures are the same.

In dealing with an arbitrary nearly analytic set E, we shall use the dual of
(11.10), which we proceed to discuss. Let be an excessive measure, (B)
and (E) two sequences of nearly analytic sets such that B includes E for
every n, and take B or E to be the union of the B or the E.. Then

(14.7) Ms M _-_ {M, M },

the terms muking sense and the inequality being true when the measures re
restricted to any special set. Assume first that (E) holds and that the se-
quences are finite. Relation (11.10) implies that

K, V.(C)- K V.(C) {K,V.(C)- K V.(C)}

holds whenever C is included in special set and is a bounded measure. One
obtains (14.7) on letting run through a sequence of measures whose potentials
increase to . Another passuge to the limit, letting the parameter h decrease
to 0, shows that hypothesis (E) is unnecessary. Now, M. increases to M.
as B runs through an increasing sequence of sets whose union is D; so another
pussage to the limit, letting the number of sets increase, completes the proof.
One cn also transfer Theorem 11.5 to excessive measures by the same reason-
ing.

Let us return to the proof of the theorem. We represent E as the union of
an increasing sequence of sets E, each included in a special set. We shall
also assume Vf to be bounded, f being the function appearing in the second
definition of this is permissible because (E) holds. Given a strictly posi-
tive number e, choose a nearly open set B so that

f f
and let B be the union of the B. By (14.7),

f M, .(ds)f(s) f M .(ds)f(s) + e.

Since e is arbitrary and M is majorized by , these measures must coin-
cide. Finally, My increases to M s F runs through some increasing
sequence of compuct subsets of E, ech included in a special set, and M is
the potential of measure on F. The proof is now complete.

It has been proved incidentally that is the potential of measure on
E whenever E is included in special set and every point regular for E but
not regular for belongs to E.
The theorem implies that the transformation . is idempotent and that
increases to , as E increases to E’ through sequence. It is not generally

true that increases to as increases to .
Suppose to be the union of a sequence of special sets each of which is
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open, not only nearly open. Then E is the infimum of Mo f as G ranges over
the open sets including E. Indeed, nearly open sets, in the form of special
sets, were used only to reduce the discussion of E to that of a potential, assum-
ing E to be included in a special set, and one can now use open sets for this
purpose. The simple theory of 4-9 is one instance of this situation; another
instance is treated in the next section. Possibly the nearly open sets may
always be replaced by open sets in the definition of f.

15. A principle of the maximum

A part of what is commonly taken to be potential theory can be described
in the following manner.
N is a separable locally compact Hausdorff space, e the Banach space of

functions continuous on 5C and vanishing at infinity, 65 the set of continuous
functions with compact supports, e+ and 65+ the corresponding sets of positive
functions. There is given a linear transformation V from 65 to e which satis-
fies:

(a) An inequality Vf >- Vg holds everywhere if it holds on the support of g and
both f and g belong to 65+.

() There is a sequence of functions h, in 65+ such that Vf, increases everywhere
to 1.

(,) The range of V is dense in .
We shall prove that under these conditions Vf can be expressed in terms of

h/[arkoff processes in the way suggested by the notation. The description
itself will be discussed after the proof of this assertion.
That V sends positive functions into positive functions is proved by taking

g to be null in () and noting that then the support of g is empty. The other
preliminary remarks depend less dangerously on the wording.
The first two conditions imply the following statement, sometimes called

the principle of the maximum.

() Let a be a positive constant, f and g functions in 65+. Then a Vf
majorizes Vg everywhere if it does so on the support of g.

In proof, consider the sequence of functions V(f - bh,), where b is any number
greater than a and the functions h are the ones mentioned in (fl). For some
value of n, according to Dini’s theorem, V(f + bh) exceeds Vg on the support
of g; consequently b - Vf majorizes Vg everywhere.

In the rest of the proof (i) will be used in place of (a) and (). We shall
see, after the proof is completed, that (5) is indeed equivalent to the conjunc-
tion of (a) and () whenever (/) holds.

Let f+ and f- be the positive and negative parts of a function f in 65, and let
a be either 0 or the maximum of Vf on the support of f+, whichever is the
greater. By (), the inequality a + Vf- >= Vf+ holds everywhere, so that a
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mjorizes Vf. It follows that the supremum of Vf, provided it is strictly posi-
tive, must be achieved on the support of the positive part of f.
The last statement will be strengthened to the following principle of a

positive maximum" The function f is positive at every point where Vf achieves
its maximum, provided the maximum is positive. Let Vf achieve its positive
maximum at the point r, and let A be a compact neighborhood of r. Accord-
ing to (,), there is function g in 6 such that Vg.(r) is strictly positive and
greater than the supremum of Vg on the complement of A. For every strictly
positive s, the maximum of V(f + sg) is strictly positive and is achieved on A
but not on the complement of A; so f + sg is positive at some point of A,
according to the preceding paragraph. It follows that f(r) must be positive,
because s and A are arbitrary and g depends only on A. I am indebted to
Carl Herz for this proof, which takes the place of one requiring stronger
hypotheses.
The principle of positive maximum implies that f vanishes identically if

Vf does so.
We shall discuss bounded transformations first. Suppose, then, V to be

bounded when (B is normed as a subset of e, and extend V to all of e by con-
tinuity. The extended transformation satisfies (a) even for f and g in +,
as one verifies by approximating f and g from below by functions in 6t+ and
using Dini’s theorem. It follows as before that Vf cannot take on a positive
maximum at a point where f is strictly negative and that V establishes a
one-to-one correspondence between e and its range , which is dense in .

