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Introduction

Let zl, z2, zn denote unimodular complex numbers

lz l= ,
We put z. ei+(0 =< q. <: 2r)and

(1) S -’=1 z (/ 1, 2,-.. ).

By a well known theorem of Dirichlet, for any integer o __> 2 we can find a
positive integer/c with 1 __< / <__ and integers b, b., b such that

(2) /cJ-- b =< ol (j 1,2,... ,n).

It follows for >__ 5 that among the power sums S (1 -< / =< cos), there is at
least one for which

27S! --> ncos--.

This can be stated also as follows" For any choice of the unimodular numbers
z (j 1, 2, n), we have

(3) Max >= cn
l_<k< [A (c)]

for any c such that 0 < c < 1, where A (c) [2/arccos c] - 1. (Here and
in what follows [x] denotes the integral part of x.)

It is well known that Dirichlet’s theorem can not be improved. For in-
stance, if q- 2/ (j 1, 2, n), where __> 2 is aninteger, thenamong
the integers 1 __< lc __< wn 1 there is none for which all the inequalities

1<- (j 1,2,... ,n),

where b, b., b are integers, would be satisfied.
A simple example of G. HajSs (see [1], p. 16) shows that Dirichlet’s theorem

can not be much improved, even when we admit nonintegral values for /.
The example of Hajds is as follows" if we choose

27
6.5-1

(j 1,2, ,n),
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then among the real numbers 1 =< =< 6.5n-1 1 there is none for which the
relations

-btq" <1 (j =1,2,... ,n)

would all hold, where bl, b2, b, are integers. Similar examples could
be constructed for other values of .

In the present paper we approach the same problems by an entirely dif-
ferentprobabilisticmethod. Let C() C() C() C( denote the
direct product of n unit circles, and define a probability measure P on C
as the direct product of the uniform measures on each of the factors C
In other words, we consider the set z, z2, z of complex random varia-
bles, where z. e’, and the . are independent real random variables uni-
formly distributed in the interval (0, 2v).
We shall show in 1, by using standard methods of the calculus of prob-

ability, that for every n > 1 and 0 < c < 1 the set of those n-tuples of uni-
modular complex numbers z, z., z (i.e. those points of C()) for which

(4) Max Sk < cn,
<=k<1/4exp(nc2]2)

has positive measure [Theorem 2]. This proves the existence of an infinity
of essentially different sets zl, z., z with zj ei" (0 =< . < 2) for
which the inequalities

(5) -/ b. _-< arccos2 c (j 1, 2, n)

can not hold for an integer 1 in the interval 1 -< l < ec(0 .< c < 1) and
with integers b. (j 1, 2, n), because (5) would imply S >= cn. (In
fact we shall prove still more; see Theorems 1 and 3.)

In 1 we prove the existence of various sets z, z, z of unimodular
complex numbers, such that many of their power sums are relatively small
(or, expressed in another form, such sets z, z, z of unimodular com-
plex numbers that the numbers z, z2, z are rather uniformly dis-
tributed on the unit circle for many values of l [Theorem 4]). Our method
is principially unable to yield an explicit construction of such sets, though
such a construction by some other method would be rather interesting. The
reader, however, who is acquainted with the book [1] of P. Turdn, will imme-
diately see why the proof of the existence of sets with the mentioned proper-
ties is ulso in itself not without interest. In fact our results show that the
inequality (3), which is a consequence of Dirichlet’s theorem, can not be
essentially improved, i.e. the range of l can not be replaced by a range of
definitely smaller order of magnitude for n -- . Now in the book of Turdn
mentioned above, a series of important applications are given of lower esti-
mates concerning Max<< S with a relatively small range (a, b) of /.
Such estimates have been found by Turdn; of course his results on the "short
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range" maximum of [Skl give only small lower bounds. Our results prove
that this is inevitable.
In 2 we also shall prove a result [Theorem 6] giving a lower estimate of

MaXl_<k_<N Sk (and another [Theorem 5] of the maximal discrepancy of the
set z (j 1, 2, n) for 1 =< lc __< N), valid for every setzl, z of uni-
modular complex numbers, which shows that the results of 1 are not far
from being best possible. Theorem 6 differs from the much deeper results
obtained by P. Turdn [1] in that it deals with the long range maximum of
Ski, while Turdn’s results are on the short range maximum of ]Skl; it

should be mentioned that Turn’s results are valid under more general con-
ditions (the z need not be unimodular).
In 3 we call attention to some unsolved problems and to further possible

developments of our method.