Define I on ) by the formula IVf -f, and define Vx, for ), small and
positive, by the formula

Vx (-x)VTM, 0 __< x < 1/[I V I.
Straightforward calculation shows that, for every f in e,

Vx(X- I) Vf Vf
on the one hand, and

V"f =--- , (-X)V+f -- Vxf,
O<=k<n

(X I)V If f (- XV)f --> f,
on the other. Accordingly, x I and Vx are inverses, for I is a closed
transformation. By the principle of a positive maximum,

(X- I)g.(r) kg(r)

if g is u function in ) taking on a positive maximum at the point r; so Vx
sends positive functions into positive functions, and its bound does not exceed
1/X.
The definition of V can be extended to the intervals 0 =< h < 2/ Vl]

recursively by means of the formula

(15.1) Vx (a ,VTM/ 0 =< X < 2a,
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and the assertions already proved for small positive remain valid. These
assertions, together with (,), form the hypotheses of the theorem of Hille
and Yosida. According to that theorem, there is a semigroup of linear
transformations K on C which has I for infinitesimal generator and which
satisfies the following relations:

(15.2) Kf - f, r -- 0,

(15.3) K --< 1, r > 0,

(15.4) Kf >_ 0 if f >= O, z > O,

(15.5) Vxf f -e Kfdr, >= O.
’o

In the first relation the convergence is in the form of
Using the Riesz representation theorem, one can write, for every r and r,

Kf.(r) f K(r, ds)f(s),

with K(r, ds) a positive measure on of mass not greater than 1. These
measures behve like stationary M:arkoff transition measures, and K(r, A)
is Borel measurable in the pair (, r) whenever A is a Borel set. A standard
theorem on semigroups ensures that the measures are determined by V, in
the sense that the associated smigroup of transformations K of is the only
one satisfying the four relations above. We shall interrupt the main argu-
ment to prove a somewhat stronger statement of uniqueness needed later on.
For the moment let ((3) be the field defined as ( in 1, with 3C replaced by, and let A be a variable set in ((). We shall prove that a family of

measures K(r, ds) defined on a() must be the family K(r, ds) if it has the
following properties" K(r, A) is measurable over a() as a function of r;
it is measurable, as a function of the pair (, r), over the completed field of
definition of every measure which is the product of Lebesgue measure and
some bounded measure on (() the equation

K’+(r, A) f. K’(r, ds)K’(s, A)

holds identically; and the equation

Vf.(r) Ji dr K’(r, ds)f(s)

holds identically in r for every function f in
Consider the Banach space of bounded functions measurable over a(,),

normed by the supremum of the absolute value. Define Vx as a transforma-
tion of this space by formula (15.5), taking the transformations K to be de-
fined by the meusures K(r, ds), and define V similarly in terms of the
measures K(r, ds). Both transformations have bounds not exceeding the
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bound of V, and V coincides with V0 because it does so on 63. It is also easy
to see that both Vx and V, satisfy (15.1), at least for a ),1 less than the
number 1/l Y II, so that V coincides with Vx for all values of X. Thus,
for given f and r, the two functions K’ f.(r) and K f.(r) agree for almost all
r according to the uniqueness theorem for Laplace transforms. Let us take
f to be Vg, with g in 63+. Then K’f.(r) is decreasing in r, and Kf.(r) is
continuous, so that there are no exceptional values of r. It follows that
K(r, ds) is the same measure as K(r, ds), for every r and r, because V(63)
is dense in e.
The uniqueness being settled, we proceed to define true stationary Markoff

transition measures. Take 3e to be 5C augmented by a single point w, and set

P(r, A K(r, A), r e, A 3C,

(15.6) P(r, w) 1 KT(r, ), r e ,
P,(w, w) 1.

Give 5e such a topology that it is compact and includes 3C as a subspace:
if 3C is not compact, 3C is the space obtained by adjoining w as the point at
infinity; but if 5C is compact, an open set in 3C is one whose trace on 3C is open.
We shall suppose the functions in e to be extended to continuous functions on
3C by taking them to vanish at w; the Banaeh space e(3C) is then the direct
sum of the subspaee e and the one-dimensional subspaee of constants. The
kernels P,(r, ds) clearly induce a semigroup of linear transformations PT on
e(5C) having the property that Pf converges uniformly to f as r --+ 0.

Transition measures behaving so well always satisfy hypothesis (A). The
proof is to be found in [1], [5], and [12], as will be shown in the following out-
line. Let 3C be a separable locally compact space, perhaps not compact, and
let P,(r, ds) be stationary Markoff transition measures on 3C. The associated
transformations P, are assumed to leave invariant the Banaeh space e(3C)
of continuous functions vanishing at infinity and to converge strongly there
to the identity transformation as r -- 0.