1. Construction of particular sets of unimodular complex numbers
THEOREM ]. There exists for every integer n >= 2 a set zl, z2, z, of

unimodular complex numbers such that, putting S =z we have

(6) S < %/6n log (] A- 1) for t 1, 2,....

Theorem 1 clearly implies

_Iz<exp(nc2/6)

the slightly stronger relation (4) can be proved by considerations similar to
those used in the proof of Theorem 1, but it does not follow from Theorem 1.
Thus we have besides Theorem 1 the following

THEOREM 2. There existsfor every n >= 2, a set z z2 z, of unimodular
complex numbers such that, putting S =1 z (l 1, 2, ), we have

k<1/4exp (nc2/2)

for every c in O < c < 1.

Remark. Of course Theorem 2 does not contradict (3), because

e
araos v

for 0 < c < 1 as ec212 < e/2 < 4 < 2r/arccos c.
To prove Theorems 1 and 3 we shall need the following

IEMMA 1. Let z z2, z, denote independent complex-valued random vari-
ables, each of which is uniformly distributed on the circumference of the unit
circle. Then we have, putting z -4- z. -4- + zn

(7) P(l, >- cn) <= 4e-2"/2 (n 1, 2, ),
The inequality (6) is of course interesting only for k A- 1 < e"/, because for k A- 1

_
e"/ the inequality becomes trivial as S =_< n for any k.

for0<c<l;l
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for 0 < c < 1. (Here and in what follows P( denotes the probability of
the relation in the bracket.)

Proof of Lemma 1. Let us evaluate the mean value of e which we
denote by M(] ex I) where k is real. By our suppositions

and thus

M(I ex" ]) M(II?= Id’ I) [M(I eX’[ )],

(10) q0(ik) (1/2h)2k < (1/2X)2k
ex/4,

it follows that

As

where 0(x) denotes the Bessel function of order 0,

(9) g0(x) 1)(1/2x)
=0 1

we obtain

(11) M(] ex I) -<- eX/4.

Let us denote by (w) the real part of the complex number w. As the vari-
ables z, -z, iz and (-iz) are identically distributed, 6t(z), (-z),
((iz), and (-iz) are also identically distributed. Taking into account
that for w u + iv we have

Max ((w), (-w), (iw), (-iw)),

(12) I’, -<- "V/ Max (((), ((-), (i), ((-i)).

It follows from (12) that for X > 0

(13) P(] , >-- cn) <= 4 P(6() >= cn//)
and thus

/
(14) P(] nl >_ cn)<=4P(I, expk%[ >= exp.).
Now we need the well known inequality of Mar/coy according to which for
any nonnegative random variable we have

P( A) <= M()/A

),cosq(8) M(I ex l) d (g0(ix)),
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for anyA > 0.
(14), we obtain, taking (11) into account, that

Applying this inequality to the probability on the right of

((15) P exp Xr => exp ] -< exp n

From (14) and (15) it follows that

(16) P([ => cn) -<_ 4 exp n

for0 < c < landX > 0. Choosing for X the value X c/, we obtain
the assertion of Lemma 1, which is therewith proved.
To prove Theorems 1 and 2, we start from the remark that if zi is uni-

formly distributed on the unit circle, the same is true regarding z for lc 1,
2, .... It follows that if the random variables z, z, z are independ-
ent, and each is uniformly distributed on the unit circle, the random variables
S iz are all identically distributed, and we have by Lemma 1

(17) P(] S cn) N 4e- (0 < c < 1).

It follows frown (17) that

(18) P ( Max S cn 4N
lkN ]

1 nc2/2Choosing N < ze we obtain

(19) P ( Max S cn < 1,
Nk<exp (n 2/2) ]

which implies the existence of a set z, z:,..., z, with
(j 1, 2, n), for which S[ < cn for lc < e/.

This proves Theorem 2.
To prove Theorem 1, we deduce from (17) that

(20) P(! Sk > V/6nlog(k+ 1)) < 4 (/ 1 2 ...)
( + 1)

Thus we obtain

(21) P Max Ski > %//- < 4
1

\ k.>_l "V/log (k -- 1) k=l(/+ 1) < 1

as

E ( + )kl f dx 1< + x--r
This implies the existence of sets zl, z2, z, for which

log (/-t- 1) for 1,2,....
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Theorem 1 is thus also proved.
For values of c near to 1, the range 1 =<

Max:_k_ Ski < cn, for a suitably chosen set z:, z,.,
siderably enlarged.

THEOREM 3.
a set zl z2

we have

/ _-< N for which
z,, can be con-

This is expressed by

There exists, for every n >= 10 and every e with 0 < < ,
z,, of unimodular complex numbers such that, putting

S Ei"=: z (k 1, 2, ),

Max S < n(1 s).
l_k (16nen-1)-ll

Proof of Theorem 3. We have clearly

e d,, < e d + .
Introducing the new variable x 2k(1 cos ), we obtain

I e e-’/dx

As 1/1 < 1 + for 0 < < , it follows that

Thus we obtain

1+ ex ( 1) 1cos
We follow an argument essentially the same as that used in the proof of

Theorem 2. Taking into account that for any complex number w and any
positive integer h __> 4, we have

1(23) lwl -<_
COS

further that

"0h-:
Max (R (w exp --’2ir)

( 2rirkSexp 2rir
zi exp

has the same distribution as $1, we obtain for any/ >__ 1

It can be seen from the argument that the assertion

[Skl < %/6n log (] + 1)

could be replaced by [Ski < %/4n log (k + 4) or more generally by

Sk < %/2(1 -k 6)n log (k -F (46-) :In)

(k-- 1, 2, ...)

for any O.
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which implies

(24) P(, Sk, >= n(1 )) __< hP (6l($1) n(1 )cos).
Thus we obtain

P(ISkl => n(1 e)) -< hP(
(25)

As for X > 4, 1/2 < e/4X,it follows from (25) that, Is,ol

(! 1) { ((26)
1 -F - exp X

< Nh

Let us suppose n => 10 and 0 < e < and choose

1 (1 ) cos

1(27) ),
2e

and

It follows from (26), (27), and (28) that

P
\I_<_<N
( Max [s >- n(1 e)) _<_ 4Nx/e(-n/.

Thus

P\I<_<N(Max IS! ->- n(1 )) < 1 if N < (16n’-1)-1/2

Thus there exist sequences z, z2, z, of unimodular complex numbers
such that

Mx IS < n(1 s).
k(16nen-1)-ll

Theorem 3 is therewith proved.
It is esy to see that by slight modification of our rgument we could

prove the existence of set z, z, ..., z of unimodulr complex numbers
for which ssertions of the type of Theorem 1 nd Theorem 3 hold simul-
tneously; of course the constants figuring in these theorems re to be
modified for this purpose. We obtain this wy that, for n 10 and
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0 <: e < _z, there exists a set zl, z, z of unimodular complex numbers
such that, putting Sk .=1 z, we have

SI =< /6nlog(lC+2) for e",
and at the same time

]S[ n(1- ) for (64ne-)-/.

In our Theorems 1, 2, and 3, instead of considering successive power sums,
i.e. S, S, S, we may consider S, S, S, where k, k,
lc is any set of different integers. We formulate only Theorem 2 in this
generalized form.

THEOREM 2. Let n 2 be an arbitrary integer, 0 < c < 1 and k .,
nc2/2k an arbitrary set of different integers, N < z Then there can be found

unimodular complex numbers z z2 z such that, putting S =z
we have

Max S < cn.

The results proved up o now give no information whever bo he
numbers z, z2, z, for which ll the vlues S (1 N) re rela-
tively smll, except the existence of n bundnt set of such n-tuples. Never-
theless we cn sy something bout the numbers z figuring in our theorems,
by a slight modification of our rgument.