It follows quickly from these hypotheses that P,(r, A) is Borel measurable
in the pair (r, r) if A is a Borel set and that the integral f P,(r, ds)f(s) is con-
tinuous in r if f is bounded and continuous; the second assertion is condition
(D) of [1].
The fact that P, f approaches f uniformly as r -- 0, provided f belongs to

e(), implies the following statement: Let A be compact, B a closed subset of
the interior of A, and C a closed subset of the exterior of A; then

limP(r,A) (: for r in B,
,-.o for r in C,

and the convergence is uniform on B u C. This statement is to be used in
place of Kinney’s condition D(u, u,., b), and it implies Blumenthal’s condi-
tion (E’).



MARKOFF PROCESSES AND POTENTIALS II 355

A condition is needed limiting return from a neighborhood of infinity.
The following one is Blumenthal’s condition (F); it is to be used in place of
Kinney’s R() and R(-), which are phrased ambiguously. If A is a
compact set, then PT(r, A) -- 0 as r tends to infinity, and the convergence is uni-

form for r restricted to a compact set. In proof, let f be a positive function in
(3e) which exceeds 1 at all points of A. The function

g =-- ] e-XTPf
J0

belongs to e() and tends uniformly to f as X - fix X so that g is at least
1 at all points of A; then

P,(r, A) <= P, g.(r) <- eX*g(r),
and the assertion is proved.

Let be a probability measure on the Borel sets of 3e. The existence of a
stationary Markoff process Z, having t for initial distribution and the P,(r, ds)
for transition measures, is proved in [5], pages 613 through 616. Separability
of a process relative to the class of closed sets is defined iust as in II 2 of [5];
the proof of Theorem 2.4 of that book enables one to replace Z by an equiva-
lent separable process Y, provided the space is enlarged to its one-point
compactification.
One now proves Theorem 2.1 of [1] or Theorem IV (ii) of [12]. The asser-

tion is that almost every path of Y is included in a compact subset of the
original space 3e, provided the time parameter is restricted to a compact set.
In particular, it was not really necessary to compactify in passing from Z
to Y, and left and right limits Y(r-, o) and Y(r-, o) are almost certainly
points of 3e if they exist.

Either Theorem 2.2 of [1] or Theorem VI (i) of [12] establishes the existence
of right and left limits. The proof by martingales given by Kinney is very
short; the denominator 1 -t- xs(o) appearing in the theorem and the proof
should be omitted, since sample paths do not approach the point at infinity
in finite time. Blumethal’s proof makes no use of martingales.
That Y has no fixed discontinuities is Theorem 2.3 of [1]. The matter is

also treated in Theorem I of [12], but the proof of the second part of the the-
orem is not sufficient.

Since limits from the right and left exist and since there are no fixed dis-
continuities, one can define a process X equivalent to Y by setting

X(r, o) lim Y(, o),

neglecting a certain set of 0 of probability null. Clearly X is a M:arkoff pro-
eess having v for initial distribution, the P,(r, ds) for stationary transition
measures, and sample paths continuous on the right and with limits from the
left. Theorems 1.1 and 4.2 of [1] show that the P,(r, ds) satisfy the rest of
hypothesis (A).



356 G.A. HUNT

It is now clear that the transition measures (15.6) stisfy (A) nd that one
cn write

(15.7) Vf.(r) f do ."f(X(r)) dr,

where X is process hving the P(r, ds) for transition measures nd starting
t the point r, R is the time X hits w, nd f is functioa ia . Thus we hve
rrived t the representation by processes, ssuming V to be bounded, nd
the results of preceding sections my be used freely.

Before going on to unbounded transformations we shll discuss the relation
of bounded transformation V to the transformation W, defined on a by the
formul Wf V(bf) with b strictly positive continuous function on .
The transformation W shres 11 the properties of V; so it determines fmilies
of measures L(r, ds) nd Q(r, ds) similar to K,(r, ds) nd P,(r, ds). We
are going to show that processes hving the Q(r, ds) for transition measures
can be derived from those having the P(r, ds) for transition meusures by
changing the time parameter.
Given a process X with the P(r, ds) for transition measures, define a new

stochastic process Y by taking Y(T, ) to be X(, ), with and r related by
the equation

The initial distribution of Y is the sme s that of X, nd the smple pths of
Y hve the sme properties of continuity s those of X. Next, define prob-
bility measures on by setting

Q’(r, A) {Y(r) eA},
where Y is obtained from a process X starting at r. One proves easily that
each process Y is rkoff process having the Q’(r, ds) for stationary transi-
tion measures, by transluting the statements to be verified into ones concerning
the processes X and then using the extended Markoff property. It cun be
proved in this way that the Q’(r, ds) satisfy hypothesis (A), but we shall ob-
tain a little more by nother argument. By the reasoning t the end of 1,
the quantity Q’(r, A) is defined for ll sets A in the field a; s function of r,
it is measurable over 8; and, s a function of the pir (r, r), it is mesumble
over the completed field of definition of every mesure which is the product of
Lebesgue mesure nd some bounded measure on a. In ddition, for func-
tion belonging to e nd hence vnishing t w,

Wf.(r) d "f(X(r))b(X(r)) dr

dr Q,(r, ds)f(s),
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where f, X, R have the same meaning as in (15.7), Y is the process obtained
from X, and S is the time Y hits w. Thus, by the uniqueness proved before,
the kernel L(r, ds) is obtained by restricting both arguments of the kernel
Q(r, ds) to . It follows that Q’(r, ds) coincides with Q(r, ds), so that we
have indeed shown how to obtain processes corresponding to W from those
corresponding to V.
The probability of a process Y hitting a certain set is obviously the same

as that of the corresponding process X, although the times of hitting may not
be the same. If b is identically 1 on the open set G and if X starts at a point
of G, then both X and Y hit the complement of G at the same time T, and
X(r, ) coincides with Y(r, ) for all less than T(). These are the facts
we shall use in a moment to avoid a tedious analytical proof.