In fct we can prove that the numbers z (j 1, 2, n) in Theorem 2
cn 11 be chosen to be roots of unity of order p, where p is prime greater
thn e. The modification of the proof consists in that we suppose concern-
ing the rndom wribles z, not that they re equidistributed on the unit
circle, but that they tke on ech of the wlues p (h 0, 1, p 1)
where p

prime, p > e"/. In place of the fundamental formul (8) we obtain, pro-
vided that is not divisible by p, putting gin z,
(29) M(I e

where b, 1 for r p. Thus e obtain

(s’)
nd therefore Theorems 1 nd 2 remain vlid witi the dditionl requirement
that z, z, z should 11 be roots of the equUon z 1, where p > e
is prime. Theorem 3 cn lso be proved with this dditionl requirement,
but in this cse we hve to suppose of course

p

We cn develop our results somewhat further by onsiderin not only the
power sums 8 ]z for positive integer values of , but lso the sums
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In this direction we can prove the following result"

THEOREM lb. There can be found for every n >= 2, a set zl z. zn of
unimodular complex numbers

z. e" (0 =< - < 2r;j 1, 2,... n),

such that, putting S e where a is real, we have

S, nlog(a+l) +2r(+2)
for any a 1/[].

Proof of Theorem lb. Let us choose numbers z e* for which

E=zl 6n log ( + 1) (k 1, 2,... ),

which is possible according to Theorem 1. Let us put m [] and
we z Thenwehave

(30) =w 6nlog(a+ 1) for a=-m,k= 1,2,...

As for z e(0 < 2), we have

(31) za z"l ( a).2v

if 0 < a < , it follows that

=1 j=l m

for k/m <= < (k + 1)/m. Thus by (30) and (32), forn ->_ 2 and any
a >= l/m,

[S =< V’n log (a / -4- 1) -t- 2r(/ -t- 2),

which implies the assertion of Theorem lb.
It follows simply from our results that there can be found a set zl, z2, z

..nc2]of unimodular complex numbers such that for no/ < z do all the num-
bers z (j 1, 2, n) lie on an arc of the unit circle of.length 2 arccos c"

because if this were so, then, for the set zl, z2, z figuring in Theorem 2,
for some k < ens2/2 we would have Ski > nc, in contradiction with The-
orem 2. But in this way it is impossible to deduce the existence of sets zl,

z2, z of unimodular complex numbers for which z, z2, z do not
all lie on an arc of length with r < < 2r for some/ < (1 d- 8)’. Never-
theless this is a consequence of Theorem 1, but to deduce it we need the finite
form of Weyl’s theorem due to P. Erdgs and P. Turdn.

Let us denote by N()(a, ) the number of those among the numbers
z (z e’; 0 =< < 2v;j 1, 2, n) for which

0 -<_ a -<_ k. < < 2v (mod 2r).
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According to the theorem of Erd6s and Turn [2] we have

(33) r(k) ( a)n ( n Slk )m+l =
where A > 0 is an absolute constant and m 1 is an arbitrary integer. If
we choose the unimodular complex numbers z, z, z so as to satisfy
Theorem 1, it follows from (33) that we have for lc 1, 2,

(34)

Choosing

m

we obtain

n
(35)

Thus we have

(36)

+ /6n log (/l -t- 1)
l=l

n 2

and further putting 6 (log (/ + 2))In,
N() (a, ) a

n 2r

< c(log n)n/ for/ __< n,

(37)
e

for
log(n-- 2) _< ti __< 1,=< c /3 log

n

where cl and c are positive constants. As %/ log (e/i) -- 0 for --* 0, it
follows that the points z, z, z are asymptotically equidistributed on
the unit circle for n -- and (log )/n O.
The result obtained is expressed by the following

THEOnEM 4. There exists for every n a set zi, z:, z of unimodular
complex numbers such that, denoting by N( (a, ) the number of those among
k k kz z .z, which are lying in the arc (a, ) of the unit circle, we have

N)(’) - log
n 2

< c

for l e- 2, where ca is an absolute constant and 0 < < 1.

Theorem 4 follows by combining the inequalities (36) and (37).
It follows from Theorem 4 that there exist unimodar complex numbers

z, z,..., z such that, for any e > 0 with 0 < e < B, for no
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/c =< exp {B.n(log 1/)-S} does there exist on the unit circle an arc of
length _-->2v which does not contain any of the numbers z, z2, z
here B1 > 0 and B > 0 are absolute constants.