Let us consider now an unbounded transformation satisfying conditions (,)
and (); we shall denote it by in order to preserve the notation already intro-
duced. With any function a in (+, there is associated the transformation

f -- lY(af), which has for bound the maximum of a and which we suppose
extended to all of C by continuity. Since is the countable union of open
sets with compact closures, there is an increasing sequence of functions a.
in 6t+ such that

max Y(a+l- a) -- a ,
and such that a, the limit of the a, belongs to C and is strictly positive. The
transformations associated with the a converge strongly on to a transforma-
tion V whose bound does not exceed a. The restriction of V to ( satisfies
conditions () and (t), because Vf is just (af) if f has compact support. All
the results we have obtained for bounded transformations may therefore be
applied to V and to the transformations derived from it by changing the time
parameter of processes.
The function a is to some extent arbitrary; we take it to be bounded by 1

and extend it to by giving it the value 1 at w, so that the extended function
is discontinuous at that point. Fix a sequence of open subsets G of so
that Go is empty, the closure of G. is a compact subset of G+I, the union of the
G is , and construct an increasing sequence of continuous functions b on

so that b0 is the constant 1, b coincides with 1/a on G, and b is identically
1 outside G+. These functions satisfy the conditions imposed on the function
b above, and we denote by W the transformation f ---+ V(b, f). Clearly,
W is the same as V; and wnf, for every f in 6t+, increases with n and coincides
with lYf as soon as G includes the support of f. We shall investigate the
behavior, as n grows large, of the transformations L determined by the W.

Let f be a function of the form Yg, with g in 6t+, and let s be a strictly posi-
tive number. Take A to be the compact subset of on which f is at least e.
If n is so large that G includes the support of g, then

L f L W"g <-_f,

so that L: f is less than e outside A. The discussion of the behavior on A is
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a little more complicated. Choose h in + so that Vh exceeds 1 at every
point of A; then lYh and all the Wnh also exceed 1 on A. Take B to be the
compact subset of on which lYh is at least . If X is a process starting at a
point outside B and having transition measures determined by W, its sample
paths meet A with probability at most s, according to Theorem 13.2 and the
fact that IYh majorizes Wnh; the probability vanishes, of course, if the starting
point is w. Now choose n so large that G includes B, let r be a point of A,
let X be a process starting at r with transition measures determined by W,
and let T be the time X hits the complement of G. Given an integer m
greater than n, we take X to be the process X" with the time parameter
changed by means of the function b,/b the process X starts at r and has
for transition measures the ones determined by W. Since b/b is identically
1 on G, the time at which X hits the complement of G is also T, and
X(r, ) coincides with xn(r, o) for all r not exceeding T(). For any given
r, partition 2 into gt’, the set where T exceeds r, and its complement 5t".
Then X(r, ) is the same as Xn(r, ) for w in St’; and the set of w in gt" for
which either Xn(r, ) or xm(r, o) belongs to A has probability less than
2s, as one verifies by using the extended Markoff property with stopping time
T. Matters being so, we have

L f.(r) L f.(r) <- j,, f(X(r)) f(X’(r)) dw

_-< 2+ 2maxf.
These estimates prove that L f.(r) converges uniformly in the pair (r, r) as
n --+ oo. The convergence holds in fact for every f in , because 17((B) is
dense in and each transfromation L has a bound not exceeding 1.

Consequently, L converges strongly to a transformation/ of , and the
limit transformations form a semigroup satisfying (15.2), (15.3), and (15.4).
In addition, one has the representation

df.(r) Jo" f.(r) dr

for every f in (B; for a function in (B+ the representation follows at once from
the uniform convergence of L f.(r), Fatou’s lemma, and the equality of IYf
and Wnt for large n.

Stationary Markoff transition measures and processes are introduced now
just as for a bounded transformation. It must be remarked that the processes
corresponding to Iy can be obtained from those corresponding to V by a change
of the time parameter using the function l/a, and that hypothesis (A) carries
over immediately. We have chosen the more cumbersome method of approxi-
mation in order to prove simply that the transformations induced by the
transition measures send continuous functions into continuous functions.
The transformation V has been assumed to satisfy (/) and (ti). In order
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to show that V must also satisfy (), it suffices to prove that the bounded
transformation V satisfies (/). The factorization

1 + XV (,- I)V

implies that 1 - XV is a one-to-one transformation of onto itself for all
positive X; the same assertion is therefore true of the transformation
f-- f XV(hf), with h a fixed strictly positive function in . Let Cx be
the one function in which satisfies the equation

+ XV(h) XVh.

This equation is equivalent to

ICx XhCx -Xh,

so that kx lies between 0 and 1 according to the principle of a positive maxi-
mum. It is also easily verified that Cx increases to 1 as -+ . On the other
hand, writing

(5.8) Cx xv[(

shows that Cx is the potential of a function in 6+. The verification of () is
now trivial. There is an alternative argument using equation (15.8) and the
latter part of 4, but then the proof of the continuity of Cx is more compli-
cated.
We have been discussing what may be called a regular theory of potentials

of functions in which a principle of the maximum holds. The dual notion,
regular theory of potentials of measures in which a principle of projection holds,
can be described in this manner" There is given an additive transformation
u -- uV of bounded measures on 3 into measures finite on compact sets;
varies continuously in the weak topology of measures as g does so, provided
the mass of u remains uniformly bounded, and the following conditions are
satisfied"

(a) With each bounded measure t and each compact set F is associated at least
one bounded measure try, concentrated on F, such that try V is majorized by
and coincides with gV on F.

(’) If g and tv are related as in (a’), then the mass of gv does not exceed
that of u.

(.’) A bounded measure t is determined by tV.
Given such a transformation, define a transformation f -- Vf of 63 into

by taking Vf.(r) to be the integral of f with respect to the measure er V, where
er is the unit mass at the point r; the transformation indeed sends 63 into
because e, V varies continuously with r. One verifies the relation

(15.9) f g(dr)Vf.(r) f gV.(dr)f(r), f e 63,



360 G.A. HUNT

by approximating the bounded measure g by a linear combination of point
masses. This relation and condition (/) imply that V((g) is dense in e.
That the transformation f -- Vr satisfies condition (ti) follows at once from
(a’), (’), and (15.9). It is now clear that gV has a representation in terms
of IV[arkoff processes.
We have proved that a theory of potentials satisfying the description at

the beginning of the section, or the one just given, is an instance of the relativ
theory developed in 10-14. On the other hand, every instance of the rela-
tive theory very nearly satisfies (a), (), (,) if it satisfies (D) or (E). Indeed,
(a) holds for all positive functions, () holds with the h positive but perhaps
not continuous, and (v) holds in the sense that a measure g must vanish if

f t(dr)Vf.(r) vanishes for every positive function f.
The reduction to the relative theory by introducing processes on the space

N; augmented by a single point is particularly simple, but it is not the only
possible one. Suppose, for example, that the total mass of the measure
K,(r, ds) depends perhaps on r but not on the point r. It must then be of
the form e-x, with X positive, so that the measures eXK(r, ds) are stationary
N[arkoff transition measures on 5C satisfying hypothesis (A). The potential
theory is then an instance of the simple theory of 4-9, based on these transi-
tion measures and having X as parameter. Matters must be so if V is bounded
and sends the constant function 1 into 1/X when extended in the obvious man-
ner to the class of bounded continuous functions on N. It is desirable to
have such an immediate criterion for an unbounded transformation, that is to
say, for vanishing X. If V is invariant under a transitive group of homeo-
morphisms of N:, in the sense that V(f ) coincides with (Vf) for every f
in (g and every element of the group, then the transformations X send con-
stants into constants, since they are also invariant, and the situation is that
of the simple theory, with vanishing parameter if V is unbounded. Ex-
amples are the theories of the Newtonian, Riesz, and heat potentials.

If 3C is discrete, one can avoid introducing an additional point by construct-
ing processes on N and then introducing a terminal time defined by a positive
function and the empty set. The new processes can be derived from the ones
already defined by suppressing the jumps from 3C to w. The construction is
also possible when 3C is not discrete, provided the function 1 ,, can be
written Va, with a some positive function; here is the limit of K i as r --* ,
while K, 1 and Va are to be defined as integrals, so that a need not be con-
tinuous. The system of terminal times to be used with these processes is the
one determined by a and the empty set.
The results of this section can be used to present hypothesis (C) in another

form. Suppose the transition measures of 1 to satisfy (A) and (C). Then
the transformation Ux, for X strictly positive, satisfies the conditions at the
beginning of this section, with N taken as 3C, and sends constants into con-
stants; condition () holds trivially, and (,) follows from the fact that a
bounded measure is determined by its potential. The transformations
e-XP, consequently leave e(3C) invariant and converge strongly on that space
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to the identity transformation as r -- O. The transformations P obviously
share these properties. On the other hand, (C) holds whenever the P leave
e() invariant. Under (A), accordingly, (C) is equivalent to the statement
that the P leave e() invariant, and it implies that the P converge strongly
on a() to the identity transformation.
Some simplifications can be made in phrasing the arguments and results of

preceding sections for the situation described at the beginning of this section.
In particular, special sets may be replaced everywhere by open sets whose
closures are compact subsets of . It suffices to prove that every compact
subset of X is included in some . Were this not so, there would be a point
s of X such that Rr, the terminal time assigned to a process Xr starting at r,
tends in probability to 0 as r tends to s through a certain sequence of points
in N; we shall prove that then Vf.(s) vanishes for all f in (+. Let a and X be
strictly positive. The kernel Vx is defined by taking the terminal time R)
to be the minimum of R and Sx, so that