2. Results valid for all sets of unimodular complex numbers

To show that Theorem 4 can not be essentially improved, let us consider
arbitrary unimodular complex numbers zs ei(j 1, 2, n). Let us
choose an integer (1 ,( < n/2); according to Dirichlet’s theorem, we can
find a positive integer/ < 0

[n/] such that

for j 1, 2, [n/w], where the b. are integers. It follows that

Cs

log(i/e)’

c, c., and c being absolute constants. Thus Theorem 4 and Theorem 5
each shows that the other is not far from being best possible.

Similarly we can prove a theorem which shows that Theorem 2 can not
be essentially improved. Let z, z, z denote an arbitrary set of uni-
modular complex numbers.

Let us suppose 2 -< c =< n 1 and let us denote by r the least integer

where

.() >

with some/c < [] < (oI/). Thus we proved

THEOREM 5. Let z z, z denote arbitrary unimodular complex num-
bers, and > 1 an integer (o < n). Then we hae

Max Max N

To compare Theorem 5 with Theorem 4, let us mention that Theorem 4
can be brought to the following form:
Theorem 4 asserts that for any e with 0 < e < c and n 2

Min Max Max N)(a’
Zl,Z2,’"zn lk(l+e) 0a<fl<2 2

where 0 < A(e) < c, (log 1/e); and Theorem 5 asserts that

Min Max Max N
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->c. According to Dirichlet’s theorem, if z ei-i, we can find an integer
< (4rn v/r + i)r+l such that

le. 1-- b =< [4n/r-t- 1]

for j 1, 2, r + 1, where bl, -.., br+l are integers. Now let us put
w zr+2, w__l z according to a theorem of Cassels [3], there
can be found an integer h < 2(n r) such that (R( V’-r-z_i= w) => 0; it
follows that

1
>r>c.__I I--> () _-> (r + )cos v/r + 1

Thus we have proved

THEOnFM 6. For any set z z, z, of unimodular complex numbers,
puttingS E=z,wehavefor2 c n- 1

Max S] c.
lk(4w.n)C+2.2n

3. Some nso]ved problems
(a) In 1 and 2 we have shown that there exist positive functions f(e),

A(), A(), A(s) ( > 0), all tending to 0 for 0, such that, putting

A(n,)= Mi. Mx Zl,
n Zl,.. ",Zn k (l+e)

and

we have

B(n, e) Min Max Max
Zl,’’’,Zn l<=k<= (l+e) 0a<<2r
Izl=l

()

n 2

A(e) =< A (n, e) __< f.(e)

A(v) _-< B(n, ) <-_ A().

The exact orders of magnitude of A(n, ) and B(n, ) for --) 0 remain
however unknown.

(b) Dirichlet’s theorem asserts that for any set z, z2, z (n >__ 2) of
unimodular complex numbers, and for any integer > 2, there can be
found an integer ]c in the interval 1 _-< k <__ 0" such that the numbers z,
z, z are all lying in an interval of length 4v/o on the unit circle, and
thus an interval of length 2v 4/w remains free from the numbers z.
Probably this is not a best possible result, and 2 4/ can be replaced
by a greater number, but nothing is known in this direction. Moreover

It is clear from the proof of Theorem 6 that, instead of zi 1, it suffices to sup-
pose zi >= 1.
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it remains completely unsolved whether there exists a function ti(e) > 0
(0 <: e < 1) such that for any set zl, z2, z of unimodular complex num-
bers, there can be found an integer ], with 1 =< l =< (1 + e)’, such that the

k k knumbers z, z, z leave free on the unit circle n rc of length (e).
(c) Finally we should like to cM1 ttention to the following fcts which

hve not been used explicitly in this pper.
It cn be shown by standard methods of the clculus of probability that

if z, z, z re independent rndom wribles, ech of which is uni-
formly distributed on the unit circle, then, putting

S= z, )= (S), and )= (S),
the joint distribution of the random variables

(kr)

where r is fixed and ]c ]c for i j (i, j 1, 2, r), tends for n
to the 2r-dimensional symmetrical normal distribution with the density
function

1 ( 1 )(2),
exp =

Thus the vribles ), ) are in the limit independent for n . It
seems that this fct hs interesting consequences concerning diophntine p-
proximtions. We hope to return to this question in forthcoming pper.
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