’0

-<_ a max f q- X-I(p{Rr > c} max f,

where t’ is the set on which R,. exceeds a. On letting r approach s, we obtain

Vx f. (s) -_< a max f,

since ({R > a} vanishes in the limit; on letting a, then X, approach 0 here,
we find that Vf.(s) must vanish. This result contradicts both () and ().
So every compact subset of X is included in some No.
A slight extension of the results of this section will be treated briefly, as a

preparation for the next section. Let o be a strictly positive continuous func-
tion on X, and take eo to be the Banach space comprising the continuous
functions f on N for which f/p vanishes at infinity, with the maximum of
[f/p[ as norm. Let V’ be a linear transformation from 63 into e. We
suppose that (a) holds for V’, that V’h increases to p as h runs through some
sequence of functions in (g+, and that the range of V’ is dense in Co. If
p is bounded away from 0, the introduction of the space e, may be avoided by
requiring V’ to be a transformation from 63 into e with range dense in e.
The transformation V,

vf
l

v’f
P

clearly sends 6t into e and satisfies (a, , ,). Let K,(r, ds) be the measures
associated with V, and define new measures by the formula

K(r, ds) p(r)K(r, ds)
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These measures determine semigroup of transformations K’ of that satisfy
relations (15.2) through (15.4) and also the relation

v’f Jo K’ f dr.

The mss of K(r, ds) may exceed 1, however; it is only certain that the
integrals f K(r, ds)p(s) re bounded by p.

After defining in an obvious mnner the notions of potential, excessive
function, excessive measure, relative to the family K(r, ds), one cn transfer
all the results of 10-14 to the present situation. For example, a function

is excessive relative to the K’(r, ds) if nd only of /p is excessive relative to
the K(r, ds); thus, if is such a function nd if X is one of the processes
defined above, with R for terminal time, the composition (X(r)) almost
certainly is continuous on the right in und hs limits from the left, for r

less than R, because the statement is true of (X(r))/p(X(r)) nd p(X(r)).
In the translation, the mesure K(r, ds) corresponds to the measure

1K(r, ds) p(r)K(r, ds)

and the transformation M to the transformation

M 1 M(p).
P

The extension shows, for example, that condition () may be omitted if
is compact; all the results of 10-15 still hold with slight changes in word-

ing. The probabilistic interpretations unfortunately become somewhat
forced in this reduction to the situation we have studied. A more appropriate
model, which involves creation of mass as well as destruction, will be discussed
in the nex section.
The mutters deult with in this section ure ulso treated in [3], in quite another

spirit.

16. Crefltion of mflss

In this section the space and the transition measures P, re assumed to
satisfy the conditions set forth in 1, while A is a given nearly analytic set
and c a given function, measurable oves a and satisfying the following condi-
tion: There is a positive Borel measurable function b on such that -b bounds c

from below and such that, for every process X and with probability 1, the integral

is finite for all r. It will be shown that theory very like the one of 10-14
can be bsed on the pair (c, A).
The freedom in choosing b is useful in verifying some conditions imposed
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later. The function b will be held fast, except in a few incidental arguments,
and the positive function b d- c will be denoted by a. Quantities of the rela-
rive theory determined by the pair (a, A) will be denoted by 9, K, V as
before; the parameter X is taken to vanish.

Given a process X, set

(16.1) Zx(r, o) =--- exp b(X((r, o)) d

This function increases with r and is continuous with probability 1. It is to
be thought of as the mass of the particle at time , while X(r, ) is the posi-
tion of o.

Define a family of measures K: (r, ds) by the formula

K:(r, B) f, Zx(r, )x,(.X(r, o)) dw,

taking X to be a process starting at r, xs the characteristic function of B,
and ’ the set where r is less than the terminal time R assigned to X. These
measures are by definition the transition measures relative to (c, A); one
easily verifies the relation

K(r, B) x,(X(r)) exp c(X(r)) g d,

with t" the set where r is less than the time X hits A, so that the dependence
on the choice of b is only apparent. The measures K: may have mass greater
than 1, but otherwise they behave like the transition measures relative to .
The kernel for potentials is taken to be

V(r, B) ]o K(r, B) dr.

For a system of terminal times, relatively independent of , the kernel
K(r, ds) is defined as

K(r, B) , Zx(T)x,(X(T)) d,

with a* the set where R exceeds the time T assigned to X by .
Excessive functions or measures and potentials of functions or measures

are defined relative to (c, A) by using K and V in place of K and V; the
special sets are taken to be the special sets relative to . A function or meas-
ure excessive relative to (c, A) vanishes outside the set E of points not regular
for . Some of the results of preceding sections, such as Proposition 12.1,
carry over to the situation considered now, because K majorizes K ;for the
same reason, a function or measure excessive relative to (c, A) is also excessive
relative to . Instead of listing the facts that can be derived in this way, we
shall show how the theory based on (c, A) can be reduced to the one treated in

10-14 by adjoining the mass as a new variable.
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We shall denote by 5C the product space 3C X J, with J the interval
1 =< z < , and sometimes by r a generic point (r, z) of the product space.
For given and r, define a measure on 5C by setting

P(r, B) f x,(X(r), zZx(r)) d0, B C:: aex,
taking X to be a process starting at r and x- to be the characteristic function
of a set B in 3Cx. These measures form a family of stationary M:arkoff
transition measures on 3Cx, and we shall prove that P(rx, B) is Borel
measurable in (r, rx) whenever B is a Bore1 set. It is enough to show that
P g.(rx) is Borel measurable in (r, r) for every function g of the form z-kf(r),
with/ a positive integer and f a function in (), because linear combinations
of such functions are dense in e(SCx). First suppose b to be bounded and set

(16.2) ,(r, r) f (X(r)) b(X(()) d( do,

with X a process starting at r and having the P as transition measures. The
function. is bounded by anr’/n !, with a a suitable constant; it is also Borel
measurable, as one sees by writing the second member of (16.2) as

dzl’" dz, fP  (r, dsl)P2-l(sl, ds) P,_,(s,, ds)f(s) II b(s,),

where s, sl, s all range over 3C and the are restricted by the inequalities
0 < < <n < r. Now,

PXg.(rX) f (Z(r))z- exp lc b(X()) d d

z (-- /c)" (r, v)

the series converging uniformly in r and r, provided r is restricted to a compact
set. Borel measurability follows at once, for a bounded b; to extend the
measurability to an unbounded b, one has only to approximate b by an in-
creasing sequence of bounded functions.
The transition measures have been shown to satisfy the conditions of the

first paragraph of 1. They also satisfy hypothesis (A). To obtain a process
having the pX as transition measures and starting at the point (r, z), for ex-
ample, one has only to set

taking for X a process having the P as transition measures and starting at the
point r of ;tO; the sample paths of X have the same properties of continuity
as those of X, since the second coordinate zZx(-) is almost certainly con-
tinuous. The parts of (A) concerning behavior under stopping times are also
trivially reduced to the corresponding statements concerning the original
transition measures P.
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Let us take 9 to be the system of terminal times determined by a and
A X J for processes having the P as transition measures; here a is considered
a function on 3C which depends only on the first coordinate. The system

may obviously be identified with if processes corresponding to the P
are constructed from those corresponding to the P. Quantities relative to
9 will be denoted by Kx V, and so on. Note that is precisely X J
and that every -special set is included in an -special set of the form D X I,
with I a bounded interval in J and D an -special set.
We shall consider only functions on 5C or 5C which are positive and vanish

outside or . Given a function f on 5C, denote by f* the function on 5C
defined as

f*(r, z) zf(r),

so that f - f* is a one-to-one cprrespondence between functions on 3C and
the functions on 3C that satisfy the relations

g(r, uz) ug(r, z), u >= 1.

Clearly, f is excessive relative to (c, A) if and only if f* is excessive relative to
9x, and the two relations

(v?)* vf*,

(Kf)* K.f*, E* E X J,

hold identically, f being assumed excessive relative to (c, A) in the second.
Let 9 be a function excessive relative to (c, A). By the preceding correspond-

ence, the assertions of Theorems 11.3 and 11.5 and the inequality (11.10)
hold for , the kernels being defined relative to (c, A). The treatment of the
semimartingale following Theorem 11.3 is also valid, with 9(X(r)) replaced by

The other theorems concerning excessive functions and measures require
additional hypotheses, which will be discussed now. The hypotheses on P,
and will be denoted again by (B), (E), and those on pX and 9x by
(BX), (EX). It is to be noted that (D) and (E) imply respectively (Dx)
and (EX). Also, the argument establishing Borel measurablity of P(r, B)
shows that (Cx) holds if (C) holds and b is a bounded continuous function; for
particular transition measures, such as those of Brownian motion, much less
is required of b. The hypotheses concerning the measures K are denoted
by (De), (EC), and (f).

(Dc) Let D be an 9-special set, X a process with the P as transition measures,
and (T,) an increasing sequence of stopping times for X, each T being relatively
independent of the terminal time R assigned to X. If the limit of the T, is at
least R, with probability 1, then

xo(X(T )) O, n
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where x,) is the characteristic function of D and , is the set on which T, is less
than R.

(Ec) If D is an -special set, then VC(r, D) is bounded in r.

() There is a sequence of positivefunctions h, whose potentials Vh,, are finite
everywhere and increase to infinity with n at every point of .

Obviously, (Ec) implies (E). To see that (D) implies (D), take T to be
the infimum of the greater than n for which X(r) belongs to D, and choose
the -special set D’ to include every point regular for D; the probability of
the joint event, that R is infinite and X(r) belongs to D for arbitrarily great
vlues of r, does not exceed

which tends to 0 under (D) because Zx is bounded below by 1.
If (C) holds, then for every special set D there is another special set D’ such

that W(r, D’) is bounded away from 0; this assertion follows from Proposition
12.1, because V majorizes V.

If (C) and (E) both hold, then so does (D). Indeed, given a special set D,
consider a potential Vf which is bounded above and which exceeds 1 on D;
the existence of such a potential follows from (E) andthe preceding paragraph.
One has, using the notation of (D),

and he las expression vanishes in he limit, as n + m, beouse he integral

Vf.(X(O))d d Zx(r)f(X(r))dr
is finite. Proposition 12.5 could have been proved in the same manner.

Clearly, () follows from (E), and an argument like the las one in the
proof of Theorem 12.2 shows that it also follows from (D).
Under () function excessive relative to (c, A) is the limit of an increasing

sequence of potentials, while under (E) a measure excessive relative to
(c, A) is the limit of an increasing sequence of potentials. The proofs are like
those of Theorems 12.2 and 14.2.
We shall now derive the analogue of Theorem 14.6, assuming (Cx) and (E)

to hold. A measure on or x will be tacitly understood to vanish outside
or x and to be finite on sets which are special relative to or x. Con-

sider a measuer v on x that satisfies the relations

uC) u u => 1,
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where uC stands for the set comprising the numbers uz with z in C.
measure must have the form

Such a

(16.4) (dr, dz) z-2(dr)dz,
with a measure on c and dz Lebesgue measure on J;it must also be finite
on every set of the form D X J, with D an -special set. One easily verifies
that satisfies (16.3) if and only if its potential Vx does so; here the po-
tential is assumed finite on 9X-special sets, and the finiteness of on such sets
follows from (cX).

Given a measure g on C, let us take g* to be the measure on Cx defined by
the right member of (16.4), so that g - g* is a one-to-one correspondence be-
tween measures on and the measures on Cx that satisfy (16.3). Clearly, g
is excessive relative to (c, A) if and only if g* is excessive relative to }Rx, and
the relations

(,V)* ,*Vx, (#K VC)* #*K. V, E*=EXJ

hold. The second of these relations implies that

(M ’)* MX. ’*, E*=EX J,

f being excessive relative to (c, A) andM being defined as in 14.
Let be excessive relative to (c, A). Then f*, which is excessive relative to

x, can be represented according to Theorem 14.6 as - Vx, with $ a meas-
ure having special properties. To prove that and both satisfy (16.3),
consider the representation of the measure *o h, where h is the homeo-
morphism (r, z) --+ (r, uz) of Cx into itself, defined for u not less than 1. This
measure is also excessive relative to 9x, and

oh + (VX) oh i’*oh u-* u- + u-Vx.
Now, the first and the last members of this chain both satisfy the conditions
imposed in Theorem 14.6 on the representation of an excessive measure.
Since that representation is unique, and V must satisfy (16.3); by a re-
mark above, the measure satisfies the same relations. What has been said
so far enables one to write as a Vc, with a excessive relative to (c, A) and

An additional argument is needed to establish the characteristic property of
the measure a. Let D be an 9-special set, F the complement of D X J in
C, and F the union of F with D X J, where J is the interval n _< z < .
By the characteristic property of ,

i .(B) (B)

for every n and every set B in . Let us take for B a set comprising only
points whose second coordinates are bounded above, say by m. Since a
process with the P as transition measures has a second coordinate that
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increases with time, the equation

flK V. (B) flK Vx. (B)
holds for all n greater than m and for all measures/; hence, by the definition
of the transformation M,

M .(B) M .(B).

Consequently M coincides with or, expressed in other terms, M a

coincides with a whenever the complement of E is included in some 9-special
set. Thus a -t- V is the desired representation of ; the uniqueness of the
representation of course follows from the uniqueness of the representation
of *.

It is perhaps easier to repeat former proofs, under new hypotheses, than to
translate results already established for P and into the new setting. For
example, the proof of Theorem 13.2 under (De), the proof of Theorem 13.5
under (B) and the hypothesis that (Dc) holds whenever a strictly positive
constant is added to c, and the proof of Theorem 14.11 under (C) and a
strengthened form of (E) proceed almost word for word as before. On the
other hand, it is desirable to discuss systematically the situations considered in
1-14, supposing a group or semigroup to act on 3 and limiting attention to
functions and measures transforming in a given way under the action of the
group;the theory based on the pair (c, A) need not then be treated separately.
Our model for creation of mass is not general enough to serve as a basis for

results like those of the preceding section. The defect can be remedied by
introducing the mass axiomatically rather than by the explicit formula
(16.1). Of course, one would still seek an explicit construction of the mass in
particular situations; such a construction exists for Brownian motion on the
line, as I have learned from K. It6 and H. P. M:cKean.
A similar generalization of the relative theory, by introducing systems of

terminal times axiomatically, has already been mentioned. It is desirable, in
fact, to go a step further. The statements that have been proved in this
paper involve the behavior of sample paths only before the terminal time; our
hypotheses require the paths to behave well for all time. Creation of mass
has been treated quite differently from destruction of mass; it could have been
treated similarly by speaking of the creation of particles at a system of initial
times. So one might properly take as foundation the following situation.
There is given a space and a family of kernels K(r, ds). The equation
KK K+ is to hold identically, but the mass of K(r, ds) is unrestricted.
A realization of the family K and an initial measure is a triple (R, S, X),
with R and S positive functions on a measure space 2 and X(r, 0) defined as a
point of for in and r in [R(), S(o)). The function S is to be not less
than R, and the measure of the set of satisfying the conditions

R() =< r < S(), X(r, w) eA, i 0, 1,...,n,
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for all given sequences

r0- 0 < rl < < r,

is to be

f,o (dro) f, K(ro drl) f K,(r._l, dry),

CORNELL UNIVERSITY
ITHACA, NEW YORK

where A stands for r r_l. Unfortunately, there is no discussion of such
realizations similar to the discussions by Blumenthal and Kinney of realiza-
tions of Markoff transition measures.


